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Abstract

Natural products are widely distributed across various organisms, and exhibit potent physiological activities. Among these, plant-derived natural products
are extensively utilized in the food, pharmaceutical, and healthcare industries. Traditional extraction methods primarily rely on plant extraction but suffer
from drawbacks such as low yield, long growth cycles, and high resource consumption. Consequently, microbial fermentation technology has emerged as
an alternative solution, offering advantages including the ability to utilize abundant raw materials and its environmentally friendly and sustainable
characteristics. This review summarizes recent advances in the biosynthesis and functional mechanisms of four classes of plant-derived natural
products—alkaloids, terpenoids, phenylpropanoids, and polysaccharides—while also examining the challenges and future prospects for their practical

applications.
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Introduction

Natural products are compounds synthesized by plants, animals,
and microorganisms in nature, including active small-molecule
compounds, and some large-molecule compounds. While they do
not directly participate in the growth and development of organ-
isms, they hold high value due to their complex and diverse struc-
tures, which allow them to interact with biological targets, and even
exhibit a certain adaptive potential under adverse conditionsl'l.
Consequently, they have long served as a crucial source for drug
development. A number of compounds such as terpenoids, alka-
loids, and polysaccharides found in plants, offer antioxidant, anti-
inflammatory, immune-regulating, and antibacterial functions!?.
Compared with other sources, plant-derived natural products are
extensively used in various fields, and their significance is becoming
increasingly prominent. Common plant-derived drugs include
morphine, artemisinin, and paclitaxel, which have made significant
contributions to human health, and have driven advances in
modern medicine!?, Less common or underutilized plant-derived
natural products, such as Sapindaceae and Anacardiaceae families,
also have a wide range of antioxidant capacity®], and an even higher
tolerance to stress!l. As functional ingredients, plant-derived natu-
ral products have garnered increasing attention, and their mecha-
nisms of action can be applied across industries, offering promising
market prospects.

Although plant-derived natural products are widely utilized in
various fields, their production process faces numerous challenges
that hinder further research and application development.
Currently, the production of most plant-derived natural products
relies on direct extraction from plants, a traditional method that
presents several significant issues. Firstly, large-scale cultivation of
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plants consumes valuable arable land and requires a relatively long
growth period. Additionally, the concentration in plants is typically
low, and the extraction process is time-consuming and cumber-
some, often requiring large amounts of organic solvents and water,
which raises costs and increases environmental impact. Chemical
synthesis offers an alternative, but the synthesis of natural products
often involves multi-step reactions, and some steps require toxic
chemical reagents that can be harmful to the environment. In recent
years, the rise of microbial synthesis has introduced a new approach
to producing natural products. Using microbial cell factories, scien-
tists can synthesize complex natural products quickly and with
precision. In contrast, microbial methods provide a more abundant
source of raw materials and allow for greater control over the
production process. This approach also offers environmental bene-
fits, being low-carbon and more sustainable, as it minimizes the use
of organic solvents, and reduces the environmental burden. Conse-
quently, microbial cell factory synthesis of plant-derived natural
products has become a significant research focus, offering a sustain-
able production method while promoting further practical applica-
tions in medicine, agriculture, and other fields.

A deeper understanding of the structures and mechanisms of
these compounds can facilitate their application in modern
medicine. As a result, this paper reviews the progress made in the
biosynthetic pathways of alkaloids, terpenoids, phenylpropanoids,
and polysaccharides—common plant-derived natural product
compounds. It explores the mechanisms of key enzymes involved in
the synthesis process, using specific examples of microbial factory-
based production of natural products. Additionally, it summarizes
the functional and activity mechanisms of these compounds to
better inform their practical application.
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Plant-derived natural products in food

In recent years, scientists have discovered a wealth of active natu-
ral products derived from plants with diverse structural properties,
leading to their classification into several broad categories. They
offer abundant resources for humans across industries such as food,
agriculture, cosmetics, and even flavors. For example, anthocyanins
and carotenoids serve as natural pigments in food and cosmetics,
providing coloring effectsl>6l, Phenylpropanoids like rosmarinic acid
and chlorogenic acid are commonly used as feed additives to
support animal health?”:8l. Patchouli alcohol and terpineol, derived
from terpenoids, are extracted to produce essential oils used in
perfumes for health and beauty applications®). An overview of
common natural products of different classes in food and their func-
tional applications is provided in Table 1.

Alkaloids

Alkaloids are one of the earliest classes of biologically active natu-
ral organic compounds studied by scientists. They generally refer to
organic cyclic compounds containing oxidized nitrogen atoms
found in living organisms and are often the active ingredients in
many medicinal plants. Alkaloids are abundant in nature; common
alkaloids found in food can be classified based on their structure,
such as purine alkaloids, quinoline alkaloids, and ergot alkaloids. For
example, morphine and codeine, derived from the opium poppy,
are potent analgesics and cough suppressants'642, Berberine,
found in Coptis chinensis, has antibacterial and anti-inflammatory
properties and is commonly used to treat diarrheal’?l. Tomatidine,
present in tomatoes and potatoes, not only plays an antibacterial
role but can also be used as a vaccine adjuvant to enhance drug
deliveryt3l,

Unlike other natural products, alkaloids have a wide structural
diversity, which gives rise to different synthetic precursors and path-
ways. Caffeine, one of the most popular alkaloids, is widely
consumed in foods such as tea, coffee, and chocolate. It is also used
as a common prescription drug for its analgesic effects. Additionally,
caffeine's antioxidant properties contribute to its use in beauty
products, and even as an athletic supplement!’3l. In nature, caffeine
synthesis occurs in two main phases: the donor phase and the main
synthesis phase. As shown in Fig. 1, xanthosine, the starting
substrate for purine base synthesis, can be synthesized through at
least four different pathways: the de novo purine synthesis pathway,
the AMP degradation pathway, the GMP degradation pathway, and
the S-adenosylmethionine (SAM) cycle. The purine ring is synthe-
sized from precursors such as CO,, glycine, glutamine, and 5-
phosphorylribose-1-pyrophosphate  (PRPP) to form purine
nucleotides. These nucleotides undergo a two-step reaction to
generate xanthosine from inosine 5'-Monophosphate (IMP). SAM
acts as a methyl donor for the three-step methylation process,
converting into S-adenosylhomocysteine(SAH), which is hydrolyzed
to produce homocysteine and adenosine. The homocysteine then
re-enters the SAM cycle to regenerate SAM, while adenosine partici-
pates in xanthosine production. This is followed by a series of
N-methylation reactions that ultimately result in the synthesis of
caffeine.

The production of caffeine involves three N-methylation reac-
tions, each requiring SAM as a donor, highlighting the importance
of S-adenosylmethionine synthetase 1 (SAMS) and N-methyltrans-
ferases. Hu et all* enhanced SAMS activity in Escherichia coli,
Saccharomyces cerevisiae, and Streptomyces spectabilis through DNA
rearrangement techniques, resulting in a doubling of intracellular
SAM accumulation. Similarly, Ravi Kant et al.[**] overexpressed the
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SAM synthase gene, SAM2, in Pichia pastoris, leading to increased
SAM production. In Camellia sinensis, tea caffeine synthase 1 (TCS7)
is the first reported N-methyltransferase responsible for catalyzing
methylation reactions, and is the rate-limiting enzyme in caffeine
synthesis. In Camellia ptilophylla, a close relative of tea plants, a
natural deficiency in caffeine synthesis was observed. Transcrip-
tome analysis revealed that TCST expression levels in C. ptilophylla
were significantly lower than in conventional tea plants, suggesting
a high correlation between TCS1 and caffeine synthesis. Researchers
have also explored microbial production of caffeine. In a previous
study by McKeague et al.l*], caffeine synthesis genes were intro-
duced into a eukaryotic system, leading to the production of
270 pg/L of caffeine through the overexpression of target genes.
Li et al.l*”l improved N-methyltransferase expression through codon
optimization and strong promoter modification of TCS7 in E. coli,
achieving a caffeine yield of 21.46 mg/L from glucose as the sole
carbon source. Caffeine has also been used in genetically modified
plants to increase pest resistance. The introduction of three N-
methyltransferases into tobacco leaf discs through Agrobacterium-
mediated transformation significantly enhanced resistance to pests,
such as tobacco cutworms, and improved the plants' growth and
survivall*sl,

Alkaloids are secondary metabolites produced by plants in
response to habitat stress, due to their rich anti-inflammatory mech-
anisms, alkaloids play a crucial role in the treatment of atopic
dermatitis (AD). Piperine, an alkaloid commonly found in black
pepper, is widely used as a food condiment due to its pungent
flavor. Beyond its culinary use, piperine also exhibits significant
pharmacological activity. In AD mouse models, piperine treatment
significantly reduced the infiltration of inflammatory factors in ear
cells and inhibited cytokines such as IL-18 and TNF-a during a Type 2
helper T cell (Th2)-mediated immune responseld. Fenugreek, a
spice commonly used in Indian cuisine to impart a nutty flavor,
contains the active ingredient trigonelline, which is important for
neuroprotection. Over time, the body's ability to clear free radicals
may diminish, leading to oxidative stress and damage to nerve cells.
Feng et al.l'¥ investigated the protective effects of trigonelline on
PC12 nerve cells subjected to hydrogen peroxide-induced damage.
The results demonstrated that trigonelline treatment increased
the activity of antioxidant enzymes such as SOD, CAT, and GSH-Px,
while reducing the levels of lipid peroxide MDA, thereby mitigating
oxidative stress in nerve cells.

Terpenoids

Terpenoids are a broad class of compounds and their derivatives,
which are usually classified according to the number of isoprene
units in their specific structures, including categories such as
monoterpenoids, sesquiterpenoids, diterpenoids, and others.
Monoterpenoids and sesquiterpenoids are the primary compo-
nents of volatile oils in plants, such as mentholl", and
caryophyllenel??, and are commonly used in the production of
various flavors and fragrances. Diterpenoids and triterpenoids are
key components in the formation of resins, while tetraterpenoids,
such as carotenoids, are primarily fat-soluble pigments widely used
as natural colorants in food®. Additionally, triterpenoids can form
various saponins, which are utilized in drug therapies(27],

The synthesis of terpenoids is a complex process, as illustrated in
Fig. 2. First, the basic precursor substances—acetyl coenzyme A
(acetyl-CoA), and glyceraldehyde-3-phosphate (G3P)—are derived
from glucose through the upstream metabolic pathway. These
precursors then form the basic building blocks of terpenoids,
isopentenyl pyrophosphate (IPP), and dimethylallyl pyrophosphate

Li et al. Food Innovation and Advances 2026, 5(1): 13—25
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Table 1. Sources of various common natural products in food and their functional applications.
Kinds Compounds Sources Effects Applications Ref.
Alkaloids Tomatidine Solanum lycopersicum  Antibacterial, anticancer, antiviral, anti- Foods, drugs [10]
inflammatory and neuroprotective
Piperine Piper nigrum Anticancer, antidepressant, anti- Food flavorings, drugs [11]
inflammatory, antioxidant, neuroprotective
Berberine Phellodendron Bark Antiproliferative, anti-inflammatory, Drugs [12]
antibacterial, antiviral
Caffeine Coffee, tea, chocolates Analgesic, anticancer, antioxidant, Meals and beverages [13]
antibacterial
Trigonelline Eggplant Anti-tumor, neuroprotective Foods, drugs [14]
Betaine Wheat bran, wheat Anti-diabetic, anti-inflammatory, antioxidant  Dietary supplement [15]
germ, spinach
Morphine Poppy heads Pain relief, sedation, euphoria, respiratory Agonists [16]
depression
Theobromine Cocoa tree Neuroprotective, anti-inflammatory Obesity treatment drugs or [17]
formulations
Terpenoids Carvacrol Origanum compactum  Antimicrobial, antioxidant, anti-inflammatory Food preservative [18]
Menthol Peppermint leaves Antibacterial, antifungal, antioxidant Additive, essential oils [19]
Thymol Thymus pectinatus Antimicrobial, antioxidant Food flavorings, mouthwashes [20,21]
Caryophyllene Piper nigrum Anti-inflammatory, antioxidant, anti- The essential oils of spices and [22]
neurodegenerative food plants
Nerolidol Citrus sinensis Antioxidant, anti-microbial, anti-biofilm, anti- Essential oils, flavor enhancer [23]
parasitic, insecticidal
Perillyl alcohol Cymbopogon caesius  Anticancer, antimicrobial, antioxidant, anti- Aroma, natural additives in [24]
inflammatory food
Camphene Piper cernuum Anti-tumor, antioxidant Food flavorings, fragrances, [25]
plasticizers
Stevioside Stevia rebaudiana Anti-inflammatory, antioxidant Sweetener, immunomodulator  [26]
Patchouli alcohol Pogostemon cablin Anti-inflammatory, antioxidant, antitumor Medicine, flavouring and food [9]
industries, essential oils
Ginsenoside Panax ginseng Anti-inflammatory, antibacterial, immunity-  Antibiotics, drugs [27]
improving
Corosolic acid Lagerstroemia speciosa Antioxidant, anti-inflammatory, antifungal, Medicines, health products [28]
[-carotene Medicago sativa Anticancer, anti-disease Pigment [6]
Lutein NuMex LotaLutein Antioxidant, photoprotective Dietary supplements, pigment [29]
Capsanthin Capsicum annuum Antioxidant, anticancer Nutrients, pigment [30]
Lycopene Amaranthus Anti-inflammatory, antioxidant, anticancer Food additive, jelly [31]
gangeticus
phenylpropanoids  Eugenol Eugenia caryophyllata  Antimicrobial, antifungal Food preservative and colorant  [32]
Umbelliferone Fruits, vegetables, and Antioxidant, anticancer Nutraceuticals, functional [33]
plants foods, drugs
Ferulic acid Sorghum straw Antioxidant, antiviral, anticancer Beer production [34]
Chlorogenic acid Higher Antibacterial, anti-inflammatory, antiviral, Feed additive [71
dicotyledonous plants antioxidant
and ferns
Caffeic acid Plant-based Antiviral, antioxidant, anti-inflammatory, Food, drugs [34]
lignocelluloses anticarcinogenic
Vanillin Vanilla planifolia Antioxidant, anti-inflammatory, antimicrobial Sweetener, food additive [35]
Rosmarinic acid Perilla frutescens Anti-inflammatory, antioxidant, antibacterial  Food flavoring, and [8]
preservative
Polysaccharides Lentinan Lentinus edodes Antitumor, immune potentiating Food supplement, biological [36]
response modifier
Lycium barbarum Lycium barbarum Antioxidant, anti-fatigue, anti-diabetic, Food, medicine, dietary [37]
polysaccharide neuroprotection supplements
Ganoderma lucidum  Ganoderma lucidum Antitumor, anti-inflammatory, Functional foods, and [38]
polysaccharide immunomodulatory, antioxidant pharmaceuticals
Longan Dimocarpus longan Antioxidant, anticancer, immunomodulatory, Herbs, foods [39]
polysaccharide hypoglycemic, antibacterial
Pumpkin Pumpkin Antidiabetic, antioxidant, anticancer, Foods, Chinese medicine [40]
polysaccharide immunomodulation,antibacterial
Tea polysaccharide Tea Antioxidant, anti-cancer, anti-inflammatory,  Beverages [41]

(DMAPP), via the mevalonate (MVA), and methylerythritol phos-
phate (MEP) pathways. Next, a molecule of DMAPP binds with
varying numbers of IPP molecules to synthesize the precursors of
different terpenoid compounds, including geranyl pyrophosphate
(GPP), farnesyl pyrophosphate (FPP), and geranylgeranyl pyrophos-
phate (GGPP), catalyzed by isopentenyltransferase enzymes geranyl
diphosphate synthase (GPPS), farnesyl diphosphate synthase (FPPS),
and geranylgeranyl diphosphate synthase (GGPPS). Finally, these

Li et al. Food Innovation and Advances 2026, 5(1): 13—25

precursor molecules are modified by cytochrome P450(CYP450)
enzymes to generate a wide variety of terpenoids.

In the biosynthesis of the terpenoid backbone, IPP and DMAPP
are synthesized through two key pathways: the MVA and MEP path-
ways, both of which have critical regulatory points. HMG-CoA reduc-
tase (HMGCR) is the rate-limiting enzyme in the MVA pathway and a
key regulatory site in terpenoid metabolism. In S. cerevisiae, overex-
pression of a truncated form of HMGCR is widely recognized as a
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crucial step for enhancing terpene synthesis efficiency. Lu et al.l>%
screened various HMGCRs from different sources and achieved a
production of 4.94 g/L of squalene using the most active truncated
form, E. faecalis mvaE, in combination with cofactor engineering.
Ye et al.’!l synthesized f-elemene in the unconventional microbe
Ogataea polymorpha by transforming HMGCR into its more stable
truncated form within the cytoplasm, regulating its overexpression
with a strong constitutive promoter, which resulted in a slight
increase in yield. In the MEP pathway, the enzymes DXS and DXR
play crucial roles as branching points in carbon flow, making them
important targets for regulation, particularly DXS. DXS is a thiamin
diphosphate (ThDP)-dependent enzyme, and IDP has similar polar
interactions with ThDP, allowing it to bind to DXS. Site-specific
mutation and overexpression of the Populus trichocarpa DXS gene
led to selective binding of ThDP and IDP, effectively regulating
feedback inhibition of DXS and increasing its catalytic activity®2l.

Li et al. Food Innovation and Advances 2026, 5(1): 13—25

Overexpression of the DXS and DXR genes from Bacillus subtilis in
E. coli resulted in approximately a two-fold increase in isoprene
productionl>3], In cyanobacteria cell factories, DXS regulation simi-
larly controls carbon flux in the MEP pathway. Kudoh et al.54
utilized the psbA2 promoter to introduce an additional copy of the
DXS gene, leading to a 1.5-fold increase in f-carotene production in
the improved strain.

After the synthesis of the basic building blocks IPP and DMAPP,
their balanced expression becomes another critical factor
influencing terpenoid biosynthesis. Following the modification of
HMGCR, researchers also overexpressed the isomerization gene DI,
which catalyzes the interconversion of IPP and DMAPP, leading to
a significant increase in pB-elemene production®". When ID/
was further overexpressed under the control of a strong promoter,
pB-carotene production in modified E. coli increased by 1.4-fold[>5],
Chen et all5¢ employed error-prone PCR and site-directed
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saturation mutagenesis to evolve DI, resulting in three mutant
strains with significantly enhanced activity. This led to a 1.8-fold
increase in lycopene production, reaching 1.2 g/L compared to the
wild type. Additionally, three types of isoprenyltransferases—GPPS,
FPPS, and GGPPS—catalyze the head-to-tail condensation of IPP and
DMAPP, leading to the elongation of the C5 carbon chain and the
subsequent synthesis of various terpenoids. Xie et al.’”l improved
the expression of GGPPS (CrtE) through directed evolution, which
increased lycopene production in S. cerevisiae by 2.2-fold, reaching
9.67 mg/g DCW. Chen et al.’58! further explored and compared the
catalytic properties of GGPPS enzymes from different sources (CrtE,
Crtl, and CrtB), optimizing their expression levels in combination.

Carvacrol and thymol are two common monoterpenoids widely
found in plants such as Origagnum compactum and Thymus
pectinatust'821], They are often used as flavoring agents in the food
industry due to their distinctive odors, and they also exhibit antimi-
crobial properties. Poultry patties containing carvacrol and thymol
showed a reduction in the number of viable bacteria after 7 d of
storage at different temperatures, with more pronounced inhibition
at lower temperatures>?., Similarly, Shemesh et al.l®% used halloysite
nanotubes encapsulated with carvacrol in an active antimicrobial
packaging system, demonstrating antifungal efficacy against a wide
range of fungi, and slowing the spoilage of raw fruits such as cherry
tomatoes, lychees, and table grapes. Terpenoids also play a role in
neuroprotection. Nerolidol, a sesquiterpenoid commonly found in
Citrus sinensis, has a rose or orange blossom aroma and is used in
cosmetics and detergents. It is approved as a safe food flavoring
agent by the US Food and Drug Administration23], In terms of
biological activity, Iqubal et al.l®"l monitored neurotransmitter levels
in a mouse model of cyclophosphamide-induced neuroinflamma-
tion, administering nerolidol via a nanolipid carrier. The treatment
significantly reduced the levels of neurotransmitters such as
dopamine, serotonin, and acetylcholinesterase in the head, demon-
strating significant neuroprotective effects.

Phenylpropanoids

Phenolic compounds with a natural composition containing one
or more benzene rings linked by three-carbon chains, known as
phenylpropanoids, are widely found in fruits, vegetables, tea, and
other plants. These compounds exhibit various physiological func-
tions, including antioxidant, anti-inflammatory, antibacterial, and
neuroprotective propertiest®2, Due to their antioxidant properties
and ability to protect against ultraviolet radiation, phenyl-
propanoids are commonly used as ingredients in cosmetics. For
example, resveratrol has been shown to provide significant protec-
tive and antioxidant effects against cellular oxidative stress caused
by diabetes®3l. Salidroside, besides being used in traditional
medicine, can also serve as a supplement in fish farming to promote
healthy fish reproductionf©4l,

The synthesis of phenylpropanoids originates from the shikimic
acid pathway, a secondary metabolic process unique to plants. In
this pathway, shikimic acid is converted into aromatic amino acids
through reactions like deamination, hydroxylation, and coupling.
Phenylalanine aminolyase (PAL) is a crucial bridge between primary
and secondary metabolism in plants and plays a significant role
during plant growth and development. Overexpression of the
endogenous PAL gene in sweet potato stimulated secondary xylem
cell growth and increased chlorogenic acid accumulation in the
leaves[®s], C4H was the first plant CYP450 enzyme identified, and it is
highly active in various plant tissues. During the irreversible reac-
tion catalyzed by C4H, the redox chaperone CPR is needed to supply
electrons, facilitating the conversion of cinnamic acid to p-coumaric
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acid. In the subsequent synthesis step, using cinnamic acid as a
substrate, competition may arise between C4H and 4-coumarate:
coenzyme A ligase (4CL) enzymes. Karlson et al.l5¢ silenced the C4H
gene in tobacco cells using the CRISPRi system, which not only
upregulated the expression of 4CL but also redirected metabolic flux
toward the cinnamate glucosyltransferase (UGCT) pathway. This
shift improved chlorogenic acid production by converting cinnamic
acid to cinnamoyl D-glucose. Among the many enzymes involved,
4CL is central to various branches of the phenylpropanoid metabolic
pathway and exhibits high substrate specificity. In Arabidopsis
thaliana, the isoenzymes encoded by At4CL1 and At4CL2 are closely
related to lignin monomer synthesis®’], while At4CL3 activates p-
coumaric acid as a substrate for chalcone synthase, which is
involved in flavonoid biosynthesis. The effect of 4CL activity on
lignin accumulation was investigated in Ganoderma lucidum using
RNAi interference and overexpression experiments. The results
showed a positive correlation between 4CL enzyme activity and
lignin production, which is essential for the structure of G. lucidum
cell walls and substrate formationl®8l, Xiong et al.l*¥ constructed a
mutant library of 4CL enzymes and used a specific resveratrol
biosensor to screen for 4CL variants with high yields, achieving a
4.7-fold increase in resveratrol production.

The subsequent synthesis pathways of phenylpropanoid
compounds vary, and the synthesis pathways of common phenyl-
propanoids are illustrated in Fig. 3. Chlorogenic acid, for instance,
is a natural phenylpropanoid widely found in plant-derived foods,
and is known for its numerous health benefits. However, the
concentration of chlorogenic acid in plants is typically low, making it
important to regulate its synthesis effectively. Hydroxycinnamoyl
transferase (HCT) is a versatile acyltransferase, in addition to being a
key enzyme in chlorogenic acid synthesis, HCT is involved in lignin
monomer biosynthesis. Su et al.’% conducted a metabolomic and
transcriptomic analysis of over 200 mature peach cultivars and
found a positive correlation between HCT expression levels and
chlorogenic acid content. Another enzyme, hydroxycinnamate-CoA
quinate hydroxycinnamoyl transferase (HQT), which belongs to the
same family of transferases as HCT, significantly increased chloro-
genic acid levels in tobacco leaves when HQT were overexpressed in
Globe artichoke. Conversely, down-regulation of HQTT resulted in a
reduction in chlorogenic acid production, highlighting the key regu-
latory role of HQT'", In addition to structural genes, various tran-
scription factors, such as WRKY, MYB, and bHLH, play significant
roles in regulating chlorogenic acid synthesis. For example, overex-
pression of the TaWRKY14 transcription factor from Taraxacum
antungense led to transgenic lines with increased chlorogenic acid
content and higher expression of TaPAL1. This interaction was
confirmed through a yeast one-hybrid assay, which demonstrated
that TaWRKY14 binds to the W-box element of the TaPAL1
promoter’2l, In contrast, Zha et al.l’3! found that overexpression of
LjbZIP8, a transcription factor from Lonicera japonica, in transgenic
tobacco suppressed the expression of PAL, resulting in reduced
levels of neochlorogenic acid, chlorogenic acid, and cryptochloro-
genic acid. This suggests that different transcription factors have
distinct roles in regulating chlorogenic acid synthesis across various
plants, and further analysis is needed to fully understand these
specific requlatory mechanisms.

Phenylpropanoids are well known for their antioxidant capacity, a
common biological activity shared by many compounds in this
group. Vanillin, a natural sweetener widely used in desserts and
beverages, has strong antimicrobial properties, making it useful as a
food preservative. It can even be incorporated into active packag-
ing films to extend the shelf life of various foods, including fresh
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fruits and vegetables, frozen meats, and pastal®>l. Chlorogenic acid,
a yellowish compound, can be prepared as a green or red pigment
by reacting with different amino acids, making it a potent colorant
in food matrices. Beyond its color properties, chlorogenic acid also
exhibits strong antioxidant activity. For example, it slows the degra-
dation of anthocyanins in blackberry juice through a co-pigmenta-
tion mechanism, allowing the juice to be stored at 4°C for 90 d when
protected from lightl’4, making it an excellent food additive. Song
et all”l assessed the free radical scavenging ability and iron ion
reduction capacity of chlorogenic acid and its isomers in vitro, all of
which showed varying degrees of antioxidant activity. Furthermore,
animal cell experiments revealed that adding chlorogenic acid
significantly reduced oxidative stress damage in broilers, improving
their production performance. Gastrodia elata Blume, a traditional
medicinal herb, is used in health foods, and gastrodin is one of
its active ingredients. Wang et all’’! demonstrated the anti-
inflammatory effects of gastrodin in a mouse model of atopic
dermatitis. Gastrodin reduced microglial activity by modulating the
TLR4/TRAF6/NF-kB pathway in BV-2 cells.

Polysaccharides

Polysaccharides are a class of macromolecular compounds found
widely in nature, consisting of monosaccharides linked by glyco-
sidic bonds. In mushrooms, polysaccharides are the most active
components, and exhibit various physiological functions, including
anticancer, anti-inflammatory, and antiviral properties. Notable
examples include lentinan and ganoderma lucidum polysaccha-
rides, which have shown remarkable efficacy. Fruits are also rich
sources of polysaccharides, such as longan and pomegranate
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polysaccharides, which possess natural antioxidant and anti-
inflammatory activities. These polysaccharides are often added to
nutritional health products as functional ingredients(39.761,

Polysaccharides exhibit diverse biochemical structures, with
around 40-50 types of monosaccharides serving as their building
blocks. In plants, polysaccharide synthesis begins with sucrose,
produced via photosynthesis, which is converted into UDP-glucose
through three pathways (Fig. 4). The first involves the direct genera-
tion of UDP-glucose via the action of the enzyme sucrose synthase
(SUS). The second and third pathways are catalyzed by invertase
(INV), where sucrose is broken down into glucose and fructose.
These are then converted into their hexose phosphate forms (G6P
and F6P) through hexokinase (HK) activity. F6P can be further
converted into G6P, and together they are transformed into G1P
with the involvement of phosphoglucomutase (PGM), ultimately
forming UDP-glucose through UDP-glucose pyrophosphorylase
(UDPase). In the UDP-arabinose synthesis pathway, UDP-glucose is
catalyzed into UDP-glucuronic acid by UDP-glucose dehydrogenase
(UGDH). This intermediate can be used to synthesize UDP-xylose
through UDP-glucuronic acid decarboxylase (UXS) or be further
converted to UDP-apiose by UDP-D-xylose synthase (AXS), expand-
ing the diversity of polysaccharide synthesis. After the formation of
various UDP- and GDP-monosaccharides, these units are transferred
to the growing polysaccharide chain through the action of glycosyl-
transferases (GTs), where they undergo dehydration and condensa-
tion, resulting in polysaccharide formation.

The enzymes involved in polysaccharide synthesis are primarily
categorized into three groups: synthetases, isomerases, and trans-
ferases. Among these, sucrose phosphate synthase (SPS) is
recognized as the key rate-limiting enzyme in the polysaccharide
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synthesis pathway. SPS catalyzes the formation of s

phosphate, which subsequently leads to the production of sucrose.
Seger et al.l’7l demonstrated that overexpression of the SPS enzyme
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ucrose 6-

from corn in tobacco resulted in a significant increase in sucrose
accumulation, which in turn promoted plant growth and develop-
ment. Cyanobacteria, as photosynthetic organisms, can rapidly

Li et al. Food Innovation and Advances 2026, 5(1): 13—-25



Review of plant-derived natural products in food

accumulate sucrose under salt stress. In an engineered strain of
Cyanobacteria, the co-overexpression of SPS, sucrose phosphate
phosphatase (SPP), and UDP-glucose pyrophosphorylase (UGP)
doubled the sucrose production!’8l, UGPase is a critical enzyme in
glucose metabolism across plants, animals, and fungi. It catalyzes
the reaction between glucose 1-phosphate and uridine triphos-
phate (UTP) to form UDP-glucose and pyrophosphate, a key
precursor in the synthesis of many polysaccharides. Peng et al.l’"!
investigated the synthesis of exopolysaccharides in G. lucidum using
various medium components. They found that in cells synthesizing
higher amounts of G. lucidum exopolysaccharides, the expression
levels of key enzymes involved in the synthesis process were signifi-
cantly elevated. Not only were the PGM and PGl genes that catalyze
galactose and mannose upregulated, but the UGPase activity was
also markedly enhanced compared to the control group. This
demonstrates a strong correlation between mycelial polysaccharide
content and the activity of key genes involved in the synthesis path-
way, such as PGM, UGPase, and PGI. Similarly, in the synthesis of
Lentinus edodes polysaccharides, the addition of sodium and
calcium ions enhanced polysaccharide content by upregulating the
expression of PGM, UGPase, and PGI8%, Additionally, GTs are essen-
tial enzymes that catalyze the assembly of repeating monosaccha-
ride units and the formation of glycosidic bonds. During the
synthesis of G. lucidum polysaccharides, the overexpression of a-1,3-
glucosyltransferase has been shown to regulate sugar donor synthe-
sis, thereby increasing polysaccharide yield8'l,

Polysaccharides, abundant in nature and both non-toxic and
harmless, have a wide range of applications in the food industry, like
jelly, jam, and yogurt. Due to their biodegradability and renewabil-
ity, polysaccharides are also excellent candidates for use in food
packaging. They can encapsulate target products when combined
with nanomaterials, gels, or films. Furthermore, the rich physiologi-
cal activity of polysaccharides allows them to serve as functional
ingredients in nutraceuticals. For instance, Athmouni et al.'82! discov-
ered that Periploca angustifolia polysaccharides reduce the produc-
tion of reactive oxygen species by chelating cadmium ions, thereby
protecting HepG2 cells from cadmium chloride-induced damage.
Similarly, You et al.B3! isolated three polysaccharide components
from edible fungi, which exhibited potent antioxidant activity by
scavenging DPPH and hydroxyl radicals. In addition to their antioxi-
dant properties, polysaccharides from Poria cocos have
immunomodulatory effects. Pu et al.l8¥ found that P. cocos polysac-
charides modulate the immune response by elevating calcium ion
levels in macrophages, promoting the release of pro-inflammatory
cytokines such as NO, TNF-¢, and IL-18.

Challenges and opportunities

Currently, the production of corresponding plant natural prod-
ucts by introducing natural synthetic pathways into microorgan-
isms represents a relatively advanced trend, though it remains in its
developmental stage. After achieving the production target, the
biosafety and practical application of the recombinant products are
rarely described. These involve multidisciplinary comprehensive
consideration, but also face challenges in various aspects.

Mining of key regulatory elements

The synthesis of plant-derived natural products is inseparable
from special bioparts, but resources with known functions and avail-
ability for genetic modification are very limited. In addition to
promoters and terminators that regulate gene expression during
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fermentation, CYP450 enzymes play a crucial role in the biosynthe-
sis of secondary metabolites. However, there has been limited
research on the crystal structure analysis of plant CYP450 enzymes.
Since the functional activity and catalytic mechanisms of CYP450
enzymes are closely tied to their crystal structures, HMMTOP and
TMHMM can be used to predict transmembrane regions and
hydrophobicity to achieve soluble expression of target genes.
Subsequently, secondary and tertiary structure modeling of the
target enzyme is performed using computational tools such as
AlphaFold, PSIPRED, and SWISS-MODEL, thereby obtaining a
complete protein structural model. If possible, a database summary
was established to compare and analogize with the similar struc-
tures from various angles, thus laying the foundation for the molec-
ular modification and functional expression of CYP450 enzymes. In
the heterologous production of plant-derived natural products,
expressing plant CYP450 enzymes in bacterial hosts presents chal-
lenges, due to the absence of essential redox partners and electron
transfer organelles in bacteria. Addressing this issue will require the
development of new protein structure prediction tools, as well as
the integration of bioinformatics approaches to expand the crystal
structure analysis of plant CYP450 enzymes and other key biosyn-
thetic enzymes. By clarifying the structure-activity relationships of
these enzymes, researchers can tackle the electron transfer limita-
tions in bacterial hosts. This remains a key challenge for future
research in the field.

Optimization of cell factory performance

In addition to the modifications made around key enzymes, the
optimization of microbial cell factory performance is also an angle
that cannot be ignored. There are many important organelles in
cells; by regulating and fully utilizing their space, it is possible to
effectively mitigate spatial effects between proteins. This compart-
mentalization strategy—one that involves localizing related biologi-
cal components to specific organelles—is increasingly being
adopted. Thodey et al.85 anchored codeinone reductase, a key
gene for morphine synthesis, to the endoplasmic reticulum via a
localization peptide, which not only increased the rate of morphine
production, but also decreased the synthesis of by-products. While
there are advantages to this strategy in terms of increased synthesis
efficiency as well as product stability, it may also lead to a more
complex distribution of products inside the cell, which increases the
difficulty of products that accumulate inside the cell for substances
with longer synthetic paths. Similarly, the targeted modification of
cell factories cannot be achieved without efficient gene editing
techniques. By removing some of the unnecessary internal
metabolic pathways, it is possible to provide more energy for strain
production, or more binding space for the target enzyme to func-
tion. Arendt et al.l89 used CRISPR/Cas9 method to knockout phos-
phatidic acid phosphatase-encoding PAHT gene in S. cerevisiae,
which expanded the space of endoplasmic reticulum and increased
the production titers of various terpenoids. This may be due to the
fact that CYP450 enzymes located in the endoplasmic reticulum
have more room to attach.

In addition to exogenous means, it is also crucial to improve the
toxicity tolerance of the microbial cell factory itself. Differences in
the metabolic fitness of many plant-derived natural products and
microorganisms may result in cell growth restriction. In addition to
the currently commonly used cell factories, mining and developing
more tolerant microbial cell chassis can alleviate the toxicity of
the accumulation of intermediary products to the cells on the one
hand, and on the other hand, it also has a certain benefit to the cell's
ability to resist contamination, especially the synthesis of products
with longer pathways.
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Industrial large-scale production

After the optimal performance of the recombinant microorgan-
ism is constructed in the laboratory, it may produce different effects
from shake flask to large-scale production fermenter. Due to the
larger volume of industrial fermenters, the precise control over
conditions such as temperature, dissolved oxygen, and pH is some-
what reduced. For microbial cells, the shear forces generated by
faster stirring rates and excessively high concentrations of
substrates or products may also inhibit the strains. These variations
result in certain differences between fermenters and shake flask
culture systems in growth and production performance. Therefore,
further condition optimization may be needed!®l. During the
synthesis of hispidin, the addition of the precursor caffeic acid trig-
gers a sudden pH shift. In shake flasks, pH stabilization relies solely
on the medium's inherent buffering capacity. However, real-time pH
sensors installed in the fermenter enable precise pH control, thereby
preventing damage to enzyme activity®®. To obtain a sufficient
number of organisms and maintain the continuity of production,
strains in industrial production may undergo multiple generations,
which poses a risk to the production performance of the strain and
even to the integrity of the genes carried. Therefore, before large-
scale production, the researchers can conduct a medium-sized pilot
experiment; at the same time, the more suitable directional evolu-
tion of strains for industrial production can appropriately reduce the
risk and cost loss of large-scale production. Researchers utilized the
synergistic effect of air aeration, stirring, and vegetable oil as the
oxygen carrier in a 5 L fermenter to precisely regulate dissolved
oxygen levels, optimizing the metabolic flow of the strain in a
targeted manner. Ultimately, this resulted in a 34.3% increase in the
total triterpenoid yield of Sanghuangporus vaninii YC-189, In addi-
tion, advanced bioreactor designs should also be updated to facili-
tate more stable control of production conditions.

Biosafety and application of recombinant
products

In recent years, the microbial synthesis of plant-derived natural
products has gained momentum. However, the practical applica-
tions of these microbially synthesized products remain underex-
plored. For instance, Denby et all®l constructed a synthetic
pathway in S. cerevisiae for producing linalool and geraniol, which
are key contributors to the 'hoppy' flavor and aroma in beer. To test
its feasibility, the engineered yeast strain was used in large-scale
brewery production, and sensory evaluations revealed that the
flavor and fragrance it produced were superior to those from tradi-
tional Cascade hop preparations. Due to the lack of guarantee of
biosafety of the strain, its application in industrial production is
limited. Self-cloning technology is a genetic improvement method
of yeast without introducing any exogenous DNA, and its biosafety
can be directly applied to the food industry. By constructing the self-
cloning module of S. cerevisiae, the alcohol dehydrogenase Il gene
locus was damaged, and the GSHT and CUPT gene were overex-
pressed, which significantly reduced the acetaldehyde level and
inhibited beer aging. Sensory evaluation also confirmed that the
recombinant brewed beer was more palatable®'l. The edible nature
of yeast simplifies the practical application of microbial recombi-
nant products in such cases. However, significant challenges remain,
particularly in the purification and safety of recombinant products.
For example, in the production of anthocyanins, a water-soluble
natural pigment, there is a lack of effective separation and extrac-
tion methods for this substance. Furthermore, the use of antho-
cyanins as food colorants raises additional concerns related to food
safety, thus restricting their broader application. Future approaches
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may focus on strategies such as encapsulation or stacking
complexes to assist in the separation of water-soluble compounds
like anthocyanins.

Additionally, horizontal gene transfer may occur in modified
microorganisms carrying exogenous genes. Thorough activity evalu-
ations and clinical safety tests of these synthetic products will be
essential to ensure their practical applications in food, nutrition, and
health care products. On the regulatory side, it is crucial to establish
comprehensive and stringent standards for the market entry of
recombinant products. Such as the safety and sustainability of the
microorganisms themselves, the impact of by-product and waste
post-treatment on the ecology, and whether the destination after
entering the market and the health status of users are within the
ideal range, and so on. This will not only streamline the approval
process but also help researchers design microbial cell factories that
align with regulatory requirements.

Summary

Plant-derived natural products hold immense potential, with
many anticancer and antitumor drugs derived from specific natural
compounds. Due to problems such as growth restrictions, resource
consumption, and environmental pollution, relying on direct extrac-
tion from plants or chemical synthesis is limited. The rapid growth
and controlled reaction conditions of microorganisms make it the
most potential plant-derived natural products replacement produc-
tion plant.

Research into the mechanisms underlying the activity of natural
products spans multiple fields. At the molecular biology level, alter-
ations in gene or protein expression related to cell cycle regulation,
or signaling pathways can be investigated using transcriptomics,
real-time quantitative PCR, and mass spectrometry. From a cellular
perspective, techniques such as Western blotting and enzyme-
linked immunosorbent assay (ELISA) are employed to detect
changes in activity, or expression of key molecules involved in cellu-
lar signaling pathways. On the biochemical level, targeted, and
untargeted metabolomics analyses are used to reveal the effects of
natural products on metabolic regulation within organisms. It is
believed that in the future, through continued research on modi-
fied bioparts and biotechnology, improving the corresponding laws
and regulations, it can further enhance the practicality of microbial
cell factories, and is of great significance to reduce environmental
pollution, improve production efficiency, and even improve human
health.
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