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Abstract
Vibrational spectroscopy is a green, rapid, and affordable analytical tool for analysing the quality, safety, and origin of biological materials in agri-

food sectors. Pre-processing spectral data is crucial to removing instrumental interferences and physical artifacts when developing a classification

model. However, there has yet to be a consensus on which spectral pre-processing method, settings, and decision parameters to use to optimise

pre-processing for different spectroscopy tools. Using an arbitrary criterion poses a risk of applying the wrong type or too severe pre-processing

that removes valuable information or affects the model's performance for prediction studies. Matthew's Correlation Coefficient (MCC) - a statistic

for parameterising classification performance, accounts for data set imbalance and improved decisions on model selection to express uncertainty

on future predictions. Four vibrational spectroscopy instruments [near-infrared (NIR), hyperspectral (HSI), mid-infrared (FTIR), and Raman] were

compared using different pre-processing methods to understand the performance using MCC to classify coffee from four countries (Indonesia,

Ethiopia,  Brazil  and  Rwanda).  Key  decision  parameters  were  evaluated  for  the  development  of  reliable  classification  models.  The  best  pre-

processing for  NIR was extended multiplicative scatter  correction with mean centering (MNCN),  and for  HSI,  Savitzky-Golay (1st derivative,  15

points) with MNCN. NIR performed the best across all four instruments, with FTIR performing the worst. Raman showed potential for coffee origin

classification using the right pre-processing. Pre-processing with weighted least squares, normalisation, and MNCN eliminated the fluorescence

effect on Raman spectral data. These findings show the feasibility of using MCC for classification problems.

Citation:  Sim J, McGoverin C, Oey I, Frew R, Kebede B. 2024. Optimisation of vibrational spectroscopy instruments and pre-processing for classification
problems across various decision parameters. Food Innovation and Advances 3(1): 52−63 https://doi.org/10.48130/fia-0024-0004

 
 Introduction

Vibrational spectroscopy-based tools have gained traction as
green,  rapid,  and  affordable  modern  analytical  tools  in  the
pharmaceutical  and  forensic  sciences  for  verifying  the  quality
of incoming materials or outgoing products[1,2]. Their value has
also  been  recognised  in  the  agri-food  industry  for  quality  and
origin verification of organic and biological materials[3,4]. These
tools  have  mainly  included  near-infrared  (NIR),  mid-infrared
(FTIR),  Raman,  and,  more recently,  hyperspectral  imaging (HSI)
spectroscopies.

Different  spectroscopic  tools  perform  over  various  defined
frequency  ranges  and  differ  concerning  the  underlying  princi-
ple  by  which  molecular  vibrations  generate  a  signal  (Supple-
mental  Fig.  S1).  A  change  in  polarisation  leads  to  a  Raman
active  vibrational  mode.  In  contrast,  a  vibrational  mode needs
to be associated with a change in dipole moment to be infrared
(NIR,  FTIR)  active.  Despite  following  different  mathematical
relationships,  both  infrared  and  Raman  spectroscopies  follow
linear  relationships  relating  sample  constituent  concentration
to  the  intensity  of  signals  or  absorbance.  These  relationships
are obeyed only when no other phenomenon (e.g., other forms
of  scattering,  specular  reflection)  occur.  Even  well-designed

studies include noise in the form of undesirable light scattering
because  of  inconsistencies  in  particle  size,  packing  densities
and  spectral  regions  (wavelengths)  used  in  the  study.  These
affect  the  effective  path  length  of  light  travelling  through  a
sample,  causing  non-linearities  and  baseline  shifts[5].  Pre-
processing treatment can transform and reduce these undesir-
able  influences.  Consequently,  this  allows  the  spectral  data  to
follow  these  linear  relationships  more  strictly  and  minimises
unmodelled variability in the data[6,7]. More recently, the popu-
larity  of  HSI  spectroscopies  providing  spatial  and  spectral
chemical  information  has  led  to  investigations  into  advanced
image processing methods  for  improving classification perfor-
mance[8].

The  final  model  performance  is  significantly  influenced  by
the  choice  of  pre-processing  method[7].  The  pre-processing
method  needs  to  be  selected  by  considering  the  vibrational
spectroscopic  technique  and  optimised  for  the  data  set  and
objectives  of  the  investigation.  The  two  main  types  of  pre-
processing methods are available:  scatter correction and spec-
tral  derivation.  However,  there  is  a  danger  of  applying  the
wrong pre-processing treatment or introducing bias by remov-
ing valuable information from the spectra[6].
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The literature does not have unanimity on the best decision
parameter (e.g., R2, RMSEP) to choose the final model, even for
investigations  of  the  same  sample  (Supplemental  Table  S1).
When  creating  classification  models,  there  is  always  a  risk  of
overfitting.  Overfitting  is  when  you  develop  extremely  accu-
rate  mathematical  equations  for  the  calibration  data  set.
However,  once an external  validation set  not  seen by the cali-
bration  model  is  introduced,  these  equations  are  poorly
predicted[9].  Approaches  to  optimising  a  model  have  come  to
include  decision  parameters  involving  root  mean  squared
errors of calibration (RMSEC), prediction (RMSEP), coefficient of
calibration  (Rcal

2)  and  validation  (RVal
2)[10].  Most  publications

have  offered  little  insight  into  the  pre-processing  selection
steps  taken  during  the  calibration  model  development  and
have  chosen  the  final  model  based  on  RMSECV  and  RMSEP.  A
comprehensive  overview  of  the  literature  can  be  found  in
Supplemental Table S1. However, in addition to these statistics
to assess the model fit, confusion matrices are typically used in
classification  problems  to  represent  the  quality  of  the  predic-
tion,  but  they  can  be  hard  to  communicate.  Accuracy  and  F1
scores are popular parameters to quantitate the model perfor-
mance.  Accuracy,  however,  cannot  distinguish  between  false
positives  and  false  negatives.  F1  score  notes  the  number  of
prediction  errors  and  the  types  of  errors  made  but  fails  to
consider the number of samples for each class.

The research gaps include a lack of consensus on which spec-
tral  pre-processing  method,  settings,  and  decision  parameters
to  optimise  pre-processing  for  different  vibrational  spec-
troscopy  tools.  In  addition,  few  studies  have  compared  the
sensitivity  of  various  vibrational  spectroscopy  tools  for  origin
classification problems.

 A case study on coffee
This  paper  aims  to  compare  different  pre-processing  meth-

ods  on  various  vibrational  spectroscopy  tools  (near-infrared,
hyperspectral,  mid-infrared,  and  Raman)  to  understand  the
performance  of  these  methods  for  classification  problems
using  partial  least  squares-discriminant  analysis  (PLS-DA).  Key
decision  parameters  will  be  evaluated  to  develop  robust  and
stable  calibration  models  for  four  vibrational  spectroscopy
tools.  This  paper  is  part  of  a  wider  study  which  involves  the
development of a rapid origin traceability toolbox for coffee. As
part of this process, optimisation work was conducted.

 Material and methods

 Coffee samples
Green  coffee  beans  from  four  countries  across  three  conti-

nents were used as case studies: Santos, Brazil,  South America;
Yirga  Cheffe  Oromia,  Ethiopia,  Africa;  Sumatra  Mandheling,
Indonesia, Asia; Kopakama, Rwanda, Africa. The coffee samples
were  all Coffea  arabica species  and  wet-washed.  Postharvest
processing steps  were  conducted in  the  country  of  origin  and
harvested in 2020 across the same period for each sample. The
samples  were  chosen based on their  relevance to  the  interna-
tional coffee sector, specifically from the coffee bean belt repre-
senting  beans  from  America,  Africa,  and  Asia.  Green  coffee
beans  were  stored  at  65%  relative  humidity  with  an  ambient
temperature of 18 ± 2 °C before further processing. Three repli-
cates of each sample consisting of 100 g of green coffee beans
were  ground  into  a  fine  <  5 µm  green  coffee  powder  (GCP)

using  a  cryomill  (Retsch,  Haan,  Germany)  and  liquid  nitrogen.
Forty-eight  samples  were  each  placed  in  5  ml  polypropylene
screw-capped tubes, wrapped in aluminium, and stored at −18
°C.  The samples were prepared a  week prior  to analysis  across
all  four instruments (near-infrared,  hyperspectral,  mid-infrared,
and  Raman).  From  each  of  the  biological  replicates,  seven  to
nine analytical replicates were taken for each instrument.

 Spectral acquisition
 Near-infrared analysis

This study used a dispersive 'bulk' NIR (DG-NIR) and a hyper-
spectral imaging push-broom dispersive NIR (HSI-NIR) system.

DG-NIR  measurements  were  performed  using  a  NIR  XDS
Rapid Content Analyser (Metrohm, USA) fitted with an iris adap-
tor  to  centre  the  sample  cup  towards  the  window  area.  The
device  was  warmed  up  for  30  min  before  recording  spectra.
Before recording sample spectra, a background spectrum from
a Spectralon 99% diffuse reflectance standard was recorded in
a dry, controlled atmosphere (20 ± 0.5 °C, 75% relative humid-
ity  ±  4%).  All  the  spectra  were  collected  in  absorbance  mode.
Each  sample  was  carefully  mixed  before  sampling  2  g  of  GCP
for  each of  the three replicates.  The sample  holder  (17.25 mm
spot  size)  was  rotated  during  measurement  to  collect  a  more
representative  spectrum.  Spectral  data  were  collected  over
400-2500 nm (data sampling interval, 0.5 nm; background, 256
scans;  sample,  32  scans).  Vision  Air  2.0  Network  software
(version 66072207) was used for instrumental control and spec-
tral  acquisition.  The spectrum was then saved into text format
for further data analysis.

Hyperspectral  imaging  (HSI-NIR)  measurements  were
performed using a PIKA NIR-320 camera (Resonon, MT, USA), a
dispersive push-broom hyperspectral system 320 pixels wide. A
dark  reference  was  taken  to  remove  dark  current  noise  by
blocking the objective lens using the lens cap, and a reflective
reference  was  then  taken  using  Spectralon  99%  reflectance
reference  to  account  for  illumination  and  instrument-sensor
response effects. Spectra were collected in reflectance mode. A
small  amount of  powder was packed into a standardised plas-
tic  ring (40  mm ring with  an inner  15  mm diameter)  compart-
ment  and  levelled  off.  The  ring  was  then  placed  on  the  stage.
Hyperspectral data were collected over the range of 900−1,700
nm  (resolution,  8.8  nm;  168  spectral  sampling  points  (bands);
framerate,  10.0  Hz;  integration  time,  100  ms;  scanning  speed,
0.10  cm/s).  Spectronon  Pro  software  (version  3.4.5,  Resonon)
was  used  for  instrumental  control  and  spectral  acquisition.
Regions  of  interest  (ROI)  were  manually  selected  from  each
sample  to  include  only  GCP  and  exclude  the  plastic  ring  and
background.  This  was  done  by  selecting  the  internal  diameter
of  the  ring  using  the  Spectronon  software  and  then  choosing
seven  to  nine  random  ROIs.  A  mean  spectrum  of  the  ROI  was
then saved into text format for further data analysis.

 Mid-infrared analysis
Attenuated  total  reflection-Fourier  transform  infrared  (ATR-

FTIR) measurements were performed in a dry, controlled atmo-
sphere  (20  ±  0.5  °C)  employing  a  Bruker  Vertex  70  FTIR  Spec-
trometer  (Bruker  Optick  GmbH  Ettlingen,  Germany)  with  a
deuterated  L-alanine-doped  triglycine  sulfate  (DLATGS)  detec-
tor equipped with a diamond crystal for ATR measurements. All
spectra  were  recorded  in  the  4,000−400  cm−1 range  with  4
cm−1 resolution,  64  scans,  the  background  (atmosphere  spec-
trum)  was  removed,  and  Bruker  extended  ATR  correction  was
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applied. OPUS software (version 7.5) was used for instrumental
control and spectral acquisition. Seven to eight analytical repli-
cates  were obtained from each of  the three sample replicates.
Various parts of the sample were measured to ensure represen-
tation obtained through sample repacking.  A total  of  86 spec-
tra were obtained for all four country samples.

 Raman analysis
Raman  measurements  were  performed  using  a  BWTEK  i-

Raman-Plus operating at 785 nm excitation with a silicon-based
detector  and  fibre-optic  Raman  probe.  The  spectra  were
recorded in the region between 4,200–65 cm−1. Before analysis,
the Raman system was turned on for 30 min to allow the laser
to  stabilise.  Silicon  and  ibuprofen  spectra  were  recorded  to
serve  as  wavelength  reference  checks.  A  small  amount  of
powder  was  packed  into  a  standardised  plastic  ring  compart-
ment  and  levelled  off.  The  conditions  for  collecting  sample
spectra  were the following:  1  s  integration time,  30 accumula-
tions,  increment of  1  cm−1,  power  at  sample 130 mW at  100%
laser  power.  The system was operated using the BWSpec soft-
ware  (version  4.10,  USA).  Dark  noise  was  removed  from  each
spectrum prior  to each analysis.  Photobleaching samples for  2
to  20  min  prior  to  Raman  spectral  data  collection  did  not
improve the fluorescence-Raman signal balance.

 Data analysis
Chemometric  data  analysis  of  the  spectral  data  was

conducted  using  R  (version  4.2.0)[11],  and  SOLO  (ver.9.0).  The
analytical replicates per biological replicate were first averaged.
Various  pre-processing  steps  were  investigated  to  eliminate
potential  artifacts  from  the  spectra,  namely  the  fluorescence
effect  from  Raman  or  correcting  baseline  and  non-linear
behaviour  due to  particle  size  differences  from IR  spectra.  The
selection of pre-processing methods to trial was based on liter-
ature  reports  of  specific  method  purposes  and  those  previ-
ously applied to coffee samples. The training and test datasets
were split  using the caTools (version 1.18.2,  USA) package in R
using a  split  ratio  of  75% train  and 25% test,  and cross-valida-
tion  was  performed  using  venetian  blinds  with  seven  data
splits[12].

 Pre-processing methods for spectral data
Pre-processing is essential to reduce noise and extract useful

information  from  overlapping  peaks  or  mitigate  slope  change
effects.  The  most  widely  used  pre-processing  techniques  in
spectroscopy  include  scatter  corrections  and  spectral  deriva-
tives.  Scatter  correction methods include multiplicative scatter
correction (MSC), standard normal variate (SNV), normalisation,
de-trending,  and  extended  MSC  (EMSC).  MSC  estimates  the
correction coefficient and corrects the raw spectra with a slope
(1st-order polynomial)[13].  The average spectrum of  the calibra-
tion dataset is  used to find the correction coefficient.  For SNV,
the  average  and  standard  deviation  of  absorption/intensity
values  of  a  spectrum  are  calculated;  subsequently,  from  every
point of the spectrum, the average is subtracted, and the result
is  divided by the standard deviation[13].  EMSC is  a more elabo-
rate  augmentation  of  MSC.  Instead  of  a  1st order  polynomial,
which corrects a slope, a 2nd polynomial is fitted onto the aver-
age spectrum, fitting a baseline on the wavelength axis[14]. The
most  common  derivative  method  uses  Savitsky-Golay  (SG)
polynomial  derivative  filters,  which  include  a  smoothing  step
simultaneously  with  a  derivative  calculation  to  decrease  the
influence on the signal-to-noise ratio. SG has different orders of

derivatives  and  filter  widths.  Derivatives  allow  the  additive
constant  background  effects  (first  derivative)  and  sloping
change  (second  derivative)  to  be  removed.  All  the  spectral
datasets were also subject to mean centering (MNCN), in which
the mean of each data column (variable) is subtracted from all
the values in the column to give a data matrix where the mean
of each processed variable is zero.

The  pre-processing  steps  investigated  for  NIR  and  FTIR  cali-
bration  data  included  min-max  normalisation  (0  to  1),  SNV,
MSC,  1st and  2nd derivative  Savitsky-Golay  (SG)  with  different
window widths,  detrend,  gap-segment  derivative,  autoscaling,
either  applied  alone  or  in  combination  with  other  techniques.
The pre-processing steps investigated for Raman data included
the  aforementioned  pre-processing  steps  and  asymmetric
weighted  least  squares  (WLS)[15],  either  applied  alone  or  in
combination  with  other  techniques.  All  spectra  were  mean-
centered and saved out before exploratory analysis and classifi-
cation.

 Linear classification model
PCA  was  first  conducted  to  explore  the  dataset  for  any

patterns.  The  reduced  Hotelling's  T2,  reduced  Q  residuals,  and
KNN (K-nearest neighbour) distance scores were used to assess
the  model  fit  and  check  for  extreme  outliers.  The  reduced
Hotelling's  T2 and  reduced  Q  residuals  are  a  normalisation  of
the  Hotelling's  T2 and  Q  residuals  calculated  by  dividing  it  by
the  confidence  limit;  Hotelling's  T2 is  a  measure  of  variation
within  samples  in  the  model,  while  Q  residuals  represent  the
variation  remaining  in  each  sample  after  modelling.  The  KNN
score  distance  is  a  common  outlier  detection  metric  that
provides  the  average  distance  to  the  k  nearest  neighbours  in
the score space for  each sample.  Partial  least  squares-discrimi-
nant analysis  (PLS2-DA) is  a  supervised classifier  and was used
to  predict  the  geographical  origins  of  green  coffee  beans
(GCBs)  from  four  countries.  In  this  study,  the  output  classes
were  Brazil  (class  B),  Ethiopia  (class  E),  Indonesia  (class  I),  and
Rwanda (class R). It summarises the information from indepen-
dent  variables  in  a  small  number  of  latent  variables.  These
representative variables are developed to maximise the covari-
ance between predictors (x-block) and response (y-block). PLS-
DA  can  reduce  these  high-dimensional  datasets  and  handle
multi-collinear  and  correlated  variables,  making  PLS-DA  a
popular  classification  method.  Various  pre-processing  tech-
niques  were  applied  to  the  four  data  sets,  and  country-based
PLS-DA  classification  models  were  developed.  The  PLS-DA
models  were  analysed  independently  for  each  of  the  datasets
from  all  four  instruments.  The  classification  performance  was
validated  by  comparing  several  decision  parameters  listed  in
the next section.

 Model evaluation
The models produced using PLS-DA on all four separate data

sets  were  evaluated  for  the  influence  of  pre-processing  steps
on  the  model  prediction  performance.  The  decision  parame-
ters include total variance captured, root mean square of error
of calibration, cross-validation and prediction (RMSEC, RMSECV,
and  RMSEP,  respectively).  A  low  RMSEP  would  mean  that  the
prediction  performance  is  high  and  the  estimated  response  is
close to the measured response (0 or 1 in PLS-DA).

In  addition  to  statistics  to  assess  the  model  fit,  confusion
matrices  are  typically  used  in  classification  problems  to  repre-
sent the quality of the prediction but can be hard to communi-
cate.  Accuracy  and  F1  scores  are  popular  parameters  for
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quantifying  model  performance[16,17].  Below  are  the  equations
for  accuracy  and  F1  where  TP  (True  Positive),  TN  (True
Negative), FP (False Positive), and FN (False Negative). Accuracy
cannot distinguish between false positives and false negatives.
F1 score notes the number of prediction errors and the types of
errors  made.  F1  is  equally  good  at  minimising  false  positives
and  negatives  by  taking  the  harmonic  mean  of  precision  and
recall.

Accuracy =
TP+TN

TP+TN +FP+FN
(1)

F1 score =
2TP

2TP+FP+FN
(2)

tk
pk

However,  these  two  parameters  are  only  good  indicators  of
performance  for  balanced  datasets  where  all  the  analytical
replicates  are  equal  across  all  datasets.  In  this  study,  more
analytical  replicates  were  collected  for  certain  samples  as  the
signal-to-noise  ratio  was  visually  suspected  to  be  problematic
for some spectra, but with pre-processing, the spectra were not
flagged as outliers  and were thus included.  Given that dataset
imbalances  were  due  to  more  analytical  replicates  taken  for
some  samples,  other  decision  parameters  are  needed.
Matthew's Correlation Coefficient (MCC) can solve this issue by
incorporating the dataset imbalance and providing a summary
of the confusion matrix as a correlation coefficient[16,17]. It is the
only metric that involves all four contingency matrix terms. The
metric  represents  the  correlation  between  actual  values  and
predicted ones. A score of 1.0 refers to a perfect classifier, while
a  value  close  to  0  means  that  it  is  no  better  than  random
chance.  For  a  high  MCC,  the  model  must  be  able  to  predict
accurately both positive (belonging to class) and negative (not
belonging  to  class)  outcomes  simultaneously.  Equation  (3)
refers  to  binary  classification,  while  Eqn  (4)  is  for  multi-class
classification  problems,  where  is  the  number  of  times  the
class k truly occurred,  is the number of times that class k was
predicted, C was  the  number  of  samples  correctly  predicted,
and S is the total number of samples. To the best of our knowl-
edge,  MCC has  not  been applied to  food classification models
utilising vibrational spectroscopy.

MCC =
(TP×TN)− (FP×FN)

√
(TP+FP) (TP+FN)(TN +FP)(TN +FN)

(3)

MCC =
(C×S )− (

∑K
k pk × tk)√

(s2−∑K
k p2

k)× (s2−∑K
k t2

k )
(4)

The  F1  scores,  accuracy,  and  MCC  of  the  validation
(predicted) data were compared to understand the influence of
these decision parameters.  The prediction accuracy was calcu-
lated as  a  percentage of  the number of  actual  samples  in  that
class.  A  high  F1  score  may  inform  us  that  the  classification
model is performing well but can have a low MCC score. A MCC
score above 0.7 is a good classification score[17].

 Results and discussion

This  section  first  explores  the  raw  spectra  coming  from  the
four  different  instruments,  then  looks  at  the  performance
across  the  various  pre-processing  steps  and  decision  parame-
ters  across  the  near-infrared,  followed  by  mid-infrared  and
Raman spectroscopy instruments, respectively.

 Spectral exploration
The  spectra  were  first  explored  to  understand  what  pre-

processing  was  needed  and  to  check  if  outliers  needed  to  be
removed.  The  raw  spectra  obtained  from  all  four  instruments
[dispersive  NIR  (DG-NIR),  NIR  hyperspectral  imaging  (HSI-NIR),
attenuated  total  reflectance-Fourier  transform  infrared  (ATR-
FTIR),  and  Raman]  are  shown  in Fig.  1,  with  samples  labelled
according to the country of origin.

There are three main issues with spectral  data:  (i)  offsets,  (ii)
slopes,  and  (iii)  curvature.  Offsets  are  when  the  spectra  are
shifted  in  the  y  dimension  at  a  constant  value,  i.e.  the  entire
baseline of a spectrum is offset from zero. Offsets happen when
particles  are  not  ground sufficiently  or  due to  an instrumental
drift. Offsets were not observed for any of the four instruments
(Fig. 1). Slopes are observed in spectra lifted at an inconsistent
value  slowly  across  the  spectral  range[18].  This  is  observed  in
Fig.  1d in  the  Raman  spectra  and  is  characteristic  of  a  strong
fluorescence  effect.  Curvature  is  observed  when  spectra  are
lifted  at  an  inconsistent  value  resembling  a  curve  shape.  This
was  observed  in Fig.  1a and b for  both  the  dispersive  and
hyperspectral  NIR  systems  and  is  the  result  of  non-linearities
introduced by light  scatter.  It  is  self-evident  that  the four  data
sets have different challenges to mitigate and must be consid-
ered  in  relation  to  the  measurement  techniques,  which  are  all
based on fundamentally different mechanisms.

Diffusely reflected light is reflected in a broad range of direc-
tions  and  is  the  primary  source  of  information  for  NIR
spectra[19].  However,  diffusely  reflected light  contains  not  only
chemical  information  about  the  sample  (absorption),  but  also
the microstructure (scattering). These are Rayleigh and Lorentz-
Mie  scattering  for  various  reasons,  i.e.,  surface  roughness,
droplets,  crystalline  defects,  cells,  fibers,  and  density  fluctua-
tions.  These undesirable light scatter effects and differences in
effective path length of light result in baseline shifts (multiplica-
tive) and non-linearities (Fig. 1a & b).

Similar to NIR, ATR-FTIR contains systematic variation due to
instrument drifts, sample particle size, etc. Also, samples in the
solid  state  are  harder  to  measure  as  there  needs  to  be  good
contact  between  the  crystal  and  the  sample  for  high  surface
homogeneity to ensure a representative and accurate measure-
ment.

The  strong  fluorescence  effect  observed  from  coffee  has
remained  a  barrier  to  observing  weaker  spontaneous  Raman
signals (Fig. 1d). Few studies have applied Raman spectroscopy
to the study of coffee to discriminate varieties[20−22] and moni-
tor changes in coffee quality with time[23]. Various wavelengths
and  laser  power  intensities  were  explored  on  green  coffee
powder (GCP) and roasted coffee powder (RCP) with success at
collecting Raman signals only using the lipid fraction of GCP at
785  nm[24].  Aqueous  extracts  of  GCP  and  both  aqueous  and
lipid  extracts  of  RCP  were  found  to  have  too  much  fluores-
cence interference[24]. Other studies discriminating Arabica and
Robusta  varieties  have  used  the  lipid  fraction  of  GCP  using
Fourier Transform-Raman at 1,064 nm and dispersive Raman at
532 nm[20−22]. To the best of our knowledge, no study has inves-
tigated  the  analysis  of  green  coffee  using  Raman  for  the
discrimination  of  coffee  origin  and  using  pre-processing  tech-
niques  to  mitigate  the  fluorescence  effect  and  enhance  the
Raman signals captured (Supplemental Table S1).

After visually assessing the spectra, only mean centering was
applied  as  a  pre-processing  step  to  all  four  data  sets  prior  to
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principal  component  analysis  (PCA).  For  prediction  data,  high
KNN  distances  indicate  samples  that  appeared  in  regions  that
were not sampled well by the calibration data and, thus, are not
expected to produce accurate predictions. For all four datasets,
all  the  analytical  replicates  had  KNN  =  1  and  lower,  indicating
that  no  spectral  measurements  were  outlying.  For  reduced
Hotelling's T2 and reduced Q residuals, a 95% confidence inter-
val criterion was set for which an observation is considered an
outlier.  High  reduced  Q  residuals  are  observations  not  well
described by  the model,  while  high reduced Hotelling's  T2 are
observations  far  from  usual  observations  (score  =  0).  Most
observations  fell  within  the  95%  confidence  limit  for  the
reduced  Hotelling's  T2 and  reduced  Q  residuals,  with  only
between 0.04%−1.42% of  observations with higher  reduced Q
residuals.  No  samples  were  removed  as  outliers  in  the  initial
exploratory analysis.

 Data pre-processing and decision parameters
Mathematical  relationships  between  class  and  spectra  must

be  calculated  before  spectral  data  can  be  used  to  predict
sample  classes.  The  development  of  these  mathematical  rela-
tionships  requires  decisions  regarding  wavelengths  and  pre-
processing  methods  and  considerations  of  instrument  differ-
ences.  The  complex  and  heterogeneous  composition  of  food
and biological systems can lead to considerable variation in the
signal-to-noise  ratio,  which  may  interfere  with  the  data  inter-
pretation  of  these  vibrational  spectroscopy  tools.  Appropriate

mathematical  pre-processing  methods  need  to  be  applied  to
the raw spectral data to ensure that non-uniformity in the size
of  particles  and  instrumental  errors  are  accounted  for[5],
thereby enabling more accurate and robust chemical  informa-
tion to be elucidated. The literature has mainly adopted Raman
pre-processing  methods  from  well-established  quantitative
spectroscopic  methods  such  as  infrared  spectroscopy.  Various
pre-processing  techniques  have  been  established,  including
baselining,  normalisations,  scatter  corrections,  and  spectral
derivation.  Because  these  methods  have  fundamentally  differ-
ent mechanisms, the pre-processing methods adopted success-
fully  towards  one  dataset  may  not  offer  the  same  benefits  for
another.  The choice of  pre-processing needs to be made from
understanding  the  features  present  in  each  dataset  and  how
pre-processing affects these features. In addition to statistics to
assess  the  model  fit,  confusion  matrices  are  typically  used  in
classification  problems  to  represent  the  quality  of  the  predic-
tion but can be hard to communicate.  Accuracy and F1 scores
are commonly used (Supplemental Table S1). Matthew's Corre-
lation Coefficient (MCC) may overcome the limitations of accu-
racy  and  F1  when  dealing  with  unbalanced  datasets  and
provide a simple yet comprehensive summary of the confusion
matrix. The four different instruments and the best pre-process-
ing  treatments  chosen  based  on  various  decision  parameters
are  shown  in Table  1.  These  are  summarised  in Supplemental
Table S1.
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Fig. 1    Raw spectra from instruments before pre-processing data treatment: (a) DG-NIR, (b) HSI-NIR, (c) ATR-FTIR, (d) Raman. GCP samples are
labelled according to the country of origin (B: Brazil, E: Ethiopia, I: Indonesia, R: Rwanda).
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For  DG-NIR,  all  pre-processing  treatments  beyond  MNCN
alone  showed  high  accuracy  (0.812−0.929)  and  F1  scores
(0.757−0.916),  which  suggested  that  the  model  was  perform-
ing well (Table 1). However, using Matthew's Correlation Coeffi-
cient  (MCC)  as  the  decision  parameter  led  to  a  much  lower
score for specific pre-processing treatments, e.g., normalisation,
Savitzky-Golay  (SG)  and  mean-centering  (MNCN)  led  to  a  high
accuracy of 0.812 but a low MCC of 0.652. This means that the
model  was  not  accurately  predicting  positive  (belonging  to
class) and negative (not belonging to class) outcomes with the
same accuracy; belonging to a class was better predicted. MCC
considers  the  dataset  imbalance  and  summarises  the  confu-
sion  matrix  as  a  correlation  coefficient[17].  The  same  observa-
tion  was  found  for  the  HSI-NIR  classification  models,  with  all
pre-processing  treatments  showing  relatively  high  accuracy
(0.733−0.800) and moderate F1 scores (0.605−0.728) but signifi-
cantly  lower  MCC  (0.473−0.655).  This  indicates  that  the  model
was  poorly  predicting  sample  class  origins  for  HSI-NIR  data.
Accuracy  was  consistently  the  most  lenient  of  the  decision
parameters  compared  to  F1  scores,  which  consider  the  nega-
tive  and  positive  aspects  of  the  confusion  matrix  (false  nega-
tives  and  false  positives).  Due  to  having  collected  a  few  more
analytical  replicates  for  some  samples,  MCC  proved  to  be  a
better  decision  parameter  when  choosing  the  optimised  pre-
processing technique, which considers the number of samples
from each class.  MCC provided a good summary of  the confu-
sion  matrix  to  represent  the  quality  of  the  class  prediction,
which is  in agreement with a recent statistical  study that used
MCC as a vital model decision parameter[16]

Another way to test for model performance is to understand
the model fit. For that, it has been suggested that the RMSECV
and  RMSEC  values  are  similar  or  that  the  chosen  models  have
low  RMSEP  values[9].  Typically,  the  number  of  latent  variables

(LVs) in each model is decided using the evolution of root mean
square  errors  of  calibration  (RMSEC)  and  root  mean  squared
errors of cross-validation (RMSECV) by the number of LVs used
to  create  the  prediction  model.  Model  performance  was
assessed using RMSEP, as using RMSEC can lead to overly opti-
mistic results.

The  following  four  sub-sections  summarise  the  influence  of
the  top  three  pre-processing  treatments  for  each  vibrational
spectroscopy tool. A comprehensive comparison can be found
in the supporting information section (Supplemental Table S2).
These  pre-processing  treatments  were  chosen  based  on  the
vital decision parameters MCC and RMSEP on the prediction of
each class and the total variance captured by the model. Short
descriptions  of  the  influence  of  each  pre-processing  step  in
dealing with spectral interferences are made.

 Dispersive near-infrared spectra (DG-NIR)
The  best  pre-processing  treatment  for  dispersive  NIR  was

extended  multiplicative  scatter  correction  (EMSC)  with  mean-
centering  (MNCN).  Multiplicative  scatter  correction  (MSC)  and
standard  normal  variate  (SNV)  processed  independently  with
MNCN were found to provide equivalent results (Supplemental
Table  S2).  Ethiopia  (E)  and  Rwanda  (R)  consistently  had  the
lowest MCC and highest RMSEP across all four countries. When
processed  with  MSC  and  SNV,  Ethiopia  and  Rwanda  had  low
MCC  (0.511  and  0.584)  and  high  RMSEP  (0.408  and  0.378),
respectively.  Pre-processing  with  EMSC  improved  the  MCC
(0.872  and  0.632)  and  RMSEP  (0.306  and  0.389)  scores  across
Ethiopia  and  Rwanda.  This  could  suggest  that  the  model  was
more successful at continental classification across South Amer-
ica (Brazil), Asia (Indonesia) and Africa (Ethiopia, Rwanda).

The  results  from  MSC  and  SNV  agree  with  previous  authors
who  found  a  high  correlation,  0.995,  between  the  two  pre-
processing  treatments  when  coupled  with  MNCN[6].  MSC  and

Table 1.    Prediction statistics associated with optimal pre-processing methods for spectral data collected using DG-NIR, HSI-NIR, FTIR and Raman.

Optimised pre-processing TVar % RMSECV RMSEC RMSEP MCC, Pred. Accuracy, Pred F1, Pred.

DG-NIR MNCN 98.54 0.338 0.329 0.473 0.383 0.665 0.483
MSC, MNCN 91.49 0.245 0.243 0.309 0.774 0.882 0.865
SNV, MNCN 91.49 0.245 0.243 0.309 0.774 0.882 0.865
SNV, Detrend, MNCN 91.32 0.245 0.243 0.309 0.774 0.882 0.865

MSC, SG (1st der, 2nd poly, 15 pts), MNCN 76.06 0.268 0.265 0.350 0.684 0.835 0.788
Normalisation, SG (2nd der, 2nd poly, 7 pts), MNCN 98.05 0.358 0.352 0.351 0.652 0.812 0.757
EMSC, MNCN 87.87 0.240 0.238 0.250 0.876 0.929 0.916

HSI-NIR MNCN 99.69 0.372 0.362 0.421 0.618 0.800 0.681
Normalisation, MNCN 98.28 0.333 0.322 0.402 0.655 0.767 0.650

SG (1st der, 2nd poly, 15 pts), MNCN 68.87 0.341 0.325 0.364 0.636 0.800 0.728
MSC, SG (1st der, 2nd poly, 15 pts), MNCN 63.41 0.338 0.324 0.403 0.473 0.733 0.605
Normalisation, SG (1st der, 2nd poly, 15 pts), MNCN 85.79 0.324 0.313 0.375 0.612 0.800 0.732
SNV, SG( 1st der, 2nd poly, 15 pts), MNCN 63.38 0.337 0.324 0.402 0.473 0.733 0.605

FTIR MNCN 99.69 0.335 0.321 0.386 0.253 0.452 0.200
Normalisation, MNCN 98.17 0.334 0.320 0.391 0.372 0.452 0.179

Normalisation, SG (1st der, 2nd poly, 15 pts), MNCN 97.12 0.402 0.369 0.490 0.141 0.500 0.330
EMSC, MNCN 71.52 0.409 0.384 0.482 0.286 0.500 0.326

Raman MNCN 99.91 0.319 0.312 0.329 0.756 0.860 0.819
SG (2nd der, 2nd poly, 7 pts), MNCN 99.66 0.350 0.343 0.369 0.521 0.735 0.648
Normalisation, SG (1st der, 2nd poly, 15 pts), MNCN 98.94 0.321 0.315 0.334 0.554 0.747 0.622
WLS (2nd poly), MNCN 96.86 0.343 0.336 0.372 0.611 0.795 0.760

FT, Fourier-Transform; DG, Dispersive; HSI, Hyperspectral Imaging; NIR, near-infrared; TVar, Total explained variance; RMSE(C/CV/P), Root Mean Square Errors
of  Calibration/Cross-Validation/Prediction;  MCC,  Matthew's  Correlation  Coefficient,  MNCN,  Mean  centering;  MSC;  Multiplicative  Scatter  Correction;  EMSC,
Extended  Multiplicative  Scatter  Correction;  SG  (#der,  #poly,  #pts),  Savitzky-Golay  #derivative,  #polynomial,  #window  points;  WLS,  Weighted  Least  Squares;
Pred., Prediction.
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SNV are scatter correction techniques, the most common form
of pre-processing technique used for near-infrared coffee data
(Supplemental Table S1).  MSC and SNV mitigate the light scat-
tering effects due to particle size inconsistencies, ensuring that
absorption  signals  are  more  closely  related  to  chemical
constituents of interest rather than scattering artifacts (refer to
materials  and  methods  section).  EMSC  corrects  for  the  curva-
ture  observed  in Fig.  1a,  which  likely  explains  why  EMSC  pre-
processed spectra result  in a better  classification model.  EMSC
remains a relatively underutilised pre-processing treatment for
NIR coffee studies, with only one author adopting it for identify-
ing  coffee  bean  species  using  FT-NIR[36] (Supplemental  Table
S1).

In  addition  to  the  aforementioned  decision  parameters,  the
model  performance can be assessed visually  by looking at  the
scores plot and loadings to determine if the models are indeed
modelling differences across our samples based on their chemi-
cal differences.

MSC  and  SNV  with  MNCN  provided  equivalent  results  with
91.49% variance captured by the first two latent variables (Fig.
2bi & bii).  Brazil  was separated on LV1 (51.16% explained vari-
ance)  and  was  characterised  by  negative  scores.  Ethiopia  and
Rwanda are overlapped on both LV1 and LV2. The two African
continents are separated from Indonesia on LV2 (40.33%). Pre-
processing with EMSC led to an improved continental classifica-
tion (Fig. 2biii), as evidenced by the scores plot.

To  relate  the  distribution  of  scores  to  spectral  features,  the
loadings  plot  of  LV1  and  LV2  showed  that  certain  spectral
regions  had  corresponding  loadings  values  far  from  zero.  This
suggests  that  these  spectral  regions  are  important  in  explain-
ing the variance of samples on both LV1 and LV2. SNV and MSC
pre-processed  loadings  appear  similar,  with  highly  positive

loadings for LV1 at 1,400 and 1,950 nm, indicating a difference
in water content between Brazil and the other samples. Noting
that all the samples were treated the same suggests that there
might  be  differences  in  water-holding  capacity  or  O-H  bonds,
typically  dominated  by  water.  The  loadings  for  EMSC  pre-
processed  spectra  differ  from  MSC/SNV  due  to  the  curvature
correction,  explaining  differences  in  MCC.  There  are  now  two
peaks around 1,900 nm, which indicate more than just a water
content  difference  across  the  samples  but  also  signal  the  C-H
bonds of caffeine[25]. There is a positive peak at 1,200 nm relat-
ing to lignin, fatty acids, and amino acids, as well as 2,300–2,350
nm peaks associated with cellulose[37].

 Hyperspectral imaging (HSI-NIR)
Like  DG-NIR,  HSI-NIR  spectra  also  showed  the  need  for  a

baseline correction to correct the curvature observed (Fig. 1b).
DG-NIR  incorporated  a  higher  wavelength  range,  unlike  HSI-
NIR, which only recorded a range of 900–1,700 nm, and the HSI-
NIR  raw  spectra  were  noisier  than  the  DG-NIR  raw  spectra.  To
correct  for  the  curvature,  EMSC,  MSC  and  SNV  were  explored
(Supplemental Table S2), but they failed to improve the classifi-
cation. Savitzky-Golay derivatives (SG) were explored to remove
additive  and  multiplicative  effects  in  the  spectra.  The  first
derivative only  removes the additive baseline effect,  while  the
second derivative also removes the linear trend (multiplicative
effects).  When the  spectra  were  pre-processed with  1st deriva-
tive  SG  (15  window  points,  2nd polynomial)  and  MNCN,  the
model captured a moderate classification with 68.87% variance.
Accuracy was moderate at 0.729 with a lower F1 score of 0.675
and a much lower MCC of 0.486; this model prediction was not
good.  Normalisation with 1st SG (15 pts)  derivation and MNCN
(85.79%  variance  captured)  had  a  slightly  better  classification
with  an  accuracy  of  0.760  and  an  F1  score  of  0.701.  However,
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Fig. 2    (a) Pre-processed DG-NIR spectra, (b) scores, (c) first loading, (d) second loading of (i) MSC with MNCN, (ii) SNV with MNCN, (iii) EMSC
with MNCN pre-processed DG-NIR spectra.
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the MCC was still low at 0.567. Similar to DG-NIR, the Ethiopian
and Rwandan samples had the lowest MCC and highest RMSEP
compared to the other classes, as the model was more success-
ful  at  continental  separation.  Normalisation  with  MNCN
performed  similarly  to  MNCN  spectra.  However,  the  classifica-
tion  was  based  on  the  baseline  effects  not  removed  with  pre-
processing, as shown in Fig. 3ci below.

The  scores  plotted  in Fig.  3bi were  pre-processed  with
normalisation and MNCN.  The model  performs similarly  to the
other  two  models  with  continental  separation,  capturing
98.28%  of  the  variance  across  samples.  However,  the  loadings
plot  in Fig.  3ci indicates  that  the  model  is  classifying  the
samples  due  to  baseline  influences.  This  demonstrates  that
normalisation alone could not mitigate the unwanted physical
artifacts. With reference to Fig. 3bii, pre-processing with SG (1st

der, 15 pts) with MNCN had moderate continental classification,
but the model  only captured a total  of  68.87% of  the variance
across the samples. This is because the pre-processing has miti-
gated  the  baseline  variance.  Similarly,  pre-processing  with
normalisation,  SG  (1st der,  15  pts),  and  MNCN  led  to  a  similar
model  performance  with  85.79%  variance  captured  by  the

model  on  the  first  two  latent  variables.  However,  comparing
the latter two models, the RMSEP and MCC were better for the
model  pre-processed  with  SG  (1st der,  15  pts)  and  MNCN,
particularly for the Ethiopian and Rwandan samples. Figure 3cii
shows  that  the  model  classifies  the  samples  according  to  the
desired  wavelength  associated  with  chemical  differences.  The
NIR  spectra  collected  from  the  hyperspectral  imaging  system
are  characterised  by  absorption  bands  related  to  lignin,  fatty
acids, and amino acids between 1,100−1,300 nm and cellulose
O-H bonds  at  1,450  nm[37].  Comparing the  loadings  of  DG-NIR
and HSI-NIR, the regions of importance are the same. However,
it  was  also  found  that  loadings  of  DG-NIR  at  the  higher  NIR
region  were  also  important  for  classification;  specifically,  the
loadings at  1,900 nm are associated with caffeine,  and around
2,300  nm  are  associated  with  cellulose  (Fig.  2ciii).  It  must  be
noted from Fig. 3ai that there was a bad pixel in the detector at
about  1,050  nm.  The  bad  pixel  had  a  minor  influence  on  the
model but could be dealt with through a median smooth[26,27].

Overall, HSI-NIR performed worse than DG-NIR. This could be
attributed to the low number of regions of interest (ROI) points
chosen (7–9/sample). A larger dataset to calibrate the model on
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Fig. 3    (a) Pre-processed HSI-NIR spectra measured in reflectance, (b) scores, (c) first loading of (i) Normalisation with MNCN, (ii) SG (1st der, 2nd

poly, 15 pts) with MNCN, (iii) Normalisation, SG (1st der, 2nd poly, 15 pts) with MNCN pre-processed HSI-NIR spectra.
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may help improve the performance.  A similar  study using HSI-
NIR (900–1,700 nm) to discriminate the origins of  120 samples
of  green  tea  powder  coming  from  three  regions  within
Chongqing,  China,  performed  exceptionally  well  at  90%
accuracy  with  PLS-DA.  This  could  be  attributed  to  the  higher
number  of  samples  within  each  origin  class[28].  Better  model
performance from DG-NIR could also be attributed to the wave-
lengths  not  measured  in  hyperspectral,  such  as  between
1,850–2,350  nm,  which  signal  absorptions  belonging  to
caffeine and hemicellulose,  which may be necessary for  classi-
fying  the  coffee  samples.  This  is  the  first  study  comparing  the
sensitivity  of  HSI-NIR  with  DG-NIR  for  origin  discrimination  in
coffee.  Further  studies  are  needed  to  confirm  the  selected
wavelength  regions  that  are  important  for  origin  discrimina-
tion.

 Mid-infrared spectra (FTIR)
The initial  data exploratory step with PCA did not indicate a

potential  successful  classification.  The  raw  spectra  did  not
appear  to  require  any  form  of  pre-processing,  given  that  no
offsets,  slopes  or  curvature  were  observed  (Fig.  1c).  Nonethe-
less,  the  typical  pre-processing  steps  used  for  FTIR  data  were
conducted  systematically  (Supplemental  Table  S1)  to  under-
stand the influence of pre-processing. Differences in contact or
density  of  the  sample  could  lead  to  a  lower  potential  signal.
Normalisation  may  mitigate  this  effect[29−31].  Differentiation
using  Savitzky-Golay  (SG)  is  typically  done  to  suppress
unwanted  signals  and  backgrounds  or  even  separate  overlap-
ping peaks[32,33].

The  model  accuracies,  F1  and  MCC  scores  were  generally
extremely  low,  informing  us  that  the  model  was  not  working
well  to  predict  coffee  sample  origin,  and  often  at  a  rate  of
chance.  While  pre-processing  can  substantially  improve  the
final  model  performance,  as  evidenced  by  the  NIR  dataset,
sample  preparation is  also  critical  to  a  good predictive  model.
The FTIR measurements were obtained using an ATR diamond
accessory.  This  required  intimate  contact  across  the  powder
and  the  diamond  crystal,  which  is  characteristically  hard  to
achieve and ensure reproducibility. Some of the green powder
formed lumps while awaiting analysis, and a pestle and mortar
were  used  to  remove  the  lumps  and  ensure  no  air  gaps  while
packing the powder  onto the  crystal.  There  was  no significant
water peak in the FTIR spectra, which did not affect the infrared
signals.  It  must  be  noted  that  the  classification  regions  were
explored  at  a  limited  region  of  between  600–1,800  cm−1 and
2,750–3,050  cm−1 to  remove  the  noise  region.  These  regions
were  also  selected  by  other  researchers  looking  at  origin
discrimination of five country GCBs using ATR-FTIR and PCA[30].
Another  study  comparing  NIR  and  ATR-FTIR  found  better
model accuracy using ATR-FTIR, but the study looked at regions
within  Brazil[32].  This  disagreed  with  the  findings  from  this
study,  which  showed  better  results  using  NIR,  which  could  be
attributed to the differences in origin scales (country vs region).

 Raman spectra
The  slope  shown  in Fig.  1d is  characteristic  of  the  fluores-

cence effect, which hinders the extraction of the weaker Raman
signals,  as  demonstrated  by  previous  coffee
researchers[20−24,34,35].  To  deal  with  the  influence  of  artifacts  in
Raman spectra, pre-processing treatments like those used for IR
spectra  are  typically  used (Supplemental  Table  S1).  Normalisa-
tion  and baseline  correction have  also  been examined[34,35].  In

this  study,  we  attempted  pre-processing  treatments  typically
used  for  IR  spectroscopy  and  a  weighted  least  squares  treat-
ment.  The  spectral  regions  explored  were  limited  to
1,200–1,800  cm−1 and  2,800–3,100  cm−1 to  remove  the  noise
regions. The PCA scores plot indicated partial continental sepa-
ration  after  mean  centering  was  applied.  Similar  to  NIR  data,
Ethiopia and Rwanda were found to be worst predicted accord-
ing  to  MCC  and  RMSEP  (Supplemental  Table  S2).  Pre-process-
ing improved the MCC scores for Indonesian samples,  and the
values  for  decision  parameters  were  quite  comparable.  The
accuracy  and  F1  values  across  the  top  three  pre-processing
steps appear to be quite similar,  reinforcing the need for  MCC
as  a  decision  parameter.  PLS-DA  model  with  MNCN  appeared
to  have  relatively  good  scores  separation  of  the  country  of
origin,  but  the  loadings  plot  indicated  that  the  samples  were
being modelled by the variance due to the fluorescence (slope).
The  slope  mirrors  the  785  nm  Raman  results  from  a  study  on
GCP oils  for  quality control[24].  This  highlights the potential  for
fluorescence  to  be  useful  for  coffee  origin  classification.  To
understand if  pre-processing treatments were able to mitigate
the observed slope, we look at the scores and loadings plot in
Fig, 4.

With reference to Fig. 4c, all three pre-processing techniques
appear  to  have  mitigated  the  fluorescence  effect  (slope)  to
allow the Raman shift  associated signals to be elucidated. Pre-
processing  with  WLS  and  normalisation  appeared  to  provide
the  clearest  continental  separation  (Fig.  4biii).  Normalisation
per  unit  vector  length  helped  to  reduce  the  systematic  varia-
tions[22], while weighted least squares (WLS) subtracts the base-
line  from  a  spectrum  using  an  iterative  asymmetric  least
squares algorithm. To correlate the Raman shifts to the chemi-
cal  constituents,  the  loading  plot  between  2,800  and  3,100
cm−1 are attributed to symmetric  and asymmetric  C-H stretch-
ing vibrations, while the signals between 1,200 and 1,800 cm−1

are  related  to  typical  organic  groups,  which  have  also  been
found to be relevant to the discrimination of coffee species and
considered the fingerprint of the samples[24]. Specifically, bands
at  1,478  and  1,567  cm−1 are  related  to  kahweol,  1,693  cm−1

related to C=O stretching[23],  and 1,657 cm−1 with C=C stretch-
ing  of  polyphenols  and  chlorogenic  acids[20,35].  Given  its  fluo-
rescence effect,  Raman has  not  been used in  the  literature  for
origin  discrimination.  Nonetheless,  the  wavelengths  found  to
be important for origin discrimination mirror the regions found
by  Dias  &  Yeretzian[24].  Further  studies  are  needed  to  confirm
the Raman wavelength regions contributing to origin discrimi-
nation  and  the  potential  of  the  fluorescence  effect  to  be
modelled.

 Conclusions

To  optimise  the  pre-processing  step,  decision  parameters
must  be  well  chosen.  Matthew's  Correlation  Coefficient  (MCC)
appears to be a useful metric to establish the performance of a
classifier  in  the  confusion matrix  for  the  optimisation of  vibra-
tional spectroscopy tools. This study has shown the reliability of
vibrational  spectroscopy  tools,  which  are  rapid,  cost-effective,
and sustainable solvent-less solutions for the geographic origin
traceability of coffee. Near-infrared was the most reliable instru-
ment,  considering  the  ease  of  use,  sample  preparation  and
model performance. The dataset used to compare these instru-
ments  was  small.  Future  studies  with  a  wider  range of  sample
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sets  covering  different  coffee  batches  and  seasons  and  an
external  validation  set  should  lead  to  more  robust  and  stable
classification models. Future studies can look at the potential of
hyperspectral  near-infrared  for  the  origin  traceability  of  whole
intact coffee beans and hyperspectral instruments with broader
wavelengths.  The  easily  automated  protocols  and  vibrational
spectroscopy  tools  coupled  with  advanced  machine  learning
may  soon  become  empowering  tools  for  coffee  producers  to
protect themselves.
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Fig. 4    (a) Pre-processed Raman spectra, (b) scores, (c) first loading of (i) MSC with MNCN, (ii) EMSC with MNCN, (iii) WLS, Normalisation with
MNCN pre-processed Raman spectra. Loading plots were produced using R.

Optimisation of pre-processing for spectroscopy
 

Sim et al. Food Innovation and Advances 2024, 3(1): 52−63   Page 61 of 63



Conflict of interest

The  authors  declare  that  they  have  no  conflict  of  interest.
Indrawati  Oey  is  the  Editorial  Board  member  of  Food  Innova-
tion and Advances who was blinded from reviewing or making
decisions on the manuscript. The article was subject to the jour-
nal's  standard procedures,  with  peer-review handled indepen-
dently of this Editorial Board member and the research groups.

Supplementary  Information accompanies  this  paper  at
(https://www.maxapress.com/article/doi/10.48130/fia-0024-0004)

Dates

Received  11  December  2023;  Accepted  15  March  2024;
Published online 29 March 2024

References
Zhang  L,  Henson  MJ,  Sekulic  SS. 2005.  Multivariate  data  analysis
for  Raman  imaging  of  a  model  pharmaceutical  tablet. Analytica
Chimica Acta 545:262−78

1.

Khandasammy SR,  Fikiet MA, Mistek E,  Ahmed Y,  Halámková L,  et
al. 2018.  Bloodstains,  paintings,  and  drugs:  Raman  spectroscopy
applications in forensic science. Forensic Chemistry 8:111−33

2.

Mcgoverin  CM,  Clark  ASS,  Holroyd  SE,  Gordon  KC. 2010.  Raman
spectroscopic  quantification  of  milk  powder  constituents. Analyt-
ica Chimica Acta 673:26−32

3.

Beć KB,  Grabska  J,  Bonn  GK,  Popp  M,  Huck  CW.  2020.  Principles
and  applications  of  vibrational  spectroscopic  imaging  in  plant
science: A review. Frontiers in Plant Science 11:1226

4.

Barnes  RJ,  Dhanoa  MS,  Lister  SJ. 1989.  Standard  normal  variate
transformation  and  de-trending  of  near-infrared  diffuse
reflectance spectra. Applied Spectroscopy 43:772−77

5.

Rinnan  Å,  Berg  FVD,  Engelsen  SB. 2009.  Review  of  the  most
common  pre-processing  techniques  for  near-infrared  spectra.
Trends in Analytical Chemistry 28:1201−22

6.

Karoui  R,  Downey  G,  Blecker  C. 2010.  Mid-infrared  spectroscopy
coupled with chemometrics:  A tool  for  the analysis  of  intact  food
systems  and  the  exploration  of  their  molecular  structure−Quality
relationships − A review. Chemical Reviews 110:6144−68

7.

Lv  Z,  Zhang P,  Sun W,  Lei  T,  Benediktsson JA,  et  al. 2023.  Sample
iterative  enhancement  approach  for  improving  classification
performance  of  hyperspectral  imagery. IEEE  Geoscience  and
Remote Sensing Letters 21:2500605

8.

Hruschka WR. 1987. Data analysis: wavelength selection methods.
In Near-infrared  technology  in  the  agricultural  and  food  industries,
eds.  Williams P,  Norris  K.  St.  Paul,  MN,  USA:  American Association
of Cereal Chemists. pp. 35–55.

9.

Zhao N, Wu ZS, Zhang Q, Shi XY, Ma Q, et al. 2015. Optimization of
Parameter Selection for Partial Least Squares Model Development.
Scientific Reports 5:11647

10.

R Core Team. 2022. R: A Language and Environment for Statistical
Computing.  Vienna,  Austria:  R  Foundation  for  Statistical  Comput-
ing.

11.

Tuszynski  J.  2021. caTools:  Tools:  Moving  Window  Statistics,  GIF,
Base64, ROC AUC, etc. https://CRAN.R-project.org/package=caTools

12.

Dhanoa  MS,  Lister  SJ,  Sanderson  R,  Barnes  RJ. 1994.  The  link
between  multiplicative  scatter  correction  (MSC)  and  standard
normal  variate  (SNV)  transformations  of  NIR  spectra. Journal  of
Near Infrared Spectroscopy 2:43−47

13.

Martens H, Stark E. 1991. Extended multiplicative signal correction
and  spectral  interference  subtraction:  New  preprocessing  meth-
ods for  near  infrared spectroscopy. Journal  of  Pharmaceutical  and
Biomedical Analysis 9:625−35

14.

Newey  WK,  Powell  JL. 1987.  Asymmetric  least  squares  estimation
and testing. Econometrica 55(4):819−47

15.

Chicco D, Jurman G. 2020. The advantages of the Matthews corre-
lation coefficient (MCC) over F1 score and accuracy in binary classi-
fication evaluation. BMC Genomics 21:6

16.

Powers  DMW. 2011.  Evaluation:  from  precision,  recall  and  F-
measure to ROC, informedness, markedness and correlation. Jour-
nal of Machine Learning Technology 2(1):37−63

17.

Lee  LC,  Liong  CY,  Jemain  AA. 2017.  A  contemporary  review  on
data  preprocessing  (DP)  practice  strategy  in  ATR-FTIR  spectrum.
Chemometrics and Intelligent Laboratory Systems 163:64−75

18.

Norris  KH,  Williams PC. 1984.  Optimisation of  mathematical  treat-
ments  of  raw  near-infrared  signal  in  the  measurement  of  protein
in  hard  red  spring  wheat  I.  influence  of  particle. Cereal  Chemistry
61(2):158−65

19.

Keidel  A,  Von  Stetten  D,  Rodrigues  C,  Máguas  C,  Hildebrandt  P.
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