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Abstract
We investigated changes in the microbiota composition on the surface of pig carcasses during refrigerated transportation of different distances

(200, 300, 400, 500 km) and further transferring to the market place. Microbial samples were obtained by sterile swabs at the starting point, the

end points  of  transportation and the market  points.  Core temperature of  pig carcasses,  temperature and air  humidity in refrigerated vehicles

were also tracked. The air temperature and humidity in the refrigerated vehicles remained relatively constant during transportation. However, the

air temperature and carcass temperature at the end points of transportation were the highest for the 500 km group and the lowest for the 400 km

group (P < 0.05), while the air humidity was the highest for the 200 km group and the lowest for the 400 km group (P < 0.05). Microbial colony

counts showed a slight increase during transportation and differed among five sampling points on the surface of pork carcasses with the highest

for the outside of the shoulder and the lowest for the inside of the belly (P < 0.05). Microbiota composition changed greatly and Acinetobacter,
Pseudomonas, Psychrobacter,  Chryseobacterium, Staphylococcus, Brochothrix, Morexella,  and Flavobacterium were  the  predominant  genera.

Pseudomonas was the most predominant during transportation.
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INTRODUCTION

In  recent  years,  great  attention  has  been  paid  by  consu-
mers to meat safety[1,2]. In some countries, a high rate of patho-
gens can be detected in fresh meat or carcasses, especially of
Staphylococcus, Salmonella, Shigella, Enterococci, Escherichia,
Acinetobacter and Corynebacteriwn  spp. on  pork  carcasses  or
cuts[3−7], Clostridium, Brochothrix  thermosphacta,  Lactic  acid
bacteria  and Pseudomonas  spp. on  beef  carcasses  and
primals[8].  It  has  been  of  great  concern  to  control  the  conta-
mination of spoilage and pathogenic microorganisms during
the whole chain of meat production.

Microbial  contamination  originates  in  farms  and  is  trans-
ferred from animals to carcasses in the slaughter process and
increases  in  meat  in  boning  rooms  and  sale  markets[4,9].
Slaughtering  procedures  have  been  shown  to  be  critical
points  for  the  microbial  contamination  of  carcasses,  particu-
larly  the  following  areas:  scalding  tank,  scraper,  dry  polisher
blades  band-saw  and  butcher's  hands  which  can  harbour
Enterobacteriaceae and Escherichia  coli populations[10,11].
Chilling and fabrication steps  also  give  higher  risk  to  carcass
contamination[12−14] due  to  high  air  contamination  from
workers  and  aerosol[15].  However,  postmortem  chilling  is  a
very  important  step  to  reduce  the  levels  of Listeria
monocytogenes and Salmonella  Typhimurium[16].  Cutting  and
deboning operations may introduce Pseudomonas spp. to the
surface  of  meat  cuts[17].  Microbial  contamination  varies  with
meat companies and packaging. Pseudomonas was dominant
in  wrapped  meat  but Brochothrix was  dominant  in  modified

atmosphere  packed  meat[18].  Microbial  contamination  also
shows  great  variations  among  different  parts  of  pig
carcasses[19].  Li  et  al.  found  that Pseudomonas  spp. and
Brochothrix  thermosphacta were  the  dominant  microorga-
nisms  in  tray-packed  pork  while Lactobacillus  spp. was
dominant  in  vacuum-packed  meat[20].  Jiang  et  al.  applied
PCR-DGGE  to  identify  eight  lactic  acid  bacteria  in  vacuum-
packaged  pork  during  storage,  three  of  which  (Carnobacte-
rium  divergens, Lactobacillus  sakei,  and Lactococcus  piscium)
were  dominant  at  the  end  of  storage[21].  In  fact,  transporta-
tion from the meat company to market is also very important
for  contamination  due  to  the  changes  in  environmental
temperature  and  humidity  and  human  handling  during
transfer. However, few data is available regarding this.

The  methodologies  for  the  study  of  microbial  changes
alongside  meat  production  are  important  to  realize  precise
control  of  microorganisms.  Traditional  culture-dependent
methods are good, but they provide very limited information
and  the  accuracy  may  be  affected  by  sampling  techni-
ques[22,23].  Ghafir and Daube found a lower recovery of E. coli
counts  (36%)  and  aerobic  plate  counts  (81%)  for  the
swabbing  method  compared  with  the  destructive  method,
but  no  significant  difference  existed  between  the  sampling
methods in the recovery of Salmonella or Campylobacter[24]. In
recent  years,  high  throughput  sequencing  methods  have
been  applied  to  check  microbial  changes  in  meat  during
storage  without  culture.  Zhao  et  al.  explored  changes  of
microbial composition in vacuum-packed chilled pork during
21  days  of  storage  using  metagenomic  sequencing,  and
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found  that  the  seventh  day  was  a  critical  time  point  for
microbial diversity[25].  Li et al.  investigated changes of micro-
bial populations during storage of unpacked chilled pork and
found that the diversity of microbiota decreased with storage
time[26].  Peruzy  et  al.  applied  16S  rRNA  gene  sequencing  to
characterize  the  microbial  composition  on  the  ham,  back,
jowl  and  belly  of  pork  carcasses,  and  they  found  that
Staphylococcus, Pseudomonas,  and Escherichia  coli were
dominant[27].  Such  methods  have  great  potential  for  the
analysis of microbial diversity and composition on meat.

In  this  study,  we  investigated  changes  in  the  microbiota
diversity and composition on pig carcasses during cold-chain
transportation  of  different  distances  (200,  300,  400,  and  500
km), and correlations among air temperature and humidity in
vehicles,  the  core  temperature  of  pig  carcasses  and  total
colony counts. 

MATERIALS AND METHODS
 

Measurement of temperature and humidity in cold-
chain vehicles

This  study  was  performed  in  summer.  One  hundred  pig
carcasses were hung in a cold-chain cabinet and transported
to 200, 300, 400, or 500 km destinations (ten vehicles for each
distance).  The  temperature  and  humidity  in  the  vehicle  was
measured  using  a  GPRS  remote  temperature  and  humidity
recorder  connected  with  four  temperature  probes  and  four
humidity probes (Renke,  Shandong, China).  The temperature
probes have a range from −40 to 80 °C with an accuracy of ±
0.3 °C. The humidity probes have a range from 0 to 100% with
an  accuracy  of  ±  2%.  The  temperature  and  humidity  data
were acquired during the whole transportation at intervals of
5 s. The probes were fixed at three different places under the
top  of  the  vehicle.  The  temperature  of  pig  carcasses  was
monitored by inserting a temperature logger (Yuanhengtong,
Shenzhen,  China)  into  the semimembranosus muscle,  which
has a range from −40 to 125 °C and an accuracy of 0.1 °C. 

Microbial colony counting on the surface of pig
carcasses

Samples for microbial colony counting were obtained from
five sites of the carcasses as shown in Fig.  1,  (inside the hind
leg,  outside  the  hind  leg,  abdominal  cavity,  inside  the
shoulder  and  outside  the  shoulder)  before  carcasses  were
loaded  onto  the  vehicle,  when  the  vehicle  arrived  at  the
transfer point, and at the market point. Sterile swabs contain-
ing  peptone  solution  (0.15%)  were  used  to  wipe  the  pig
carcass surface (100 cm2).  In each refrigerated vehicle for the
same  transportation  distance,  20  to  30  swab  samples  were
collected  at  each  sampling  site.  The  experiments  were
repeated  three  times.  Microorganisms  were  washed  from
swab samples in a stomacher (400, Seward, West Sussex, UK)
for  1  min.  Serial  dilutions  were  prepared  and  plated  onto
Plate  Count  Agar  (PCA,  Land  Bridge  Company,  China)  plates
to  determine  total  aerobic  plate  counts  (APC).  The  plates
were incubated for 48 h at 37 °C. The number of microbes was
expressed as log10 (counts). 

16S rRNA sequencing
Total  genome  DNA  was  extracted  from  the  above-

mentioned  swabbed  samples  using  the  CTAB/SDS  method.

The swabbing microorganisms on the surface of pig carcasses
were taken. Microbial DNA was extracted from samples using
an  EZNA  DNA  kit  (Omega  Bio-tek,  Norcross,  GA,  USA)
according to manufacturer's instructions. The V4-V5 region of
the  bacterial  16S  ribosomal  RNA  gene  was  amplified  by  PCR
(95 °C for 2 min, followed by 25 cycles at 95 °C for 30 s, 55 °C
for 30 s, 72 °C for 30 s, and a final extension at 72 °C for 5 min)
using  primers  515F:  5'-barcode-GTGCCAGCMGCCGCGG)-3'
and  806R:  5'-GGACTACHVGGGTWTCTAAT-3',  where  barcode
is  an  eight-base  sequence  unique  to  each  sample.  PCR
reactions  were  performed  in  triplicate  in  a  mixture  (20 µL)
containing 4 µL of 5 × FastPfu buffer,  2 µL of 2.5 mM dNTPs,
0.8 µL  of  each  primer  (5 µM),  0.4 µL  of  FastPfu  polymerase,
and 10 ng of  template DNA.  Amplicons were extracted from
2%  agarose  gels  and  purified  using  AxyPrep  DNA  gel
extraction  kit  (Axygen  Biosciences,  Union  City,  CA,  USA)
according to the manufacturer's instructions.

The  DNA  content  was  measured  using  a  Nano-drop1000
spectrophotometer  (Thermo  Fisher  Scientific,  Waltham,  MA,
USA).  The  16S  ribosomal  RNA  gene  was  amplified  using  the
primers:  515F  5'-GTGCCAGCMGCCGCGG-3′ and  806R  5'-GG
ACTACHVGGGTWTCTAAT-3′.  All  PCR  reactions  (30 µL)  were
carried out with 15 µL of Phusion high-fidelity PCR master mix
(New  England  Biolabs,  Ipswich,  MA,  USA),  0.2 µM  of  forward
and  reverse  primers,  and  10  ng  template  DNA.  Thermal
cycling  consisted  of  initial  denaturation  at  98  °C  for  1  min,
followed  by  30  cycles  of  denaturation  at  98  °C  for  10  s,
annealing  at  50  °C  for  30  s,  elongation  at  72  °C  for  60  s  and
maintenance  at  72  °C  for  5  min.  An  equal  volume  of  1X
loading buffer containing SYB green was mixed with the PCR
products.  The  samples  were  then  loaded  on  2%  agarose  gel
and  electrophoresis  was  performed.  Bands  with  400−450  bp
were  cut  for  further  analyses.  The  PCR  product  mixture  was
treated with the GeneJET gel extraction kit (Thermo Scientific,
Waltham,  MA,  USA).  Sequencing  libraries  were  generated
using NEB Next®Ultra™ DNA library Prep kit for Illumina (NEB,
Ipswich, MA, USA) following manufacturer's recommendations
and index codes were added. The library quality was assessed
on  the  Qubit@  2.0  Fluorometer  (Thermo  Scientific,  Waltham,
MA,  USA)  and  Agilent  Bioanalyzer  2100  system  (Santa  Clara,
CA,  USA).  Finally,  the  library  was  sequenced  on  an  Illumina

 
Fig. 1    A diagram of sampling sites for microbial counting.
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MiSeq platform (San Diego, CA, USA) and 250−300 bp paired-
end reads were generated.

Paired-end  reads  from  the  original  DNA  fragments  were
merged  using  FLASH  (http://ccb.jhu.edu/software/FLASH/),
which was designed to merge paired-end reads when at least
some  of  the  reads  overlap  the  reads  generated  from  the
opposite  end  of  the  same  DNA  fragments.  Paired-end  reads
was  assigned  to  each  sample  according  to  the  unique
barcodes.  Sequence  analysis  was  performed  by  UPARSE
software package using the UPARSE algorithms. In-house Perl
scripts  were  used  to  analyze  alpha  (intra-samples)  and  beta
(inter-samples)  diversities.  Sequences  with  ≥ 97%  similarity
were  assigned  to  the  same  OTUs.  Representative  sequences
for each OTU were picked and the RDP classifier was used to
annotate  taxonomic  information  for  each  sequence.  Alpha
diversity  was  evaluated  by  community  richness  (rarefaction
curves,  Chao1  and  ACE  indices)  and  diversity  (Shannon
index).  Cladograms  were  applied  to  visualize  the  relative
abundance of bacterial diversity from phylum to species. The
beta diversity was evaluated by unweighted unifrac distance
for principal coordinate analysis (PCoA) and unweighted pair
group  method  with  arithmetic  mean  (UPGMA)  clustering
under the QIIME software package.

Metastats  software  was  utilized  to  identify  differences  in
the  abundances  of  individual  taxonomy  between  the  two
groups  and  LEfSe  was  used  for  the  quantitative  analysis  of
biomarkers within different groups. 

Statistical analyses
Effects  of  transportation  distance  on  the  temperature  and

humidity  of  the  vehicles,  carcass  temperature  and  total
colony  count  on  the  carcass  surface  were  evaluated  by  a
multiple  analysis  of  variance.  Means  were  compared  by
Tukey's t test and the difference was considered significant if
the  P  value  was  smaller  than  0.05.  Pearson's  correlation
coefficients  were  calculated.  The  analyses  were  performed
under the SAS 8.1 software (SAS Institute, Cary, NC, USA), and
the  images  were  prepared  by  the  GraphPad  Prism  8
(GraphPad  Software,  La  Jolla,  USA).  Principal  component
analysis  was  performed  to  identify  the  differences  among
samples  and  associations  among  measured  variables  using
the SIMCA 14.1 software (Sartorius, Göttingen, Germany). 

RESULTS
 

Changes of temperature and humidity in refrigerated
vehicles and carcass temperature

Although the air temperature was high in summer (29.46 ±
3.85  °C),  the  temperature  and  humidity  in  the  refrigerated
vehicles  remained  relatively  constant  during  the  pig  carcass
transportation to 200, 300, 400 and 500 km (Fig. 2a & b). The
values  at  the  end  points  of  transportation  were  significantly
different with the temperature being the greatest for the 500
km  group  but  the  smallest  for  the  400  km  group  (3.62  ±
0.21 °C vs. 3.34 ± 0.21 °C, P < 0.05, Table 1), while the humidity
was  the  greatest  for  the  200  km  group  and  the  smallest  for
the 400 km group (91.10 ± 9.87% vs. 83.73 ± 5.26%, P < 0.05,
Table 1).

The carcass temperature showed similar changes to the air
temperature  in  refrigerated  vehicles  (Fig.  2c).  At  the  end
points,  the carcass  temperature was the greatest  for  the 500

km group but the smallest for the 400 km group (3.25 ± 0.35 °C
vs. 2.70 ± 0.43 °C, P < 0.05, Table 1). 

Changes of microbial colony counts on the surface of
pig carcasses

At the starting point of transportation,  the average colony
forming  count  per  square  millimeters  (CFU/cm2)  on  the
surface of pig carcasses was 1.48 ± 0.19. The values were the
greatest  on the outside of  the shoulder  of  pig  carcasses  and
the smallest  on the inside of  the belly  (P <  0.05, Fig.  3a),  but
there was no significant difference in microbial colony count
among other sampling sites (P > 0.05, Fig. 3a).

a

b

c

 
Fig.  2    Changes  in  vehicle  temperature  and  humidity  and
carcass  temperature  during  transportation.  (a)  Vehicle
temperature, (b) vehicle humidity, (c) carcass temperature.
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At  the  end  points  of  transportation,  the  sampling  sites
showed significant difference between the inside of the belly
and  the  outside  of  the  shoulder  when  the  carcasses  were
transported  to  200  and  400  km  (P <  0.05, Fig.  3c & e).  The
values  of  the  200  km  group  were  similar  to  those  of  the
starting  point  of  transportation  (P >  0.05),  while  the  other
groups were higher than the 200 km group (P < 0.05, Fig. 3d,
e & f).  These  results  indicate  that  short-time  refrigerated
transportation  did  not  affect  the  microbial  growth  on  the
surface of pig carcasses.

Table 1.    Temperature and humidity values in refrigerated vehicles.

Transportation
distance /km

Vehicle
temperature/ºC

Vehicle
humidity/ºC

Carcass
temperature/ºC

200 3.49 ± 0.21ab 91.10 ± 9.87a 2.87 ± 0.54ab

300 3.42 ± 0.19ab 88.83 ± 5.70ab 3.04 ± 0.51ab

400 3.34 ± 0.21b 83.73 ± 5.26b 2.70 ± 0.43b

500 3.62 ± 0.21a 88.16 ± 5.81ab 3.25 ± 0.35a

a,b Different  letters  in  the  same  column  indicate  significant  differences
among distance groups (P < 0.05).

ba

c d

e f

 
Fig. 3    Microbial colony counts on the surface of pig carcasses.  (a)  Before transportation, (b) at the end point of transportation, (c−f) at the
different market points. a,b Different letters indicate significant differences among groups (P < 0.05).
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At  the  market  points,  the  microbial  colony  counts  on  the
surface  of  cuts  were  not  significantly  different  (P >  0.05, Fig.
3b). The values were 1.96 ± 0.27, 2.38 ± 0.20, 2.35 ± 0.19 and
2.27 ± 0.36 log10(CFU/cm2) for the 200, 300, 400 and 500 km,
respectively. 

Changes of microbiota composition on the surface of
pig carcasses

A total  of  3,982,386 reliable reads were obtained. The PCA
scores  plot  showed  that  the  first  two  principle  components
accounted  for  58.45%  of  the  total  variance  among  the
samples. The first principal component reflected the variation
of  transportation  distance,  and  the  second  principal  compo-
nent  indicated the variation of  samples  within  the same dis-
tance group (Fig.  4).  The samples in the starting point group
(T0km) were well separated from other samples, indicating that
the  microbiota  composition  on  the  surface  of  pig  carcasses
underwent a significant change during refrigerated transpor-
tation  and  subsequent  handling.  The  samples  in  the  end
point of transportation groups (T200km-a,  T300km-a,  T400km-a,  and
T500km-a)  remain  similar  within  the  group  but  show  a  good
separation  from  the  samples  of  the  market  point  groups
(T200km-b, T300km-b, T400km-b, and T500km-b). For the samples in the
market point groups, the 200 km and 400 km groups (T200km-b,
T400km-b)  are  well  separated  from  the  300  km  and  500  km
groups  (T300km-b,  T500km-b).  This  indicates  that  carcasses  could

be contaminated during transfer at the end points of transpor-
tation and the market points.

On  the  phylum  level,  Proteobacteria,  Firmicutes,  Bacte-
roides, and Actinomycetes are the predominant bacteria in all
samples  (Fig.  5a).  At  the  start  point,  the  T0  km samples  had
high  relative  abundance  of  Proteobacteria,  Bacteriodes,
Firmicutes and Actinomycetes. In addition, three samples had
a high relative abundance of Fusobacteria. At the end point of
transportation, the relative abundance of Proteobacteria and
Firmicutes  increased  compared  with  T0km samples,  and
Proteobacteria  was  dominant.  The  relative  abundance  of
Actinobacteria decreased slightly in the 200, 300 and 400 km
samples.  Compared  with  the  samples  at  the  end  points  of
transportation of each distance, the samples at the marketing
points  had  lower  relative  abundance  of  Actinobacteria.  On
the  other  hand,  the  relative  abundance  of  Proteobacteria
increased significantly (Fig. 5a).

On  the  genus  level, Acinetobacter,  Pseudomonas, Psychro-
bacter,  Chryseobacterium, Staphylococcus, Brochothrix, Mora-
xella, and Flavobacterium were the predominant bacteria (Fig.
5b). Acinetobacter,  Psychrobacter,  Chryseobacterium, Staphylo-
coccus, Brochothrix, Morexella,  and Flavobacterium were
dominant  in  the  T0km samples.  The  relative  abundance  of
Acinetobacter increased  significantly  and Psychrobacter was
also  highly  abundant  in  T200km-a and  T300km-a samples.  At  the
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Fig. 4    PCA scores plot of samples. T0km, the start point of transportation; T200km-a, T300km-a, T400km-a, T500km-a, the end points of 200, 300, 400 and
500 km transportation; T200km-b, T300km-b, T400km-b, T500km-b, the market points after 200, 300, 400, and 500 km transportation.
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Fig. 5    Microbial composition in samples. (a) Phyla; (b) genera. T0km, the start point of transportation; T200km-a, T300km-a, T400km-a, T500km-a, the end
points  of  200,  300,  400  and  500  km  transportation;  T200km-b,T300km-b,  T400km-b,  T500km-b,  the  market  points  after  200,  300,  400,  and  500  km
transportation.
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market  points,  the  diversity  of  microbiota  decreased  signifi-
cantly,  but  the  relative  abundance  of Acinetobacter and
Pseudomonas increased  substantially.  In  the  T200km-b and
T400km-b groups, Acinetobacter and Pseudomonas account  for
75%  of  the  total  abundance  of  microbiota.  In  the  T300km-b

samples,  the  relative  abundance  of Acinetobacter, Pseudo-
monas, and Psychrobacter was higher. In the T500km-b samples,
Acinetobacter and Psychrobacter were  highly  abundant.
Notably, Pseudomonas is  the  main  environmental  polluting
bacterium. During carcass transportation, meat handling and
storage, the microbiota dynamically changes. This phenome-
non is consistent with the findings of Zhao et al.[25].

LDA analysis showed that the relative abundance of Proteo-
bacteria was  high  at  the  starting  point  and  significantly
decreased at the end points of transportation (Supplemental
Fig.  1a).  Compared  with  the  samples  at  the  end  points  of
transportation, the samples at the market points had different
relative  abundance  of Proteobacteria and Firmicutes
(Supplemental Fig. 1b). The microbiota composition in T200km-a

and T400km-a samples was quite different from that in the T0km

samples. 

DISCUSSION

Humidity  and  temperature  are  very  important  to  ensure
food quality and safety,  in particular  to inhibit  the growth of
bacteria[28−31]. Cold chain, along with proper humidity control
and  anti-condensation  measures  dramatically  improve  food
safety,  quality  and  shelf-life[32].  In  the  present  study,  the
vehicle  temperature  and  carcass  core  temperature  of  all
distance  groups  were  lower  than  4  °C.  The  humidity  in  the
vehicle  increased  gradually  and  then  remained  constant
during  transportation.  The  total  colony  count  was  positively
correlated  with  the  carcass  temperature  and  the  air
temperature  in  the  vehicle.  And  thus,  high  temperature  and
humidity  will  promote  the  growth  of  bacteria,  while  low
temperature  inhibits  the  growth  of  bacteria[23].  However,
microorganisms active at low temperatures during cold-chain
transportation  can  still  cause  the  spoilage  of  meat.  In  this
study,  the  total  colony  count  on  the  pig  carcass  surface  was
low  at  the  start  point,  but  increased  with  the  extension  of
cold-chain  transportation  distance.  In  practice,  chilled  and
fabricated meat has a higher risk of contamination than hot-
boned meat in terms of mean aerobic plate counts and total
coliform counts[12].

Sequencing  results  indicated  that  the  microbial  diversity
was  the  greatest  at  the  start  point  of  transportation  and
decreased  during  transportation  and  subsequent  transfer  to
the  market.  Low  temperatures  (4  °C)  favored  the  growth  of
mesophilic,  psychrophilic  and  psychrotrophic  bacteria,
including Lactobacillaceae, Enterobacteriaceae and Micro-
coccaceae.  Fourteen  different  genera  were  represented  in
clones  from  fresh  meat,  with  36.5%  of  the  clones  mostly
resembling  Acinetobacter  and  17.3%  resembling  Staphylo-
coccus and Macrococcus. This is in agreement with the results
of Olsson et al. which stated that the predominant bacteria in
chilled  meat  comprise  of  44.3%  Pseudomonas,  17.1%
Aeromonas and 14.3% Acinetobacter[33].

In  our  previous  study  of  vacuum-packed  fresh  pork,
Micrococcaceae, Flavobacteriaceae, Enterobacteriaceae, Lacto-

bacillaceae and Carnobacteriaceae were  found  to  be  the
major  spoilage  microorganisms[25].  Li  et  al.  identified  259
bacterial  genera  in  chilled  pork  using  16S  rRNA  sequencing
and  found  that Pseudomonas, Acinetobacter and Photoba-
cterium were  dominant  after  five  days  of  storage[26].  Meat
could  be  contaminated  by  pseudomonas  and  other  bacteria
during  storage.  Among  these  bacteria,  some  bacteria  grow
rapidly,  inhibiting the growth of  other  bacteria,  and become
dominant bacteria. In this study, Acinetobacter, Psychrophilus,
Pseudomonas, Flavobacterium, Brochothri, Moraxella and
other  spoilage  bacteria  were  observed  in  high  relative
abundance in all samples, suggesting the risk of pork spoilage
was  higher  at  the  end  of  the  cold-chain.  Controlling  storage
temperature  is  vital  in  maintaining  the  quality  and  safety  of
perishable foods for consumption by inhibiting the growth of
aerobic spore-forming bacteria[34].  During transportation and
storage, spoilage microorganisms consume nutrients in meat
to  produce  metabolites  to  cause  spoilage[35].  The  type  of
meat  spoilage  depends  on  what  spoilage  bacteria  dominate
the competition. In the present study, the relative abundance
of Pseudomonas was  high  in  meat  samples  at  the  market
points. Pseudomonas is  an aerobic gram-negative bacterium,
existing  extensively  in  fresh  water,  soil  and  other  environ-
ments. This bacterium has a high metabolic and physiological
diversity,  strong  environmental  adaptability,  a  short  genera-
tion  cycle,  and  strong  reproduction  ability[36]. Pseudomonas
decomposes  carbohydrates  and  amino  acids  in  meat,  and
produces  volatile  and  non-volatile  metabolites  including
esters,  ketones,  alcohols,  aldehydes,  organic  acids,  sulfur
compounds and amines, causing discoloration, stickiness and
off-flavor of meat. Temperature is an important environmen-
tal  factor  regulating  the  growth  of Pseudomonas which  can
endure  low  temperatures  (4  °C)[37].  Therefore,  the  hygienic
conditions  of  cold-chain  transportation  and  market  places
should be improved to avoid contamination by Pseudomonas.
Additionally,  the  vehicle  temperature  and  carcass  core
temperature during cold-chain transportation must be strictly
controlled  to  avoid  temperature  fluctuations  to  inhibit  the
growth of Pseudomonas.

In addition, on the same carcasses, the outside seems to be
contaminated  more  seriously  than  the  inside.  This  was
confirmed  by  Zweifel,  Fischer  and  Stephan  as  they  reported
that the outside of pig carcasses tended to yield higher total
viable counts[38]. 

CONCLUSIONS

The  air  temperature  and  humidity  of  vehicles,  and  the
carcass temperature was relatively constant during cold-chain
transportation.  The  total  colony  counts  showed  significant
differences  among  samples  sites  on  the  surface  of  pig  car-
casses  at  the  start  and  end  points  of  cold-chain  transporta-
tion, and increased with the transportation distance from 200
km  to  400  km.  During  transportation,  microbial  diversity  on
the  carcass  surface  decreased. Acinetobacter, Pseudomonas,
Brochothrix, and Moraxella were dominant microorganisms.
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