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Abstract
Natural products are widely distributed across various organisms, and exhibit potent physiological activities. Among these, plant-derived natural products

are extensively utilized in the food, pharmaceutical, and healthcare industries. Traditional extraction methods primarily rely on plant extraction but suffer

from drawbacks such as low yield, long growth cycles, and high resource consumption. Consequently, microbial fermentation technology has emerged as

an  alternative  solution,  offering  advantages  including  the  ability  to  utilize  abundant  raw  materials  and  its  environmentally  friendly  and  sustainable

characteristics.  This  review  summarizes  recent  advances  in  the  biosynthesis  and  functional  mechanisms  of  four  classes  of  plant-derived  natural

products—alkaloids,  terpenoids,  phenylpropanoids,  and  polysaccharides—while  also  examining  the  challenges  and  future  prospects  for  their  practical

applications.
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 Introduction

Natural  products  are  compounds synthesized by plants,  animals,
and  microorganisms  in  nature,  including  active  small-molecule
compounds,  and  some  large-molecule  compounds.  While  they  do
not  directly  participate  in  the  growth  and  development  of  organ-
isms,  they  hold  high value  due to  their  complex  and diverse  struc-
tures, which allow them to interact with biological targets, and even
exhibit  a  certain  adaptive  potential  under  adverse  conditions[1].
Consequently,  they  have  long  served  as  a  crucial  source  for  drug
development.  A  number  of  compounds  such  as  terpenoids,  alka-
loids,  and  polysaccharides  found  in  plants,  offer  antioxidant,  anti-
inflammatory,  immune-regulating,  and  antibacterial  functions[2].
Compared  with  other  sources,  plant-derived  natural  products  are
extensively used in various fields, and their significance is becoming
increasingly  prominent.  Common  plant-derived  drugs  include
morphine,  artemisinin,  and paclitaxel,  which have made significant
contributions  to  human  health,  and  have  driven  advances  in
modern  medicine[2].  Less  common  or  underutilized  plant-derived
natural  products,  such  as Sapindaceae and Anacardiaceae families,
also have a wide range of antioxidant capacity[3], and an even higher
tolerance  to  stress[4].  As  functional  ingredients,  plant-derived  natu-
ral  products  have  garnered  increasing  attention,  and  their  mecha-
nisms of action can be applied across industries, offering promising
market prospects.

Although  plant-derived  natural  products  are  widely  utilized  in
various  fields,  their  production  process  faces  numerous  challenges
that  hinder  further  research  and  application  development.
Currently,  the  production  of  most  plant-derived  natural  products
relies  on  direct  extraction  from  plants,  a  traditional  method  that
presents  several  significant  issues.  Firstly,  large-scale  cultivation  of

plants consumes valuable arable land and requires a relatively long
growth period.  Additionally,  the concentration in  plants  is  typically
low,  and  the  extraction  process  is  time-consuming  and  cumber-
some, often requiring large amounts of organic solvents and water,
which  raises  costs  and  increases  environmental  impact.  Chemical
synthesis offers an alternative, but the synthesis of natural products
often  involves  multi-step  reactions,  and  some  steps  require  toxic
chemical reagents that can be harmful to the environment. In recent
years, the rise of microbial synthesis has introduced a new approach
to producing natural  products.  Using microbial  cell  factories,  scien-
tists  can  synthesize  complex  natural  products  quickly  and  with
precision.  In contrast,  microbial  methods provide a more abundant
source  of  raw  materials  and  allow  for  greater  control  over  the
production process.  This  approach also offers  environmental  bene-
fits, being low-carbon and more sustainable, as it minimizes the use
of organic solvents, and reduces the environmental burden. Conse-
quently,  microbial  cell  factory  synthesis  of  plant-derived  natural
products has become a significant research focus, offering a sustain-
able production method while  promoting further  practical  applica-
tions in medicine, agriculture, and other fields.

A  deeper  understanding  of  the  structures  and  mechanisms  of
these  compounds  can  facilitate  their  application  in  modern
medicine.  As  a  result,  this  paper  reviews  the  progress  made  in  the
biosynthetic  pathways  of  alkaloids,  terpenoids,  phenylpropanoids,
and  polysaccharides—common  plant-derived  natural  product
compounds. It explores the mechanisms of key enzymes involved in
the synthesis  process,  using specific  examples  of  microbial  factory-
based  production  of  natural  products.  Additionally,  it  summarizes
the  functional  and  activity  mechanisms  of  these  compounds  to
better inform their practical application.
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 Plant-derived natural products in food
In recent years, scientists have discovered a wealth of active natu-

ral  products  derived  from  plants  with  diverse  structural  properties,
leading  to  their  classification  into  several  broad  categories.  They
offer abundant resources for humans across industries such as food,
agriculture, cosmetics, and even flavors. For example, anthocyanins
and  carotenoids  serve  as  natural  pigments  in  food  and  cosmetics,
providing coloring effects[5,6]. Phenylpropanoids like rosmarinic acid
and  chlorogenic  acid  are  commonly  used  as  feed  additives  to
support  animal  health[7,8].  Patchouli  alcohol  and  terpineol,  derived
from  terpenoids,  are  extracted  to  produce  essential  oils  used  in
perfumes  for  health  and  beauty  applications[9].  An  overview  of
common natural products of different classes in food and their func-
tional applications is provided in Table 1.

 Alkaloids
Alkaloids are one of the earliest classes of biologically active natu-

ral organic compounds studied by scientists. They generally refer to
organic  cyclic  compounds  containing  oxidized  nitrogen  atoms
found  in  living  organisms  and  are  often  the  active  ingredients  in
many  medicinal  plants.  Alkaloids  are  abundant  in  nature;  common
alkaloids  found  in  food  can  be  classified  based  on  their  structure,
such as purine alkaloids, quinoline alkaloids, and ergot alkaloids. For
example,  morphine  and  codeine,  derived  from  the  opium  poppy,
are  potent  analgesics  and  cough  suppressants[16,42].  Berberine,
found  in Coptis  chinensis,  has  antibacterial  and  anti-inflammatory
properties  and  is  commonly  used  to  treat  diarrhea[12].  Tomatidine,
present  in  tomatoes  and  potatoes,  not  only  plays  an  antibacterial
role  but  can  also  be  used  as  a  vaccine  adjuvant  to  enhance  drug
delivery[43].

Unlike  other  natural  products,  alkaloids  have  a  wide  structural
diversity, which gives rise to different synthetic precursors and path-
ways.  Caffeine,  one  of  the  most  popular  alkaloids,  is  widely
consumed in foods such as tea, coffee, and chocolate. It is also used
as a common prescription drug for its analgesic effects. Additionally,
caffeine's  antioxidant  properties  contribute  to  its  use  in  beauty
products, and even as an athletic supplement[13]. In nature, caffeine
synthesis occurs in two main phases: the donor phase and the main
synthesis  phase.  As  shown  in Fig.  1,  xanthosine,  the  starting
substrate  for  purine  base  synthesis,  can  be  synthesized  through  at
least four different pathways: the de novo purine synthesis pathway,
the AMP degradation pathway, the GMP degradation pathway, and
the  S-adenosylmethionine  (SAM)  cycle.  The  purine  ring  is  synthe-
sized  from  precursors  such  as  CO2,  glycine,  glutamine,  and  5-
phosphorylribose-1-pyrophosphate  (PRPP)  to  form  purine
nucleotides.  These  nucleotides  undergo  a  two-step  reaction  to
generate  xanthosine  from  inosine  5'-Monophosphate  (IMP).  SAM
acts  as  a  methyl  donor  for  the  three-step  methylation  process,
converting into S-adenosylhomocysteine(SAH), which is hydrolyzed
to  produce  homocysteine  and  adenosine.  The  homocysteine  then
re-enters the SAM cycle to regenerate SAM, while adenosine partici-
pates  in  xanthosine  production.  This  is  followed  by  a  series  of
N-methylation  reactions  that  ultimately  result  in  the  synthesis  of
caffeine.

The  production  of  caffeine  involves  three  N-methylation  reac-
tions,  each  requiring  SAM  as  a  donor,  highlighting  the  importance
of  S-adenosylmethionine  synthetase  1  (SAMS)  and  N-methyltrans-
ferases.  Hu  et  al.[44] enhanced SAMS activity  in Escherichia  coli,
Saccharomyces cerevisiae, and Streptomyces spectabilis through DNA
rearrangement  techniques,  resulting  in  a  doubling  of  intracellular
SAM  accumulation.  Similarly,  Ravi  Kant  et  al.[45] overexpressed  the

SAM  synthase  gene, SAM2,  in Pichia  pastoris,  leading  to  increased
SAM production.  In Camellia sinensis,  tea caffeine synthase 1 (TCS1)
is  the  first  reported  N-methyltransferase  responsible  for  catalyzing
methylation  reactions,  and  is  the  rate-limiting  enzyme  in  caffeine
synthesis.  In Camellia  ptilophylla,  a  close  relative  of  tea  plants,  a
natural  deficiency  in  caffeine  synthesis  was  observed.  Transcrip-
tome  analysis  revealed  that TCS1 expression  levels  in C.  ptilophylla
were significantly lower than in conventional tea plants, suggesting
a high correlation between TCS1 and caffeine synthesis. Researchers
have  also  explored  microbial  production  of  caffeine.  In  a  previous
study  by  McKeague  et  al.[46],  caffeine  synthesis  genes  were  intro-
duced  into  a  eukaryotic  system,  leading  to  the  production  of
270 μg/L  of  caffeine  through  the  overexpression  of  target  genes.
Li et al.[47] improved N-methyltransferase expression through codon
optimization  and  strong  promoter  modification  of TCS1 in E.  coli,
achieving  a  caffeine  yield  of  21.46  mg/L  from  glucose  as  the  sole
carbon source.  Caffeine has also been used in  genetically  modified
plants  to  increase  pest  resistance.  The  introduction  of  three N-
methyltransferases  into  tobacco  leaf  discs  through Agrobacterium-
mediated transformation significantly enhanced resistance to pests,
such  as  tobacco  cutworms,  and  improved  the  plants'  growth  and
survival[48].

Alkaloids  are  secondary  metabolites  produced  by  plants  in
response to habitat stress, due to their rich anti-inflammatory mech-
anisms,  alkaloids  play  a  crucial  role  in  the  treatment  of  atopic
dermatitis  (AD).  Piperine,  an  alkaloid  commonly  found  in  black
pepper,  is  widely  used  as  a  food  condiment  due  to  its  pungent
flavor.  Beyond  its  culinary  use,  piperine  also  exhibits  significant
pharmacological  activity.  In  AD  mouse  models,  piperine  treatment
significantly  reduced  the  infiltration  of  inflammatory  factors  in  ear
cells and inhibited cytokines such as IL-1β and TNF-α during a Type 2
helper  T  cell  (Th2)-mediated  immune  response[49].  Fenugreek,  a
spice  commonly  used  in  Indian  cuisine  to  impart  a  nutty  flavor,
contains  the  active  ingredient  trigonelline,  which  is  important  for
neuroprotection.  Over  time,  the  body's  ability  to  clear  free  radicals
may diminish, leading to oxidative stress and damage to nerve cells.
Feng  et  al.[14] investigated  the  protective  effects  of  trigonelline  on
PC12 nerve cells subjected to hydrogen peroxide-induced damage.
The  results  demonstrated  that  trigonelline  treatment  increased
the activity  of  antioxidant  enzymes such as  SOD,  CAT,  and GSH-Px,
while reducing the levels of lipid peroxide MDA, thereby mitigating
oxidative stress in nerve cells.

 Terpenoids
Terpenoids are a broad class of compounds and their derivatives,

which  are  usually  classified  according  to  the  number  of  isoprene
units  in  their  specific  structures,  including  categories  such  as
monoterpenoids,  sesquiterpenoids,  diterpenoids,  and  others.
Monoterpenoids  and  sesquiterpenoids  are  the  primary  compo-
nents  of  volatile  oils  in  plants,  such  as  menthol[19],  and
caryophyllene[22],  and  are  commonly  used  in  the  production  of
various  flavors  and  fragrances.  Diterpenoids  and  triterpenoids  are
key  components  in  the  formation  of  resins,  while  tetraterpenoids,
such as carotenoids, are primarily fat-soluble pigments widely used
as  natural  colorants  in  food[6].  Additionally,  triterpenoids  can  form
various saponins, which are utilized in drug therapies[27].

The synthesis of terpenoids is a complex process, as illustrated in
Fig.  2.  First,  the  basic  precursor  substances—acetyl  coenzyme  A
(acetyl-CoA),  and  glyceraldehyde-3-phosphate  (G3P)—are  derived
from  glucose  through  the  upstream  metabolic  pathway.  These
precursors  then  form  the  basic  building  blocks  of  terpenoids,
isopentenyl  pyrophosphate  (IPP),  and  dimethylallyl  pyrophosphate
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(DMAPP),  via  the  mevalonate  (MVA),  and  methylerythritol  phos-
phate  (MEP)  pathways.  Next,  a  molecule  of  DMAPP  binds  with
varying  numbers  of  IPP  molecules  to  synthesize  the  precursors  of
different  terpenoid  compounds,  including  geranyl  pyrophosphate
(GPP),  farnesyl  pyrophosphate (FPP),  and geranylgeranyl  pyrophos-
phate (GGPP), catalyzed by isopentenyltransferase enzymes geranyl
diphosphate synthase (GPPS), farnesyl diphosphate synthase (FPPS),
and  geranylgeranyl  diphosphate  synthase  (GGPPS).  Finally,  these

precursor  molecules  are  modified  by  cytochrome  P450(CYP450)
enzymes to generate a wide variety of terpenoids.

In  the  biosynthesis  of  the  terpenoid  backbone,  IPP  and  DMAPP
are synthesized through two key pathways: the MVA and MEP path-
ways, both of which have critical regulatory points. HMG-CoA reduc-
tase (HMGCR) is the rate-limiting enzyme in the MVA pathway and a
key regulatory site in terpenoid metabolism. In S. cerevisiae, overex-
pression  of  a  truncated  form  of HMGCR is  widely  recognized  as  a

 

Table 1.  Sources of various common natural products in food and their functional applications.

Kinds Compounds Sources Effects Applications Ref.

Alkaloids Tomatidine Solanum lycopersicum Antibacterial, anticancer, antiviral, anti-
inflammatory and neuroprotective

Foods, drugs [10]

Piperine Piper nigrum Anticancer, antidepressant, anti-
inflammatory, antioxidant, neuroprotective

Food flavorings, drugs [11]

Berberine Phellodendron Bark Antiproliferative, anti-inflammatory,
antibacterial, antiviral

Drugs [12]

Caffeine Coffee, tea, chocolates Analgesic, anticancer, antioxidant,
antibacterial

Meals and beverages [13]

Trigonelline Eggplant Anti-tumor, neuroprotective Foods, drugs [14]
Betaine Wheat bran, wheat

germ, spinach
Anti-diabetic, anti-inflammatory, antioxidant Dietary supplement [15]

Morphine Poppy heads Pain relief, sedation, euphoria, respiratory
depression

Agonists [16]

Theobromine Cocoa tree Neuroprotective, anti-inflammatory Obesity treatment drugs or
formulations

[17]

Terpenoids Carvacrol Origanum compactum Antimicrobial, antioxidant, anti-inflammatory Food preservative [18]
Menthol Peppermint leaves Antibacterial, antifungal, antioxidant Additive, essential oils [19]
Thymol Thymus pectinatus Antimicrobial, antioxidant Food flavorings, mouthwashes [20,21]
Caryophyllene Piper nigrum Anti-inflammatory, antioxidant, anti-

neurodegenerative
The essential oils of spices and
food plants

[22]

Nerolidol Citrus sinensis Antioxidant, anti-microbial, anti-biofilm, anti-
parasitic, insecticidal

Essential oils, flavor enhancer [23]

Perillyl alcohol Cymbopogon caesius Anticancer, antimicrobial, antioxidant, anti-
inflammatory

Aroma, natural additives in
food

[24]

Camphene Piper cernuum Anti-tumor, antioxidant Food flavorings, fragrances,
plasticizers

[25]

Stevioside Stevia rebaudiana Anti-inflammatory, antioxidant Sweetener, immunomodulator [26]
Patchouli alcohol Pogostemon cablin Anti-inflammatory, antioxidant, antitumor Medicine, flavouring and food

industries, essential oils
[9]

Ginsenoside Panax ginseng Anti-inflammatory, antibacterial, immunity-
improving

Antibiotics, drugs [27]

Corosolic acid Lagerstroemia speciosa Antioxidant, anti-inflammatory, antifungal, Medicines, health products [28]
β-carotene Medicago sativa Anticancer, anti-disease Pigment [6]
Lutein NuMex LotaLutein Antioxidant, photoprotective Dietary supplements, pigment [29]
Capsanthin Capsicum annuum Antioxidant, anticancer Nutrients, pigment [30]
Lycopene Amaranthus

gangeticus
Anti-inflammatory, antioxidant, anticancer Food additive, jelly [31]

phenylpropanoids Eugenol Eugenia caryophyllata Antimicrobial, antifungal Food preservative and colorant [32]
Umbelliferone Fruits, vegetables, and

plants
Antioxidant, anticancer Nutraceuticals, functional

foods, drugs
[33]

Ferulic acid Sorghum straw Antioxidant, antiviral, anticancer Beer production [34]
Chlorogenic acid Higher

dicotyledonous plants
and ferns

Antibacterial, anti-inflammatory, antiviral,
antioxidant

Feed additive [7]

Caffeic acid Plant-based
lignocelluloses

Antiviral, antioxidant, anti-inflammatory,
anticarcinogenic

Food, drugs [34]

Vanillin Vanilla planifolia Antioxidant, anti-inflammatory, antimicrobial Sweetener, food additive [35]
Rosmarinic acid Perilla frutescens Anti-inflammatory, antioxidant, antibacterial Food flavoring, and

preservative
[8]

Polysaccharides Lentinan Lentinus edodes Antitumor, immune potentiating Food supplement, biological
response modifier

[36]

Lycium barbarum
polysaccharide

Lycium barbarum Antioxidant, anti-fatigue, anti-diabetic,
neuroprotection

Food, medicine, dietary
supplements

[37]

Ganoderma lucidum
polysaccharide

Ganoderma lucidum Antitumor, anti-inflammatory,
immunomodulatory, antioxidant

Functional foods, and
pharmaceuticals

[38]

Longan
polysaccharide

Dimocarpus longan Antioxidant, anticancer, immunomodulatory,
hypoglycemic, antibacterial

Herbs, foods [39]

Pumpkin
polysaccharide

Pumpkin Antidiabetic, antioxidant, anticancer,
immunomodulation,antibacterial

Foods, Chinese medicine [40]

Tea polysaccharide Tea Antioxidant, anti-cancer, anti-inflammatory,
immunomodulatory,

Beverages [41]
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crucial  step  for  enhancing  terpene  synthesis  efficiency.  Lu  et  al.[50]

screened  various HMGCRs from  different  sources  and  achieved  a
production of 4.94 g/L of squalene using the most active truncated
form, E.  faecalis mvaE,  in  combination  with  cofactor  engineering.
Ye  et  al.[51] synthesized β-elemene  in  the  unconventional  microbe
Ogataea  polymorpha by  transforming HMGCR into  its  more  stable
truncated form within the cytoplasm,  regulating its  overexpression
with  a  strong  constitutive  promoter,  which  resulted  in  a  slight
increase  in  yield.  In  the  MEP  pathway,  the  enzymes DXS and DXR
play crucial  roles  as  branching points  in  carbon flow,  making them
important  targets  for  regulation,  particularly DXS. DXS is  a  thiamin
diphosphate  (ThDP)-dependent  enzyme,  and  IDP  has  similar  polar
interactions  with  ThDP,  allowing  it  to  bind  to DXS.  Site-specific
mutation  and  overexpression  of  the Populus  trichocarpa DXS gene
led  to  selective  binding  of  ThDP  and  IDP,  effectively  regulating
feedback  inhibition  of DXS and  increasing  its  catalytic  activity[52].

Overexpression  of  the DXS and DXR genes  from Bacillus  subtilis in
E.  coli resulted  in  approximately  a  two-fold  increase  in  isoprene
production[53].  In  cyanobacteria  cell  factories, DXS regulation  simi-
larly  controls  carbon  flux  in  the  MEP  pathway.  Kudoh  et  al.[54]

utilized the psbA2 promoter to introduce an additional copy of the
DXS gene, leading to a 1.5-fold increase in β-carotene production in
the improved strain.

After  the  synthesis  of  the  basic  building  blocks  IPP  and  DMAPP,
their  balanced  expression  becomes  another  critical  factor
influencing  terpenoid  biosynthesis.  Following  the  modification  of
HMGCR,  researchers  also overexpressed the isomerization gene IDI,
which  catalyzes  the  interconversion  of  IPP  and  DMAPP,  leading  to
a  significant  increase  in β-elemene  production[51].  When IDI
was further  overexpressed under  the control  of  a  strong promoter,
β-carotene  production  in  modified  E.  coli  increased  by  1.4-fold[55].
Chen  et  al.[56] employed  error-prone  PCR  and  site-directed
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saturation  mutagenesis  to  evolve IDI,  resulting  in  three  mutant
strains  with  significantly  enhanced  activity.  This  led  to  a  1.8-fold
increase in lycopene production,  reaching 1.2 g/L compared to the
wild  type.  Additionally,  three  types  of  isoprenyltransferases—GPPS,
FPPS, and GGPPS—catalyze the head-to-tail condensation of IPP and
DMAPP,  leading  to  the  elongation  of  the  C5  carbon  chain  and  the
subsequent  synthesis  of  various  terpenoids.  Xie  et  al.[57] improved
the  expression  of  GGPPS  (CrtE)  through  directed  evolution,  which
increased lycopene production in S.  cerevisiae by  2.2-fold,  reaching
9.67  mg/g  DCW.  Chen  et  al.[58] further  explored  and  compared  the
catalytic  properties  of GGPPS enzymes  from different  sources  (CrtE,
CrtI, and CrtB), optimizing their expression levels in combination.

Carvacrol  and  thymol  are  two  common  monoterpenoids  widely
found  in  plants  such  as Origanum  compactum and Thymus
pectinatus[18,21].  They are often used as flavoring agents in the food
industry due to their distinctive odors, and they also exhibit antimi-
crobial  properties.  Poultry  patties  containing  carvacrol  and  thymol
showed  a  reduction  in  the  number  of  viable  bacteria  after  7  d  of
storage at different temperatures, with more pronounced inhibition
at lower temperatures[59]. Similarly, Shemesh et al.[60] used halloysite
nanotubes  encapsulated  with  carvacrol  in  an  active  antimicrobial
packaging system, demonstrating antifungal efficacy against a wide
range of fungi, and slowing the spoilage of raw fruits such as cherry
tomatoes,  lychees,  and  table  grapes.  Terpenoids  also  play  a  role  in
neuroprotection.  Nerolidol,  a  sesquiterpenoid  commonly  found  in
Citrus  sinensis,  has  a  rose  or  orange  blossom  aroma  and  is  used  in
cosmetics  and  detergents.  It  is  approved  as  a  safe  food  flavoring
agent  by  the  US  Food  and  Drug  Administration[23].  In  terms  of
biological activity, Iqubal et al.[61] monitored neurotransmitter levels
in  a  mouse  model  of  cyclophosphamide-induced  neuroinflamma-
tion,  administering  nerolidol  via  a  nanolipid  carrier.  The  treatment
significantly  reduced  the  levels  of  neurotransmitters  such  as
dopamine, serotonin, and acetylcholinesterase in the head, demon-
strating significant neuroprotective effects.

 Phenylpropanoids
Phenolic  compounds with a  natural  composition containing one

or  more  benzene  rings  linked  by  three-carbon  chains,  known  as
phenylpropanoids,  are  widely  found  in  fruits,  vegetables,  tea,  and
other  plants.  These  compounds  exhibit  various  physiological  func-
tions,  including  antioxidant,  anti-inflammatory,  antibacterial,  and
neuroprotective  properties[62].  Due  to  their  antioxidant  properties
and  ability  to  protect  against  ultraviolet  radiation,  phenyl-
propanoids  are  commonly  used  as  ingredients  in  cosmetics.  For
example,  resveratrol  has been shown to provide significant protec-
tive  and  antioxidant  effects  against  cellular  oxidative  stress  caused
by  diabetes[63].  Salidroside,  besides  being  used  in  traditional
medicine, can also serve as a supplement in fish farming to promote
healthy fish reproduction[64].

The  synthesis  of  phenylpropanoids  originates  from  the  shikimic
acid  pathway,  a  secondary  metabolic  process  unique  to  plants.  In
this  pathway,  shikimic  acid  is  converted  into  aromatic  amino  acids
through  reactions  like  deamination,  hydroxylation,  and  coupling.
Phenylalanine aminolyase (PAL) is a crucial bridge between primary
and  secondary  metabolism  in  plants  and  plays  a  significant  role
during  plant  growth  and  development.  Overexpression  of  the
endogenous PAL gene in sweet potato stimulated secondary xylem
cell  growth  and  increased  chlorogenic  acid  accumulation  in  the
leaves[65]. C4H was the first plant CYP450 enzyme identified, and it is
highly  active  in  various  plant  tissues.  During  the  irreversible  reac-
tion catalyzed by C4H, the redox chaperone CPR is needed to supply
electrons, facilitating the conversion of cinnamic acid to p-coumaric

acid.  In  the  subsequent  synthesis  step,  using  cinnamic  acid  as  a
substrate,  competition  may  arise  between C4H and  4-coumarate:
coenzyme A ligase (4CL) enzymes. Karlson et al.[66] silenced the C4H
gene  in  tobacco  cells  using  the  CRISPRi  system,  which  not  only
upregulated the expression of 4CL but also redirected metabolic flux
toward  the  cinnamate  glucosyltransferase  (UGCT)  pathway.  This
shift improved chlorogenic acid production by converting cinnamic
acid  to  cinnamoyl  D-glucose.  Among  the  many  enzymes  involved,
4CL is central to various branches of the phenylpropanoid metabolic
pathway  and  exhibits  high  substrate  specificity.  In Arabidopsis
thaliana, the isoenzymes encoded by At4CL1 and At4CL2 are closely
related  to  lignin  monomer  synthesis[67],  while At4CL3 activates  p-
coumaric  acid  as  a  substrate  for  chalcone  synthase,  which  is
involved  in  flavonoid  biosynthesis.  The  effect  of 4CL activity  on
lignin  accumulation  was  investigated  in Ganoderma  lucidum using
RNAi  interference  and  overexpression  experiments.  The  results
showed  a  positive  correlation  between 4CL enzyme  activity  and
lignin  production,  which  is  essential  for  the  structure  of G.  lucidum
cell  walls  and  substrate  formation[68].  Xiong  et  al.[69] constructed  a
mutant  library  of 4CL enzymes  and  used  a  specific  resveratrol
biosensor  to  screen  for 4CL variants  with  high  yields,  achieving  a
4.7-fold increase in resveratrol production.

The  subsequent  synthesis  pathways  of  phenylpropanoid
compounds  vary,  and  the  synthesis  pathways  of  common  phenyl-
propanoids  are  illustrated  in Fig.  3.  Chlorogenic  acid,  for  instance,
is  a  natural  phenylpropanoid  widely  found  in  plant-derived  foods,
and  is  known  for  its  numerous  health  benefits.  However,  the
concentration of chlorogenic acid in plants is typically low, making it
important  to  regulate  its  synthesis  effectively.  Hydroxycinnamoyl
transferase (HCT) is a versatile acyltransferase, in addition to being a
key  enzyme in  chlorogenic  acid  synthesis, HCT is  involved in  lignin
monomer  biosynthesis.  Su  et  al.[70] conducted  a  metabolomic  and
transcriptomic  analysis  of  over  200  mature  peach  cultivars  and
found  a  positive  correlation  between HCT expression  levels  and
chlorogenic acid content.  Another enzyme, hydroxycinnamate-CoA
quinate  hydroxycinnamoyl  transferase  (HQT),  which belongs to  the
same  family  of  transferases  as HCT,  significantly  increased  chloro-
genic acid levels in tobacco leaves when HQT were overexpressed in
Globe artichoke. Conversely, down-regulation of HQT1 resulted in a
reduction in chlorogenic acid production, highlighting the key regu-
latory  role  of HQT[71].  In  addition  to  structural  genes,  various  tran-
scription  factors,  such  as  WRKY,  MYB,  and  bHLH,  play  significant
roles in regulating chlorogenic acid synthesis.  For example, overex-
pression  of  the  TaWRKY14  transcription  factor  from Taraxacum
antungense led  to  transgenic  lines  with  increased  chlorogenic  acid
content  and  higher  expression  of TaPAL1.  This  interaction  was
confirmed  through  a  yeast  one-hybrid  assay,  which  demonstrated
that TaWRKY14 binds  to  the  W-box  element  of  the TaPAL1
promoter[72].  In  contrast,  Zha  et  al.[73] found  that  overexpression  of
LjbZIP8,  a  transcription  factor  from Lonicera  japonica,  in  transgenic
tobacco  suppressed  the  expression  of PAL,  resulting  in  reduced
levels  of  neochlorogenic  acid,  chlorogenic  acid,  and  cryptochloro-
genic  acid.  This  suggests  that  different  transcription  factors  have
distinct roles in regulating chlorogenic acid synthesis across various
plants,  and  further  analysis  is  needed  to  fully  understand  these
specific regulatory mechanisms.

Phenylpropanoids are well known for their antioxidant capacity, a
common  biological  activity  shared  by  many  compounds  in  this
group.  Vanillin,  a  natural  sweetener  widely  used  in  desserts  and
beverages, has strong antimicrobial properties, making it useful as a
food  preservative.  It  can  even  be  incorporated  into  active  packag-
ing  films  to  extend  the  shelf  life  of  various  foods,  including  fresh
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fruits and vegetables,  frozen meats,  and pasta[35].  Chlorogenic acid,
a yellowish compound, can be prepared as a green or red pigment
by reacting with different  amino acids,  making it  a  potent colorant
in  food matrices.  Beyond its  color  properties,  chlorogenic  acid  also
exhibits strong antioxidant activity. For example, it slows the degra-
dation  of  anthocyanins  in  blackberry  juice  through  a  co-pigmenta-
tion mechanism, allowing the juice to be stored at 4°C for 90 d when
protected  from  light[74],  making  it  an  excellent  food  additive.  Song
et  al.[7] assessed  the  free  radical  scavenging  ability  and  iron  ion
reduction capacity of chlorogenic acid and its isomers in vitro, all of
which showed varying degrees of antioxidant activity. Furthermore,
animal  cell  experiments  revealed  that  adding  chlorogenic  acid
significantly reduced oxidative stress damage in broilers, improving
their  production  performance. Gastrodia  elata Blume,  a  traditional
medicinal  herb,  is  used  in  health  foods,  and  gastrodin  is  one  of
its  active  ingredients.  Wang  et  al.[75] demonstrated  the  anti-
inflammatory  effects  of  gastrodin  in  a  mouse  model  of  atopic
dermatitis.  Gastrodin reduced microglial activity by modulating the
TLR4/TRAF6/NF-κB pathway in BV-2 cells.

 Polysaccharides
Polysaccharides are a class of macromolecular compounds found

widely  in  nature,  consisting  of  monosaccharides  linked  by  glyco-
sidic  bonds.  In  mushrooms,  polysaccharides  are  the  most  active
components,  and exhibit  various  physiological  functions,  including
anticancer,  anti-inflammatory,  and  antiviral  properties.  Notable
examples  include  lentinan  and  ganoderma  lucidum  polysaccha-
rides,  which  have  shown  remarkable  efficacy.  Fruits  are  also  rich
sources  of  polysaccharides,  such  as  longan  and  pomegranate

polysaccharides,  which  possess  natural  antioxidant  and  anti-
inflammatory  activities.  These  polysaccharides  are  often  added  to
nutritional health products as functional ingredients[39,76].

Polysaccharides  exhibit  diverse  biochemical  structures,  with
around  40–50  types  of  monosaccharides  serving  as  their  building
blocks.  In  plants,  polysaccharide  synthesis  begins  with  sucrose,
produced via photosynthesis,  which is  converted into UDP-glucose
through three pathways (Fig. 4). The first involves the direct genera-
tion of  UDP-glucose via the action of  the enzyme sucrose synthase
(SUS).  The  second  and  third  pathways  are  catalyzed  by  invertase
(INV),  where  sucrose  is  broken  down  into  glucose  and  fructose.
These  are  then  converted  into  their  hexose  phosphate  forms  (G6P
and  F6P)  through  hexokinase  (HK)  activity.  F6P  can  be  further
converted  into  G6P,  and  together  they  are  transformed  into  G1P
with  the  involvement  of  phosphoglucomutase  (PGM),  ultimately
forming  UDP-glucose  through  UDP-glucose  pyrophosphorylase
(UDPase).  In  the  UDP-arabinose  synthesis  pathway,  UDP-glucose  is
catalyzed into UDP-glucuronic acid by UDP-glucose dehydrogenase
(UGDH).  This  intermediate  can  be  used  to  synthesize  UDP-xylose
through  UDP-glucuronic  acid  decarboxylase  (UXS)  or  be  further
converted to  UDP-apiose  by  UDP-D-xylose  synthase  (AXS),  expand-
ing the diversity of polysaccharide synthesis.  After the formation of
various UDP- and GDP-monosaccharides, these units are transferred
to the growing polysaccharide chain through the action of glycosyl-
transferases (GTs),  where they undergo dehydration and condensa-
tion, resulting in polysaccharide formation.

The  enzymes  involved  in  polysaccharide  synthesis  are  primarily
categorized  into  three  groups:  synthetases,  isomerases,  and  trans-
ferases.  Among  these,  sucrose  phosphate  synthase  (SPS)  is
recognized  as  the  key  rate-limiting  enzyme  in  the  polysaccharide
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synthesis  pathway. SPS catalyzes  the  formation  of  sucrose  6-
phosphate, which subsequently leads to the production of sucrose.
Seger et al.[77] demonstrated that overexpression of the SPS enzyme

from  corn  in  tobacco  resulted  in  a  significant  increase  in  sucrose
accumulation,  which  in  turn  promoted  plant  growth  and  develop-
ment.  Cyanobacteria,  as  photosynthetic  organisms,  can  rapidly
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isomerase; PMM:  phosphomannose  isomerase; GMPP:  GDP-mannose  pyrophosphorylase; GMD:  GDP-D-mannose-4,6-dehydratase; GER1:  GDP-4-keto-6-
deoxy-D-mannose-3,5-epimerase-4-reductase; GT: glycosyltransferase.
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accumulate  sucrose  under  salt  stress.  In  an  engineered  strain  of
Cyanobacteria,  the  co-overexpression  of SPS,  sucrose  phosphate
phosphatase  (SPP),  and  UDP-glucose  pyrophosphorylase  (UGP)
doubled  the  sucrose  production[78]. UGPase is  a  critical  enzyme  in
glucose  metabolism  across  plants,  animals,  and  fungi.  It  catalyzes
the  reaction  between  glucose  1-phosphate  and  uridine  triphos-
phate  (UTP)  to  form  UDP-glucose  and  pyrophosphate,  a  key
precursor  in  the  synthesis  of  many  polysaccharides.  Peng  et  al.[79]

investigated the synthesis of exopolysaccharides in G. lucidum using
various medium components.  They found that in cells  synthesizing
higher  amounts  of G.  lucidum exopolysaccharides,  the  expression
levels of key enzymes involved in the synthesis process were signifi-
cantly elevated. Not only were the PGM and PGI genes that catalyze
galactose  and  mannose  upregulated,  but  the UGPase activity  was
also  markedly  enhanced  compared  to  the  control  group.  This
demonstrates a strong correlation between mycelial polysaccharide
content and the activity of key genes involved in the synthesis path-
way,  such  as PGM, UGPase,  and PGI.  Similarly,  in  the  synthesis  of
Lentinus  edodes polysaccharides,  the  addition  of  sodium  and
calcium ions enhanced polysaccharide content by upregulating the
expression of PGM, UGPase,  and PGI[80].  Additionally, GTs are essen-
tial  enzymes  that  catalyze  the  assembly  of  repeating  monosaccha-
ride  units  and  the  formation  of  glycosidic  bonds.  During  the
synthesis of G. lucidum polysaccharides, the overexpression of α-1,3-
glucosyltransferase has been shown to regulate sugar donor synthe-
sis, thereby increasing polysaccharide yield[81].

Polysaccharides,  abundant  in  nature  and  both  non-toxic  and
harmless, have a wide range of applications in the food industry, like
jelly,  jam, and yogurt.  Due to their  biodegradability and renewabil-
ity,  polysaccharides  are  also  excellent  candidates  for  use  in  food
packaging.  They  can  encapsulate  target  products  when  combined
with nanomaterials,  gels,  or films.  Furthermore,  the rich physiologi-
cal  activity  of  polysaccharides  allows  them  to  serve  as  functional
ingredients in nutraceuticals. For instance, Athmouni et al.[82] discov-
ered that Periploca angustifolia polysaccharides reduce the produc-
tion of reactive oxygen species by chelating cadmium ions, thereby
protecting  HepG2  cells  from  cadmium  chloride-induced  damage.
Similarly,  You  et  al.[83] isolated  three  polysaccharide  components
from  edible  fungi,  which  exhibited  potent  antioxidant  activity  by
scavenging DPPH and hydroxyl radicals. In addition to their antioxi-
dant  properties,  polysaccharides  from Poria  cocos have
immunomodulatory effects. Pu et al.[84] found that P. cocos polysac-
charides  modulate  the  immune  response  by  elevating  calcium  ion
levels  in  macrophages,  promoting  the  release  of  pro-inflammatory
cytokines such as NO, TNF-α, and IL-1β.

 Challenges and opportunities
Currently,  the  production  of  corresponding  plant  natural  prod-

ucts  by  introducing  natural  synthetic  pathways  into  microorgan-
isms represents a relatively advanced trend, though it remains in its
developmental  stage.  After  achieving  the  production  target,  the
biosafety and practical application of the recombinant products are
rarely  described.  These  involve  multidisciplinary  comprehensive
consideration, but also face challenges in various aspects.

 Mining of key regulatory elements
The  synthesis  of  plant-derived  natural  products  is  inseparable

from special bioparts, but resources with known functions and avail-
ability  for  genetic  modification  are  very  limited.  In  addition  to
promoters  and  terminators  that  regulate  gene  expression  during

fermentation,  CYP450 enzymes play a crucial  role in the biosynthe-
sis  of  secondary  metabolites.  However,  there  has  been  limited
research on the crystal structure analysis of plant CYP450 enzymes.
Since  the  functional  activity  and  catalytic  mechanisms  of  CYP450
enzymes  are  closely  tied  to  their  crystal  structures,  HMMTOP  and
TMHMM  can  be  used  to  predict  transmembrane  regions  and
hydrophobicity  to  achieve  soluble  expression  of  target  genes.
Subsequently,  secondary  and  tertiary  structure  modeling  of  the
target  enzyme  is  performed  using  computational  tools  such  as
AlphaFold,  PSIPRED,  and  SWISS-MODEL,  thereby  obtaining  a
complete protein structural model. If possible, a database summary
was  established  to  compare  and  analogize  with  the  similar  struc-
tures from various angles, thus laying the foundation for the molec-
ular  modification and functional  expression of  CYP450 enzymes.  In
the  heterologous  production  of  plant-derived  natural  products,
expressing  plant  CYP450  enzymes  in  bacterial  hosts  presents  chal-
lenges, due to the absence of essential redox partners and electron
transfer organelles in bacteria. Addressing this issue will require the
development  of  new  protein  structure  prediction  tools,  as  well  as
the  integration  of  bioinformatics  approaches  to  expand  the  crystal
structure  analysis  of  plant  CYP450  enzymes  and  other  key  biosyn-
thetic  enzymes.  By  clarifying  the  structure-activity  relationships  of
these  enzymes,  researchers  can  tackle  the  electron  transfer  limita-
tions  in  bacterial  hosts.  This  remains  a  key  challenge  for  future
research in the field.

 Optimization of cell factory performance
In  addition  to  the  modifications  made  around  key  enzymes,  the

optimization  of  microbial  cell  factory  performance  is  also  an  angle
that  cannot  be  ignored.  There  are  many  important  organelles  in
cells;  by  regulating  and  fully  utilizing  their  space,  it  is  possible  to
effectively  mitigate  spatial  effects  between  proteins.  This  compart-
mentalization strategy—one that involves localizing related biologi-
cal  components  to  specific  organelles—is  increasingly  being
adopted.  Thodey  et  al.[85] anchored  codeinone  reductase,  a  key
gene  for  morphine  synthesis,  to  the  endoplasmic  reticulum  via  a
localization peptide, which not only increased the rate of morphine
production,  but  also decreased the synthesis  of  by-products.  While
there are advantages to this strategy in terms of increased synthesis
efficiency  as  well  as  product  stability,  it  may  also  lead  to  a  more
complex distribution of products inside the cell, which increases the
difficulty of products that accumulate inside the cell  for substances
with  longer  synthetic  paths.  Similarly,  the  targeted  modification  of
cell  factories  cannot  be  achieved  without  efficient  gene  editing
techniques.  By  removing  some  of  the  unnecessary  internal
metabolic pathways, it is possible to provide more energy for strain
production,  or  more  binding  space  for  the  target  enzyme  to  func-
tion.  Arendt  et  al.[86] used  CRISPR/Cas9  method  to  knockout  phos-
phatidic  acid  phosphatase-encoding PAH1 gene  in S.  cerevisiae,
which expanded the space of endoplasmic reticulum and increased
the production titers of various terpenoids.  This may be due to the
fact  that  CYP450  enzymes  located  in  the  endoplasmic  reticulum
have more room to attach.

In addition to exogenous means,  it  is  also crucial  to improve the
toxicity  tolerance  of  the  microbial  cell  factory  itself.  Differences  in
the  metabolic  fitness  of  many  plant-derived  natural  products  and
microorganisms may result  in cell  growth restriction.  In addition to
the currently commonly used cell  factories,  mining and developing
more  tolerant  microbial  cell  chassis  can  alleviate  the  toxicity  of
the  accumulation  of  intermediary  products  to  the  cells  on  the  one
hand, and on the other hand, it also has a certain benefit to the cell's
ability  to  resist  contamination,  especially  the  synthesis  of  products
with longer pathways.
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 Industrial large-scale production
After  the  optimal  performance  of  the  recombinant  microorgan-

ism is constructed in the laboratory, it may produce different effects
from  shake  flask  to  large-scale  production  fermenter.  Due  to  the
larger  volume  of  industrial  fermenters,  the  precise  control  over
conditions such as temperature, dissolved oxygen, and pH is some-
what  reduced.  For  microbial  cells,  the  shear  forces  generated  by
faster  stirring  rates  and  excessively  high  concentrations  of
substrates or products may also inhibit the strains. These variations
result  in  certain  differences  between  fermenters  and  shake  flask
culture  systems in  growth and production performance.  Therefore,
further  condition  optimization  may  be  needed[87].  During  the
synthesis of hispidin,  the addition of the precursor caffeic acid trig-
gers a sudden pH shift.  In shake flasks,  pH stabilization relies solely
on the medium's inherent buffering capacity. However, real-time pH
sensors installed in the fermenter enable precise pH control, thereby
preventing  damage  to  enzyme  activity[88].  To  obtain  a  sufficient
number  of  organisms  and  maintain  the  continuity  of  production,
strains  in  industrial  production  may  undergo  multiple  generations,
which poses a risk to the production performance of the strain and
even  to  the  integrity  of  the  genes  carried.  Therefore,  before  large-
scale production, the researchers can conduct a medium-sized pilot
experiment;  at  the  same  time,  the  more  suitable  directional  evolu-
tion of strains for industrial production can appropriately reduce the
risk and cost loss of large-scale production. Researchers utilized the
synergistic  effect  of  air  aeration,  stirring,  and  vegetable  oil  as  the
oxygen  carrier  in  a  5  L  fermenter  to  precisely  regulate  dissolved
oxygen  levels,  optimizing  the  metabolic  flow  of  the  strain  in  a
targeted manner. Ultimately, this resulted in a 34.3% increase in the
total  triterpenoid  yield  of Sanghuangporus  vaninii YC-1[89].  In  addi-
tion,  advanced bioreactor  designs should also be updated to facili-
tate more stable control of production conditions.

 Biosafety and application of recombinant
products

In  recent  years,  the  microbial  synthesis  of  plant-derived  natural
products  has  gained  momentum.  However,  the  practical  applica-
tions  of  these  microbially  synthesized  products  remain  underex-
plored.  For  instance,  Denby  et  al.[90] constructed  a  synthetic
pathway  in S.  cerevisiae for  producing  linalool  and  geraniol,  which
are key contributors to the 'hoppy' flavor and aroma in beer. To test
its  feasibility,  the  engineered  yeast  strain  was  used  in  large-scale
brewery  production,  and  sensory  evaluations  revealed  that  the
flavor and fragrance it  produced were superior to those from tradi-
tional  Cascade  hop  preparations.  Due  to  the  lack  of  guarantee  of
biosafety  of  the  strain,  its  application  in  industrial  production  is
limited.  Self-cloning  technology  is  a  genetic  improvement  method
of yeast without introducing any exogenous DNA, and its biosafety
can be directly applied to the food industry. By constructing the self-
cloning  module  of S.  cerevisiae,  the  alcohol  dehydrogenase  II  gene
locus  was  damaged,  and  the GSH1 and CUP1 gene  were  overex-
pressed,  which  significantly  reduced  the  acetaldehyde  level  and
inhibited  beer  aging.  Sensory  evaluation  also  confirmed  that  the
recombinant brewed beer was more palatable[91]. The edible nature
of  yeast  simplifies  the  practical  application  of  microbial  recombi-
nant products in such cases. However, significant challenges remain,
particularly  in  the  purification  and  safety  of  recombinant  products.
For  example,  in  the  production  of  anthocyanins,  a  water-soluble
natural  pigment,  there  is  a  lack  of  effective  separation  and  extrac-
tion  methods  for  this  substance.  Furthermore,  the  use  of  antho-
cyanins as food colorants raises additional concerns related to food
safety, thus restricting their broader application. Future approaches

may  focus  on  strategies  such  as  encapsulation  or  stacking
complexes  to  assist  in  the  separation  of  water-soluble  compounds
like anthocyanins.

Additionally,  horizontal  gene  transfer  may  occur  in  modified
microorganisms carrying exogenous genes. Thorough activity evalu-
ations  and  clinical  safety  tests  of  these  synthetic  products  will  be
essential to ensure their practical applications in food, nutrition, and
health care products. On the regulatory side, it is crucial to establish
comprehensive  and  stringent  standards  for  the  market  entry  of
recombinant  products.  Such  as  the  safety  and  sustainability  of  the
microorganisms  themselves,  the  impact  of  by-product  and  waste
post-treatment  on  the  ecology,  and  whether  the  destination  after
entering  the  market  and  the  health  status  of  users  are  within  the
ideal  range,  and  so  on.  This  will  not  only  streamline  the  approval
process but also help researchers design microbial cell factories that
align with regulatory requirements.

 Summary
Plant-derived  natural  products  hold  immense  potential,  with

many anticancer and antitumor drugs derived from specific natural
compounds. Due to problems such as growth restrictions,  resource
consumption, and environmental pollution, relying on direct extrac-
tion  from  plants  or  chemical  synthesis  is  limited.  The  rapid  growth
and  controlled  reaction  conditions  of  microorganisms  make  it  the
most potential plant-derived natural products replacement produc-
tion plant.

Research  into  the  mechanisms  underlying  the  activity  of  natural
products spans multiple fields. At the molecular biology level, alter-
ations in gene or protein expression related to cell cycle regulation,
or  signaling  pathways  can  be  investigated  using  transcriptomics,
real-time  quantitative  PCR,  and  mass  spectrometry.  From  a  cellular
perspective,  techniques  such  as  Western  blotting  and  enzyme-
linked  immunosorbent  assay  (ELISA)  are  employed  to  detect
changes in activity, or expression of key molecules involved in cellu-
lar  signaling  pathways.  On  the  biochemical  level,  targeted,  and
untargeted metabolomics analyses are used to reveal the effects of
natural  products  on  metabolic  regulation  within  organisms.  It  is
believed  that  in  the  future,  through  continued  research  on  modi-
fied bioparts and biotechnology, improving the corresponding laws
and regulations,  it  can further enhance the practicality of microbial
cell  factories,  and  is  of  great  significance  to  reduce  environmental
pollution, improve production efficiency, and even improve human
health.
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