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Abstract
Growth is the developmental process involving important genetic components. Functional mapping (FunMap) has been used as an approach to

map quantitative trait loci (QTLs) governing growth trajectories by incorporating growth equations. FunMap is based on reductionism thinking,

with a  power  to  identify  a  small  set  of  significant  QTLs  from the whole  pool  of  genome-wide markers.  Yet,  increasing evidence shows that  a

complex trait is controlled by all genes the organism may possibly carry. Here, we describe and demonstrate a different mapping approach that

encapsulates all markers into genetic interaction networks. This approach, symbolized as FunGraph, combines functional mapping, evolutionary

game theory,  and prey-predator theory into mathematical  graphs,  allowing the observed genetic effect  of  a  locus to be decomposed into its

independent  component  (resulting  from  this  locus’  intrinsic  capacity)  and  dependent  component  (due  to  extrinsic  regulation  by  other  loci).

Using FunGraph, we can visualize and trace the roadmap of how each locus interact with every other locus to impact growth. In a population-

based association study of Euphrates poplar, we use FunGraph to identify the previously neglected genetic interaction effects that contribute to

the  genetic  architecture  of  juvenile  stem  growth.  FunGraph  could  open  up  a  novel  gateway  to  comprehend  the  global  genetic  control

mechanisms of complex traits.
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Introduction

Because  of  its  fundamental  importance  in  understanding
biological  processes,  growth,  i.e.,  change  in  the  size  of  an
organism with age,  has intrigued biologists  for  centuries[1−4].
Growth  traits  are  particularly  important  to  tree  breeding
because  stemwood  production  heavily  depends  on  how
much  a  tree  can  grow  at  a  harvest  age  and  how  fast  a  tree
grows  to  reach  the  targeted  amount  of  harvested  wood[5,6].
The past decades have witnessed the widespread application
of  molecular  and  biotechnological  approaches  to  mapping
specific genes, known as quantitative trait loci (QTLs), respon-
sible  for  phenotypic  variation  in  stemwood  growth[7−13].
Growth traits  can be better  mapped by FunMap,  a  statistical
method  that  integrates  the  time  dimension  of  trait
development  into  a  genetic  mapping  or  association  setting,
remarkably  improving  the  statistical  power  and  biological
interpretations of QTL detection[14−20].

Like  all  existing  approaches,  FunMap  tests  and  charact-
erizes  individual  key  QTLs  based  on  the  marginal  effects  of
individual  markers.  Extensive  analysis  of  genome-wide
association  study  (GWAS)  data  suggests  that  complex  traits
are simultaneously controlled by all genes the organism may
carry  throughout  its  entire  genome[21].  It  becomes  increa-
singly  clear  that  complex  traits  may  not  only  be  determined
by  the  independent  actions  of  individual  genes,  but  also  by
their  epistatic  interactions  through  an  intricate  but  well-
organized  network[21−25].  Unfortunately,  current  theory  and

methods have limited power to disentangle the complexity of
epistasis[26].  First,  traditional  approaches  detect  epistasis
based  on  an  exhaustive  search  of  marginal  pairwise  intera-
ctions[15,27],  failing to portray a systematic characterization of
all  possible,  simultaneously  occurring  epistasis.  Second,
widely used mapping or association studies can estimate the
magnitude and sign of epistasis, but cannot identify its direc-
tion  by  which  one  gene  regulates  the  other.  Third,  the
requirement  of  sample  size  to  chart  a  systematic  picture  of
interactomes containing a vast number of gene-gene combi-
nations cannot be met in practice. For example, under reason-
able assumptions in human association studies, the detection
of  significant  epistasis  between a  single  pair  of  genes would
need as many as 50,000 samples[28].

More  recently,  our  group  has  developed  a  computational
model for reconstructing a multilayer, omnigenic interactome
network  of  SNPs  from  a  high-density  linkage  map  or
GWAS[29−33].  There  is  a  rich  body  of  literature  on  reconstruc-
ting gene regulatory networks from expression data[34−37], but
there  is  little  methodology  to  infer  genetic  networks  from
genotype  and  phenotype  data.  Our  model  fills  this  gap
through  integrating  functional  mapping  and  evolutionary
game theory and prey-predator theory and taking advantage
of time dimension to augment information for interaction mo-
deling. By viewing genetic architecture as an evolving game,
we introduce the notion of evolutionarily stable strategy[38] to
derive a system of nonlinear Lotka-Volterra prey-predator equa-
tions. Through these equations, we decompose the marginal

REVIEW 
 

© The Author(s)
www.maxapress.com/forres

www.maxapress.com

https://doi.org/10.48130/FR-2021-0019
mailto:rwu@phs.psu.edu
https://doi.org/10.48130/FR-2021-0019
https://doi.org/10.48130/FR-2021-0019
mailto:rwu@phs.psu.edu
https://doi.org/10.48130/FR-2021-0019
http://www.maxapress.com/forres
http://www.maxapress.com


effect  of  each locus  estimated from functional  mapping into
its  two  underlying  components:  the independent effect  that
occurs when this  locus is  assumed to be in isolation and the
dependent effect  due  to  the  joint  influence  of  other  loci.  We
code  independent  effects  of  individual  loci  as  nodes  and
dependent  effects  of  individual  locus  pairs  as  edges  into
graphs.  These  graphs,  i.e.,  FunGraph,  are  filled  with  bidirec-
tional,  signed,  and  weighted  epistasis[39] and  allowed  to
change  with  time,  thus  providing  a  means  of  addressing
many fundamental questions, such as how each locus affects
growth on its merit, how a locus regulates, or is regulated by,
other  loci,  and  how  loci  change  their  genetic  effects  over
spatiotemporal scales.

In this article, we describe our FunGraph and disseminate it
into  a  broader  community  of  forestry.  FunGraph  is  charac-
terized  by  several  key  steps,  including  functional  mapping,
evolutionary  game  theory-based  prey-predator  modeling,
functional clustering, and network reconstruction. We review
each step and show a smooth transition from one step to the
next.  We analyze a GWAS data from the salt-resistant experi-
ment of  Euphrates  poplar  collected from its  natural  distribu-
tion.  We  conclude  by  discussing  the  advantages  and  disad-
vantages of FunGraph, providing the recommendations of its
use in practical mapping or association studies. 

Model Review
 

Functional mapping

ti = (ti1, . . . , tiTi )

yi =
(
yi (ti1) , . . . ,yi

(
tiTi

))

Many  mapping  approaches  perform  associations  between
genotype  and  phenotype  measured  at  single  time  points.
Different from this static mapping strategy, FunMap incorpo-
rates growth equation into a mapping framework, allowing the
temporal  pattern  of  genetic  effects  to  be  characterized[14,16].
FunMap  has  been  widely  used  to  map  growth  QTLs  in  a
variety of species[15,17–20]. To help readers of this journal better
understand  FunMap,  we  outline  several  key  steps  for  its
derivations.  Consider  a  tree  mapping  population  composed
of n individuals  which  have  been  genotyped  through  the
entire  genome  to  produce  a  high-dimensional  SNP  data.  In
this  population,  let  denote  the  measure
schedule  of  a  growth  trait  for  individual i (i =  1,  …, n).  Let

 denote  the  phenotypic  values  of

individual i measured  per  to  a  time  schedule.  Assume  that
there are J genotypes at a locus with observations denoted as
n1, …, nJ, respectively. The likelihood of trait values at a given
molecular marker is expressed as

L (y) =
J∏

j=1

n j∏
i=1

f j (yi) (1)

f j (yi)where  is  the  multivariate  normal  distribution  of
individuals, with mean vector for individual i carrying genotype j
expressed as

µ ji =
(
µ j (ti1) , . . . ,µ j

(
tiTi

))
(2)

and  individual-specific  covariance  matrix ΣI,  which  is  common
to different genotypes.

FunMap models  the structures of  the mean vector  (2)  and
covariance matrix[14,16]. For a trait growing during a period of
development, we often use a logistic equation to describe the
form of growth. For marker genotype j on individual i, its age-

varying mean value (at age τ) is modeled by

µ j (tiτ) =
a j

1+b je−r jtiτ
(3)

where growth parameters  (aj, bj, rj)  are  the asymptotic  growth,
initial  growth,  and  relative  growth  rate  of  genotype j.  By
estimating  and  testing  these  parameters,  we  can  infer  how  a
genetic marker is associated with growth trajectory.

Σi

Σi

Because  covariance  matrix  obeys  some  autocorrelative
structure,  several  time-series  models  have  been  used  to
model  the  covariance  structure,  including  the  first-order
autoregressive  model  (AR(1))[14] and  first-order  structured
antedependence  model  (SAD(1))[40].  The  AR(1)  model  pro-
duces analytical solutions for the determinant and inverse of
the  covariance  matrix,  which  can  increase  computational
efficiency,  but  it  needs  stationarity  assumptions  difficult  to
meet  in  a  real  situation.  Zimmerman  and  Núñez-Antón[41]

derived  the  closed  forms  of  solving  the  determinant  and
inverse  of  the  covariance  matrix  for  the  SAD(1)  model  that
does not rely on the stationarity assumptions. As a result, we
incorporated  the  SAD(1)  model  to  structure  by  using  two
parameters,  antedependent  parameter  (describing  how
much the residual  at  one age depends on that  at  the prece-
ding age) and innovative variance (i.e., the variance produced
at a specific age).

The  maximum  likelihood  estimates  of  genotype-depen-
dent growth parameters and covariance-structuring parame-
ters  can  be  obtained  by  a  simplex  algorithm[42].  Whether  a
genetic  marker  is  associated  with  growth  trajectory  can  be
tested on the basis of the following hypotheses

H0:
(
a j,b j,r j

)
≡ (a,b,r)

H1: At least one of the equalities in the H0 does not hold (4)
where  the  test  statistic  is  calculated  as  the  log-likelihood  ratio
(LR) of the full  model (H1)  over the reduced model (H0).  The LR
may be regarded as being chi-square distributed. The genome-
wide  significance  level  of  a  variant  is  corrected  for  multiple
comparisons.  Empirically,  the critical  threshold for  claiming the
genome-wide  existence  of  a  significant  marker  can  also  be
determined from permutation tests.

τ

For  a  given  locus s (s =  1,  …, m)  with J genotypes,  we
estimate its age-varying genetic standard deviation (at age )
as  a  proxy  to  the  genetic  effect  of  this  locus  using  the
following equation

zs (τ) =

√√√
1
n

J∑
j=1

n j

[
µ j (τ)−

−
µs (τ)

]2
(5)

µ j (τ)

−
µs (τ) =

J∑
j=1

n j

n
µ j (τ)

where  is  calculated  from  the  growth  equation  (3)  using
the  estimated  growth  parameters  (aj, bj, rj),  and

 is the overall mean of trait values calculated

on the basis of genotypes at marker s. Equation (5) can be used
to visualize the developmental pattern of genetic variance for a
given trait. 

Nonlinear prey-predator modelling of evolutionary
game theory

We  view m markers  as  a  system  in  which  different  genes
interact  with  each  other  to  affect  phenotypic  traits  through
the  lens  of  evolutionary  game  theory.  We  argue  that  the
genetic  variance  of  a  marker  is  determined  not  only  by  its
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own  intrinsic  capacity  but  also  by  the  interactions  of  other
markers  with  this  marker.  Based  on  this  consideration,  we
derive  a  system  of  nonlinear  Lotka-Volterra-based  ordinary
differential equations (ODEs), expressed as

dzs (τ)
dt

= Qs (zs (τ) : Φs)+
m∑

s′=1,s′,s

Qss′ (zs′ (τ) : Φss′ ) , s = 1, . . . ,m

(6)

Qs()

∑
Qss′ ()

Qs() Qss′ ()
Φs

Φss′

s s′ = 1, . . . , s−1, s+1, . . . ,m

where  the  time-varying  change  of  the  (epi)genetic  variance  of
marker s is  decomposed  into  two  components:  the  first  is
called  the  independent  genetic  variance  derived  from  this
marker’s  endogenous  action,  specified  by ,  and  the
second is called the dependent genetic variance resulting from
the  aggregate  exogenous  regulation  of  other ds markers,
specified  by .  Note  that ds (ds << m)  is  determined  by
variable  selection.  We  implement  a  marker-specific  smoothing
function to model , and , respectively. By estimating a
set  of  ODE  parameters ,  we  can  determine  the  pattern  and
magnitude  of  the  independent  (epi)  genetic  variance  of
individual  markers.  Similarly,  the  estimation  of  a  set  of  ODE
parameters  enables  us  to  characterize  whether  and  how
the genetic variance of marker s depends jointly on other markers
(  =  1,  …, m; ).  Because  of  their
infinitely  differentiable  property,  we  choose  Legendre  Ortho-
gonal Polynomials (LOP) to fit the smoothing functions[43].

In practice, it is not possible that each marker interacts with
every  other  marker  in  the  whole  system,  rather  one  marker
may interact with a small subset of markers; i.e.,  each marker
may be regulated by a small set of regulators. To choose such
a  small  set  of  regulators  for  each  marker,  we  incorporate  a
LASSO-based variable selection procedure.  LASSO is  built  on
a LOP-based nonparametric regression derived from ODEs of
equation (6) by which the genetic effect of a SNP is expressed
as  the  function  of  its  independent  effect  and  dependent
effects  due to  other  SNPs.  This  variable  selection allow us  to
choose a small set of the most significant SNPs (ds << m) that
link with a focal SNP s. After ds is determined, we reduce ODEs
of  equation  (6)  to  include  the  summation  of  dependent
effects due to only ds SNPs.

Qs()
Qss′ ()

Qss′ ()

We  implement  the  fourth-order  Runge-Kutta  algorithm  to
solve  the  reduced  ODEs  by  a  non-linear  least  squared  app-
roach.  After  ODE  parameters  are  estimated,  we  encapsulate
independent variances of different markers  as nodes and
dependent variances of different marker pairs  as edges
into  a  mathematical  graph.  Because  has  directionality
and  reciprocity,  is  quantitative,  and  can  be  positive  or
negative,  this  graph  provides  a  bidirectional,  signed,  and
weighted  interaction  network  that  characterizes  a  complete
picture of genetic architecture determined by all genes under
consideration. 

Reconstructing genetic networks
The functional network mapping model partitions the mar-

ginal  genetic  effect  of  a  marker  into  its  underlying  indepen-
dent  and  dependent  components  and  codes  the  indepen-
dent  effects  as  nodes  (main  effects)  and  the  dependent
effects  as  edges  (epistatic  effects)  into  mathematical  net-
works.  Classic  quantitative  genetic  approaches  estimate  and
test  pairwise  genetic  interactions  (Fig.  1a),  failing  to  jointly
characterize  the  direction,  sign,  and  weight  of  epistasis.
Functional network mapping can not only fully capture these

features of epistasis, but also visualize a systematic network of
epistasis  among  all  loci  (Fig.  1b).  Specifically,  functional
network  mapping  classifies  epistasis  into  seven  qualitative
types as follows:
 
● Symmetric  positive  epistasis,  by  which  two  loci  activate

each other to the same extent;
 
● Asymmetric  positive  epistasis,  by  which  two  loci  activate

each other but to different extents;
 
● Directional positive epistasis, by which one locus activates

the other but the second has no effect on the first;
 
● Symmetric  negative  epistasis,  by  which two loci  suppress

each other to the same extent;
 
● Asymmetric negative epistasis, by which two loci suppress

each other but to different extents;
 
● Directional  negative  epistasis,  by  which  one  locus

suppresses the other but the second has no effect on the first;
 
● Altruistic/repressive epistasis, by which one locus activates

the other but the second suppresses the first.
 

Each  of  these  epistatic  types  can  be  quantitatively
measured (Fig. 1b). Despite their distinct biological relevance,
these types are collectively referred to as the overall concept
of epistasis. 

Detecting network communities by functional
clustering

A  genetic  mapping  study  generally  involves  a  huge
number of SNPs that lead to an astronomically large number
of  pairwise  links.  However,  complete  interconnections  of  all
SNPs  may  not  exist  because  this  does  not  help  the  network
buffer  against  stochastic  perturbations[44].  For  this  reason,
genetic networks, like many other types of networks, such as
ecological  networks  and  social  networks,  are  sparse  and
patchy,  forming  distinct  network  communities.  To  detect
such communities  from a  large-scale  network,  Wu and Jiang
(2021)  implement  functional  clustering[45,46] to  split  all  SNPs

a b

 
Fig. 1    Detection of epistasis by (a) classic quantitative genetic
approaches  and  (b)  functional  network  mapping.  Four  loci  are
assumed, with pairwise interactions being shown. Classic approa-
ches can only estimate the sign and strength of epistasis, but fail
to  identify  the  direction  of  epistasis.  Red  and  blue  lines  denote
positive  and  negative  epistasis,  respectively,  with  the  thickness
proportional to the strength of epistasis.
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into  their  distinct  modules  in  each  of  which  SNPs  are  more
similar to each other in terms of their genetic effect temporal
pattern  than  to  those  from  other  modules.  The  optimal
number of modules for a given pool of SNPs is determined on
the basis of parsimonious information criteria,  such as AIC or
BIC[30].  Thus,  SNPs  within  a  module  form  relatively  strong
interconnections  as  distinct  network  communities.  If  the
number of  SNPs within a  module is  still  too large to prevent
the  reconstruction  of  their  interconnected  network,  we  may
cluster it into distinct submodules. Likewise, if a submodule is
still too big, we further cluster it into distinct sub-submodules
according to an information criterion. This tree-like clustering
procedure  continues  until  the  number  of  SNPs  within  a  unit
reaches  a  number  that  is  tractable  for  SNP-SNP  network
reconstruction.

The above steps allow us to reconstruct  a  multilayer,  tree-
like, sparse, omnigenic interactome network. The term 'multi-
layer'  implies  the  network  moves  from  a  top  layer  at  which
modules are interconnected to a bottom layer at which each
SNP interacts with every possible other SNP through a hierar-
chy of  intermediate layers  composed of  interconnected sub-
modules,  interconnected  sub-submodules,  and  so  on.  The
top-layer  network  presents  a  coarse-grained  structure  be-
cause  its  nodes  are  the  mean  values  of  genetic  effects  of  all
SNPs  within  a  single  module,  whereas  the  bottom-layer
networks  are  fine-grained  in  their  structure  where  nodes
stand  for  individual  SNPs.  Each  module  has  a  submodule
network, and each submodule has a sub-submodule network,
and so on, which forms a tree-like network. This network can
code all possible SNPs from a mapping or GWAS experiment,
thus,  regarded  as  being  omnigenic,  through  the  impleme-
ntation of functional clustering. Within each network, regard-
less  of  coarse-grained  or  fine-grained,  variable  selection  is
used to choose a small set of the most significant nodes that
link  with  a  given  node,  thus  ensuring  the  sparsity  of
interactome networks. 

Worked Example

We demonstrate the utility and usefulness of FunGraph by
analyzing  a  real  data  set  from  GWAS  of  Euphrates  polar,  a
desert-adapted  tree  species[47,48].  Wang  et  al.[31] gave  a

detailed procedure of how to generate this GWAS population
and conduct an ecological genetic experiment using it. About
100 tree genotypes, genotyped by 272,719 quality SNPs, from
this  GWAS  panel  were  cultured  in  salt-exposed  (stress)  and
salt-free  (control)  conditions,  where  shoot  heights  were
measured at a series of time points during early ontogeny. We
plot shoot height growth trajectories for each tree genotype
grown in stress and control  conditions,  from which it  can be
seen  that  height  growth  is  well  fitted  by  a  logistic  growth
equation,  despite  a  marked  discrepancy  in  growth  amount
and form (Fig. 2). The difference of shoot height growth for a
specific  tree  genotype  under  stress  and  control  conditions,
i.e., phenotypic plasticity, can be used as a proxy to assess the
salt resistance of this genotype[49,50]. Our FunGraph is used to
dissect the genetic architecture of salt resistance.

Structural  analysis  of  the  GWAS  panel  shows  no  existence
of subpopulations. FunMap identifies a small set[36] of signifi-
cant SNPs (i.e., QTLs) that mediate developmental phenotypic
plasticity of shoot height growth, i.e.,  salt resistance (Fig. 3a).
The  Q-Q  plot  of  significance  tests  suggests  that  FunMap  is
adequately  accurate  for  QTL  detection  from  this  panel,
without  statistical  inflation  or  deflation  (Fig.  3b).  GO  analysis
suggests  that  many  of  these  detected  QTLs  are  nearby
candidate  genes  with  known  biological  functions  (Fig.  3c).
QTLs identified display different temporal patterns of genetic
effect  on  salt  resistance;  for  example,  some  QTLs  increase
dramatically  their  effects  with  time,  whereas  some  decrease
their effects with time (Fig. 4). These QTLs will be highlighted
and  considered  for  their  translation  into  practical  breeding
schemes,  whereas  those  insignificant  SNPs  do  not  deserve
further  consideration.  The  above  steps  of  QTL  detection
represent a general procedure for genetic mapping or GWAS.

We  argue  that  QTLs  detected  from  a  reductionist-based
approach may not adequately explain genetic variance in salt
resistance[29−32].  It  is  crucial  to  reconstruct  an  omnigenic
interactome  network  that  cover  all  SNPs  and  their  existing
interactions by FunGraph, because such a network can more
systematically  capture  the  genetic  architecture  by  revealing
the  significance  of  nonsignificant  SNPs.  This  GWAS  has
272,719  SNPs  which  in  principle  form  a  272,719-node
network for salt resistance. We do not attempt to reconstruct
such  a  big  network  but  dissolve  it  into  different  network

 
Fig. 2    Growth curves of juvenile shoot heights (thin lines) for a GWAS population of Euphrates poplar cultured in salt-exposed (stress) and
salt-free (control) conditions. The mean curve of young trees (thick line) under each condition is fitted by a logistic growth equation.
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communities  by  functional  clustering.  We  classify  272,719
SNPs  into  83  distinct  modules  based  on  their  similarity  of
genetic  effects  according  to  BIC  (Fig.  5),  with  each  module
representing  a  unique  temporal  pattern  of  genetic  effect
(Fig.  6).  We  further  classify  each  module  into  distinct
submodules  and  each  submodule  into  distinct  sub-
submodules.  Finally,  we  reconstruct  a  multilayer,  multiplex,
and  multiscale  interactome  network  that  modulates  the  salt
resistance of Euphrates poplar.

As  an  example, Fig.  7 illustrates  part  of  such  a  multilayer
interactome network.  At the top layer is  the 83-node coarse-

grained  interaction  network  among  modules,  with  each
module  corresponding  to  a  network  community.  Network
communities  are  interconnected  through  the  interactions
between modules.  Module M24 contains QTLs,  which is  split
into  57  submodules,  i.e.,  network  sub-communities.  We
classify  submodule  SM32  that  contains  QTLs  into  19  sub-
submodules.  Sub-submodule  SSM15  contains  QTL  Q39711,
for  which  we  reconstruct  a  fine-grained  SNP-SNP  network.
The  genetic  effect  curve  of  Q39711  is  dissected  by  evolu-
tionary  game  theory.  We  find  that  this  QTL  has  a  strong
independent  genetic  effect,  which  is  compromised  by

a b

 
Fig. 3    The detection of significant QTLs for salt resistance in Euphrates poplar by FunMap. (a) Manhattan plot of significance tests across 19
Populus chromosomes  and  scaffolds  based  on  log-likelihood  ratios  (LR).  The  horizontal  line  is  the  critical  threshold  at  5%  significance  level
determined by permutation tests. (b) QQ plot of statistical tests for the GWAS population.

a b

 
Fig. 4    Genetic effect curves of (a) salt resistance QTLs and (b) their gene enrichment analysis.
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negative  regulation  of  SNP  S62005  (Fig.  8a).  In  practice,  by

inhibiting the expression of  this  SNP as a negative regulator,

Q39711  can  fully  be  expressed  to  release  its  maximum
genetic  effect  on  salt  resistance.  We  pick  up  an  insignificant
SNP  S182466  from  the  same  sub-submodule  to  characterize
its  independent  and  dependent  effect  curves  (Fig.  8b).  The
net  and  independent  effects  of  this  SNP  are  subtle,  which
seems  not  to  be  useful  for  translation  genetics.  However,  it
simultaneously  receives  a  similarly  large  positive  and  nega-
tive regulation from S137576 and S32148, which cancel each
other out.  Thus,  by inhibiting negative regulator S32148,  the
role  of  positive  regulator  S137576  can  be  released  so  that
insignificant  S182466  can  still  be  used  in  practice.  The
example  of  S182466  possibly  explains  the  cause  of  missing
heritability,  a  common  phenomenon  in  GWAS.  In  summary,
analyzing this Euphrates poplar GWAS data includes three key
steps:  functional  mapping,  functional  clustering,  and recons-
tructing  multilayer  networks.  The  entire  process  takes  more
than 40 days on a personal Dell commercial computer. 

 
Fig. 5    Classification of all  SNPs into 83 modules (according to
BIC) based on their similarity of temporal genetic effects.

 
Fig. 6    Mean genetic effect curves of each module M1 – M83. The background represents the genetic effect curves of all SNPs from a module.
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Fig.  7    Multilayer  interactome  network  for  salt  resistance  in  Euphrates  poplar.  At  layer  1  (top)  is  the  coarse-grained  network  among  83
modules. Layer 2 and 3 networks are the networks among submodules from module M24 and among sub-submodules from submodule SM32
of M24. At layer 4 (bottom) is the fine-grained SNP network from sub-submodule SSM15_32 of SM32. Arrowed red and blues lines stand for the
positive and negative regulation of one SNP for the other SNP, respectively.
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Discussion

We  argue  that  a  network  of  cryptic  epistasis  is  a  possible
cause for the unobserved genetic control mechanisms for stem-
wood  growth.  Increasing  compelling  evidence  shows  that
epistasis  contributes  to  the  genetic  architecture  of  complex
traits[21−25].  Although  tremendous  effort  has  been  made  to
detect  epistasis,  the  efficiency  of  this  pursuit  may  be  very
limited because an extremely large sample size is required[28].
We develop a  functional  network mapping model  FunGraph
to  extract  and  excavate  the  hidden  genetic  architecture  of
complex traits by dissecting the detailed role of epistasis, but
not largely relying on a hard-to-obtain sample size.

The  statistical  and  biological  power  of  FunGraph  stems
from  the  seamless  integration  of  functional  mapping,  evolu-
tionary  game  theory,  and  prey-predator  theory.  FunMap  has
been  proven  to  be  powerful  for  estimating  time-varying  net
genetic variances explained by individual genes. Evolutionary
game theory was introduced to formulate a regression model
that  expresses  the  net  effect  of  a  gene  (response)  as  a
function  of  its  independent  effect  and  dependent  effects
determined  by  a  number  of  other  genes  (predictors)  across
time points (not across samples as usual).  This formulation is
constructed  by  a  prey-predator  model.  We  consider  genetic
architecture  as  a  system  composed  of  genome-wide  genes
whose number is exceedingly larger than the number of time
points.  We  implement  LASSO-based  variable  selection  to
resolve this 'curse of dimension', allowing us to select a small
subset  of  the  most  significant  predictors.  The  net  genetic
variance  obeys  a  temporal  pattern  of  changes  from  which
infinite snapshots can be inferred, allowing variable selection
to be implemented for any high dimensional pool of markers.
This  resolves  a  fundamental  issue  of  an  extremely  large
sample size required for epistatic detection.

FunGraph  dissects  the  net  effect  of  a  gene  into  the  inde-
pendent  effect  that  is  expected  to  occur  when  this  gene
functions  in  a  socially  isolated  condition  and  the  accumula-
tive  dependent  effect  that  result  from  the  interactions  of
other  genes  with  this  gene.  As  such,  a  significant  QTL  is
significant  through  three  possible  mechanisms.  First,  it  dis-
plays  a  sizable  independent  effect  on  its  own  merit,  not  or
only  slightly  affected by other  genes.  Second,  this  QTL has  a
little independent effect, but it contains a large overall depen-
dent effect exerted by other genes.  Third,  both independent

and dependent effects are large or even small, but they have
the same sign to produce a pronounced accumulative effect.
By  analyzing the mapping data  of  Japanese larch,  functional
network mapping identified all  these three mechanisms that
guide the way significant QTLs affect stem height growth and
diameter  growth.  Such  a  detailed  characterization  of  how  a
QTL  acts  can  help  geneticists  transform  it  into  a  tree  impro-
vement program, in which the genetic effect of  this  QTL can
be  strengthened  or  weakened  by  knocking  out  the  expre-
ssion of other genes that regulate it.

FunGraph can also address the question of why an insigni-
ficant  marker  is  not  significant.  Indeed,  an  insignificant
marker  may  not  be  necessarily  insignificant  if  the  indepen-
dent and dependent effects do not cancel each other out. In
other  words,  an  insignificant  gene  can  become  significant  if
we  can  prevent  cancellation  between  different  types  of
effects.  In  addition,  even  if  the  insignificance  of  an  insignifi-
cant gene is due to the negligible values of both independent
and  dependent  effects,  it  can  still  play  an  important  role  in
affecting complex traits through indirect paths if it serves as a
strong  regulator  (leader)  that  regulates  other  genes.  Fun-
Graph has been able to chart direct and indirect roadmaps of
each  gene  to  affect  the  salt  resistance  of  shoot  height  for
Euphrates  poplar.  From  these  roadmaps,  we  can  arouse  the
role  of  insignificant  genes  through activating or  suppressing
the expression of genes that interact with them.

Traditional  mapping  or  association  studies  can  estimate
the proportion of the phenotypic variance explained by indi-
vidual  markers,  i.e.,  marker-based heritability,  but this  herita-
bility is due to the net genetic effect of a marker between its
independent  effect  and  dependent  effect  through  epistasis
with other markers. The merit of FunGraph lies in its power to
estimate  independent  and  dependent  genetic  variances
separately,  all  of  which  are  hidden  in  the  heritability,  called
hidden  heritability.  Unlike  tremendous  efforts  to  detect
missing  heritability,  i.e.,  an  unexplained  part  of  genetic
variance[51] by  including  rare  variants  and  epigenetic  marks
among  others[52],  hidden  heritability  can  be  retrieved  by
altering the pattern of gene-gene interactions. Because of its
capacity to extract previously neglected genetic mechanisms
underlying  complex  traits,  FunGraph  may  upgrade  and  shift
quantitative  genetic  theory  from  reductionist  thinking  to
holistic,  systems-oriented  paradigm.  First,  it  can  refine  the
classic  definition  of  epistasis  as  noncausal  gene-gene

a b

 
Fig. 8    Decomposition of new genetic effects (blue line) into independent effects (red line) and dependent effects (green line) for (a) a QTL
Q39711 and (b) an insignificant SNP S182466.
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interactions  to  a  point  at  which  epistasis  is  defined  as  a
bidirectional,  signed,  and  weighted  measure.  Qualitative
classification and quantitative measure of epistasis can poten-
tially stimulate geneticists to explore the biological, develop-
mental,  and  molecular  basis  of  gene-gene  interactions.
Second, traditional statistical genetics treats complex traits as
a  snapshot  of  biological  processes  to  map  and  characterize
genes  that  operate  individually  at  a  certain  time  and  space.
Different from this approach, systems genetics contextualizes
biological  processes  as  complex  systems  and  divides  them
into  a  series  of  organizational  functionality  from  genes  to
organismal properties[53]. At the heart of systems genetics are
network  models  that  can  pack  and  organize  various  inter-
acted  components  into  graphs.  FunGraph,  accompanied  by
subsequent  modifications  and  perfections  in  a  variety  of
areas,  such  as  the  high-dimensionality  of  genome-wide
genes, high-order gene interactions, gene-environment inter-
actions, and phenotypic plasticity, could provide a novel tool
to  comprehend  the  mechanistic  understanding  of  complex
traits and quantitate the mechanistic process of how complex
traits  are  formed,  progressed,  and  altered  across  spatiotem-
poral scales. 
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