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Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use.

However,  global  climate  change  and  ongoing  population  explosion  severely  threatens  the  health  of  the  forest  ecosystem  and  aggravtes  the

deforestation  and  forest  degradation.  Forest  genomics  has  great  potential  of  increasing  forest  productivity  and  adaptation  to  the  changing

climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing

technologies,  single  cell  RNA-seq,  clustered  regularly  interspaced  short  palindromic  repeats  (CRISPR)-mediated  genome  editing,  and  spatial

transcriptomes,  as  well  as  bioinformatics  analysis  technologies,  which  have  led  to  the  generation  of  multidimensional,  multilayered,  and

spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to

tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory

mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research

branches  of  forest  genomics,  and  then  provided  future  research  directions  and  focuses  for  each  area.  Evidently,  a  shift  from  simple

biotechnology-based  research  to  advanced  and  integrative  genomics  research,  and  a  setup  for  investigation  and  interpretation  of  many

spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
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 Introduction

Forests are the predominant terrestrial component on Earth,
and  account  for  nearly  three  quarters  of  the  total  primary
production of the Earth's biosphere. Global forests generate an
estimated 21.9, 8.1 and 2.6 gigatonnes of net biomass per year
by  tropical,  temperate  and  boreal  forests,  respectively[1].
Forests  can  absorb  greenhouse  gases,  mainly  carbon  dioxide
(CO2),  and  sequester  carbon  into  wood  for  long-term  storage.
Therefore, they are essential  for the Earth's ecosystem and our
living  planet  by  carrying  out  air  purification,  ground  water
recharge,  and  climate  abnormality  control.  In  addition,  forests
play  a  leading  role  in  the  global  cycling  of  energy,  carbon,
water  and nutrients[2].  However,  global  climate  change,  or  the
long-term  shift  in  temperatures  and  weather  patterns,  caused
primarily  by  the  planet’s  overall  rising  temperature  since  the
pre-industrial period due to the increasing human activities like
fossil fuel burning, threatens the health of forests.

Forests  are  also the core raw sources  for  many bioproducts,
which include timber, pulp, fuel wood, feedstock, and a variety
of traditional and novel bioproducts. As the world population is
projected  to  reach  9−10  billion  by  2050,  demand  for  forest-
based products will continue to increase rapidly, therefore, the
pressure to  protect  forests  from deforestation and destruction
are mounting up, intensifying the challenge of maintaining the
health of the Earth's biosphere.

One  of  the  strategies  to  counter  the  aforementioned  cha-
llenges is  to increase forest  productivity,  adaptation,  resilience
and  sustainability,  which  requires  the  development  of  multi-
faced  approaches  where  forest  genomics  play  a  key  role[3].
Firstly,  genomics-based  approaches  can  significantly  increase
the  productivity  and  adaptation  directly  through  modification
of one or multiple genes in tree genomes. Secondly, genomic-
based  approaches  are  particularly  instrumental  for  identifying
the  genetic  markers  and  genes  for  gene  pyramiding  in  mole-
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cular breeding. Therefore, significantly enhancing the efficiency
of  conventional  breeding  in  targeting  the  complex  and  low
heritable  quantitative  traits  of  interest  in  forest  trees.  Thirdly,
genomic  approaches  have  great  potential  to  accelerate  the
generation of  system biology knowledge that  are essential  for
determination  of  the  optimal  strategies  and  plans  for  improv-
ing  forests.  Fourthly,  computational  genomics  provides  an
alternate  approach  to  identify  genes  regulating  the  complex
traits, enabling gene stacking and genome editing for develop-
ing  custom-designed  trees  for  designated  uses.  Finally,
genomics-based approaches can answer many unique biologi-
cal questions of forest trees,  including their unusual reproduc-
tive  features,  woody  and  perennial  growth  habit,  and  their
mechanisms of adaptation to abiotic and biotic stress[4].

In this review, we summarized the status, progress and future
directions  of  multiple  facets  of  forest  genomics  research,  and
hope  this  review  can  aid  and  foster  the  developments  in
genomics  to  enhance  the  productivity  and  sustainability,  and
accelerate  the  domestication  of  forest  trees  for  combating
climate change and meeting the increasing demands for forest
products  caused  by  the  continue  explosion  of  the  World's
population.

 Wood formation

Environmentally  friendly,  renewable  and  sustainable  woody
biomass  is  needed  to  save  humanity  from  the  global  climate
crisis. Woody biomass, or xylem cells with thickened secondary
cell  walls  (SCW),  composed  of  cellulose,  hemicellulose  (xylan)
and lignin (for a recent review, see Schultz et al.[5]), accounts for
about 90% of the total biomass produced on Earth[6,7]. Cellulose
and xylan are polymers of glucose and xylose, respectively, and
lignin  is  a  polymer  of  phenolic  compounds.  These  three  types
of  polymers  can  be  utilized  to  produce  not  only  biofuels  but
also various traditional and new materials,  such as,  bioplastics,
carbon  nanomaterials,  pharmaceuticals,  and  various  synthetic
materials  by  using  appropriate  conversion  technology  (for  a
recent review, see de Vries et al.[8]). Therefore, the utilization of
woody biomass  can not  only  partially  replace energy and ma-
terials provided by existing fossil  fuels,  but also reduce atmos-
pheric carbon dioxide to mitigate the global climate crisis.

Wood is formed by complex but highly organized regulatory
processes  that  include  vascular  cambium  cell  division  and
development,  and  xylem  cell  differentiation.  Extensive  studies
have  been  performed  to  resolve  molecular  networks  contro-
lling vascular cambium development and xylem cell differenti-
ation,  mainly  using  plant  species  such  as Arabidopsis, Populus,
Eucalyptus,  Zinnia  elegance,  and  other  species[9−11].  For  xylem
cell  differentiation,  vascular-related  NAC  domain  (VND)  sub-
family proteins, VND6 and VND7, which are identified as master
regulators  for  metaxylem  (i.e.,  SCW  deposited  with  pitted  or
reticular  form)  and  protoxylem  (i.e.,  SCW  with  helical  form)
differentiation,  respectively[10],  regulate  transcription  of  SCW
forming  genes  (e.g.,  MYB46  and  MYB83,  a  paralog  of  MYB46)
and programmed cell death (PCD)[12,13]. MYB46 and MYB83, the
master  regulators  of  SCW  biosynthesis  found  in Arabidopsis,
regulate  directly/indirectly  downstream  transcription  factors
and  structural  SCW  biosynthesis  genes  in  a  feed-forward
manner through a highly complex and sophisticated regulatory
network[12,13].  Recently,  it  was reported that PtrHB7, a member
of  HD-ZIP  III  family  in  poplar,  is  involved  in  the  auxin-induced
xylem differentiation regulatory network in woody stems[14].

Cylindrical  vascular  cambium  is  a  secondary  meristem  con-
taining bifacial stem cells[15,16].  Recently, considerable progress
has been made in the molecular understanding of the develop-
ment  of  vascular  cambium,  and  it  has  been  revealed  that  the
coordinative  regulatory  mechanisms,  including  transcription
factors,  peptides  and  hormones,  are  all  required  for  this
process[13,17]. Both auxin and cytokinin (CK) play pivotal roles in
regulating  the  initiation  and  maintenance  of  procambial  cells.
Auxin activates MONOPTEROS (MP),  which positively regulates
vascular  initial  cell  divisions  through  auxin  efflux  carrier PIN-
FORMED1 (PIN1)  and  TARGET  OF  MONOPTEROS  5  (TMO5)/
LONESOME  HIGHWAY  (LHW)  dimer[18−20].  LONELY  GUY  4
(LOG4),  a  rate-limiting  enzyme  in  CK  biosynthesis,  is  directly
activated  by  the  TMO5/LHW  dimer,  and  the  resulting  CK
promotes  cell  divisions  through  the  DOF  transcription  factor,
DOF2.1[19,21]. It has been known that the auxin-signaling IAA12-
ARF5/MP module controls Arabidopsis provascular specification
and  patterning[22].  A  similar  module  (PtoIAA9-PtoARF5)  was
recently  found  to  operate  in  auxin-triggered  xylem  cell
differentiation  in Populus[14].  In  addition  to  plant  hormones,
TRACHEARY  ELEMENT  DIFFERENTIATION  INHIBITORY  FACTOR
(TDIF)-PHLOEM  INTERCALATED  WITH  XYLEM  (PXY)-WUSCHEL-
RELATED  HOMEOBOX  (WOX)  signaling  module  regulates
cambial  cell  division  and  radial  growth  in  trees  (for  a  recent
review see Wang et al.[11]).

Currently,  the  understanding  of  the  underlying  molecular
mechanisms  by  which  the  procambium  develops  into  the
vascular  cambium  is  still  limited.  In  this  process,  the  paren-
chymatous  cells  in  the  interfascicular  region must  be  differen-
tiated  into  cambium  to  connect  the  fascicular  cambium.
Recently,  the HD-ZIP III  gene PtrHB4 was found to be involved
in  the  induction  of  interfascicular  cambial  cell  division  in
Populus stem[13].  Therefore,  further  analysis  of  target  genes
directly  downstream  of  PtHB4  is  expected  to  provide  clues  to
this process.

Future  research for  wood formation may be focused on the
cambium  cell  identity  maintenance,  and  development  and
differentiation  process  of  cambium  cells  into  secondary  xylem
and phloem by combining sc-RNA-seq and spatiotemporal tran-
scriptome-based technologies, which allows the determination
of  new  cell-  and  tissue-specific  regulators  during  these  pro-
cesses.  Single  cell  RNA  sequencing  (scRNA-seq)  has  recently
been used to investigate vascular cell specification and differen-
tiation in trees at single-cell resolution using poplar stems[23,24].
The  advent  of  spatiotemporal  transcriptome  technologies,  for
example,  stereo-seq  using  nanoball  array[25],  will  enable  the
mapping  of  spatiotemporal  transcriptomic  dynamics  and
changes during the formation of secondary xylem and phloem,
which  will  significantly  advance  our  understanding  of  this
important process.

 CRISPR-mediated genome editing provides a
powerful tool for forest tree improvement

With its versatility, high efficiency, and robustness, Clustered
Regularly  Interspaced  Short  Palindromic  Repeats  (CRISPR)
biotechnology has  emerged as  the  most  widely  used genome
editing  tool.  To  date,  SRISPR-based  technologies  have  been
harnessed to introduce precise alterations at the target sites in
many  given  plant  species.  For  recent  reviews  in  forest  trees,
see[26,27]).
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Genome  editing  and  genetic  manipulation  of  forest  trees
have become leading edge research fields. Several types of the
engineered  Cas9s  have  been  utilized  to  establish  the  CRISPR/
Cas9  application  in  several  forest  trees[28−34].  Among  these,
poplar  and  eucalypt  genomes  are  the  most  common  and
successful  genomes  that  have  been  subjected  to  genome
editing due to well-established Agrobacterium-mediated stable
transformation  and  abundant  genetic  and  genomic  resources
and  tools.  Nevertheless,  there  is  substantial  room  for  the
improvement of specificity and efficiency in CRISPR-edited tree
experiments,  given  that  the  CRISPR  toolbox  for  plant  genome
editing  has  been  continuously  expanded  with  unexplored  or
newly  engineered  CRISPR  effectors  (for  reviews,  see[35−37]).  In
addition,  versatile  methods  for  targeted  insertion  or  replace-
ment  of  genes  have  been  demonstrated  to  improve  the  effi-
ciency  of  HDR-mediated precise  modification,  such as  tandem
repeat-HDR[38] and  transcript-templated  HDR[39].  Morever,
genome  editing  approaches  without  introducing  DSBs  via  a
variety  of  CRISPR-mediated  base  editing[40] and  prime  editing
methods  have  recently  been  developed[41].  The  first  cytosine
base editor for conversions of target cytosines to thymines was
designed  by  the  fusion  of  a  nickase  Cas9  and  a  cytidine
deaminase enzyme[40,42].

In  general,  CRISPR-mediated  genome  editing  holds  great
potential  for  genetic  engineering of  forest  trees,  studying and
understanding  their  growth,  resilience  and  adaptation  during
climate  change.  Several  studies  with  genetically-modified  or
CRISPR-mediated  improvement  of  wood  quality[43],  resistance
to pests and diseases[44],  tolerance to drought[45],  salt and cold
stresses[46] have  been  conducted  in  poplar,  black  locust[47],
mulberries[48],  and  upland  cotton  trees[46] (for  recent  reviews,
see[26,49,50]). We anticipate that many more CRISPR-based appli-
cations  and  studies  will  be  performed  in  the  following  areas.
Firstly,  biological  functions  of  candidate  genes  from  quanti-
tative  trait  loci  (QTL)  and  association  studies  or  homologous
genes  of  interest  from  other  plant  species  can  be  studied  in
loss-of-function mutants.  Secondly,  functions of  allelic  variants
even  with  small  effects  in  association  studies  can  be  investi-
gated  by  precise  knock-in  CRISPR  systems  (i.e.,  HDR-mediated
gene  replacement,  base  editing,  and  prime  editing).  Thirdly,
improvement  of  quantitative  traits  can  be  achieved  by
simultaneously  inserting  or  exchanging  different  regulatory
elements  (i.e.,  enhancers  and  promoters)  from  functionally
known genes, modulating the expression levels of genes in the
known  gene  regulatory  network  as  well  as  fine-tuning
biological  pathway switches  and rate-limiting enzymes.  Lastly,
gain-of-function  CRISPRed  trees  with  better  resistance  to
disease[44] and  adaptation  enhanced  traits  can  be  pursued  by
CRISPR-based  transcriptional  activation  of  endogenous  genes.
Altogether,  the  robustness  of  the  CRISPR  technology  allows
researchers  in  the  field  of  forest  genetics  and  forest  tree
breeding  to  take  advantage  of  innovative  ideas  from  all  plant
genome  editing  projects  such  as  climate-resilient  crops  and
fruit  trees.  With  the  significant  and  rapid  progress  in  CRISPR
technologies,  a  new  green  revolution  in  forest  tree  breeding
and  conservation  with  more  climate  resilient  forests  might
become reality in the near future.

More  recently,  new  precise  DNA  base  substitutions  have
been  established  (for  a  review,  see[51]),  including  A–G  base
transition[52],  C–A[53],  and  C–G  transversion[53−55].  Importantly,
using  a  nickase  Cas9  fused  to  a  reverse-transcriptase  (RT),  the

prime-editing  tools[41] can  mediate  desired  combinations  of
deletions,  insertions,  and  base-to-base  conversions  to  replace
the target sequence. The RT is guided by a prime-editing guide
RNA (pegRNA) that is made up of an extended gRNA specifying
the target site and a RT template sequence containing desired
edits. First successful demonstrations of base editing and prime
editing  in  plant  models  offer  great  potential  to  solve  practical
problems  for  tree  breeding  by  introducing  novel  quantitative
traits  with  a  gain-of-function  mutation[56,57].  However,  great
challenges remain because many attractive target traits for tree
improvement  including  tree  growth,  wood  properties,  stress
and disease resistance are highly polygenic and under complex
regulation  networks.  CRISPR-based  gene  manipulations  can
possibly  generate  unintended  consequences  due  to,  for
example,  imbalances  in  the  gene  interaction  networks.  These
limitations might be mitigated by CRISPR-based pyramiding of
multiple monogenic traits or polygenic traits, taking advantage
of  the  robustness,  precision  and  multiplexity  of  the  CRISPR
technology  in  combination  with  genetic  crosses  and  marker-
assisted selection. Nevertheless, a wider application of CRISPR-
mediated gene editing in forestry requests a significant impro-
vement of the low efficiency of the CRISPR-based editing tech-
nologies  and  to  overcome  the  recalcitrance  in  transformation
and regeneration of many tree species.

 Single-cell RNA-sequencing technology and
implication in forest genomics

The  development  of  multicellular  plants  involves  the  for-
mation of organs that are comprised of different types of cells
with  high  heterogeneity.  During  organ  formation,  cell  fate
determination  and  differentiation  are  precisely  controlled  by
successive  transcriptional  regulations.  However,  the  cell  fate
determination  from  the  cambium  to  the  secondary  xylem  or
secondary  phloem  also  remains  elusive.  Since  the  existing
transcriptome  analysis  (RNA-seq)  can  only  obtain  information
on  a  whole  tissue,  it  is  difficult  to  distinguish  and  analyze
different cell types. With the successful isolation of single cells,
scRNA-seq  has  become  a  powerful  tool  to  study  the  gene
expressions  for  individual  cells  among  a  heterogenous  tissue.
Because it can classify cells into different groups based on their
types  and  quantify  cell  type-specific  expression,  and  also
enables  cell  trajectory  analysis  for  cell  differentiation  and
development.  Thus,  by  reconstructing  the  spatiotemporal
relationship between the cambium and surrounding cells,  it  is
possible to track the progressive cell fate changes of secondary
xylem  and  phloem,  respectively,  and  to  uncover  new  key  cell
type-specific regulators.

Single  cells  can  be  separated  by  using  limiting  dilution,
micromanipulation,  laser  capture  microdissection,  flow  cyto-
metry and microfluidics[58].  In existing scRNA-seq experimental
procedures,  thousands  of  individual  cells,  upon being isolated
with  droplet-based  microfluidics[59],  can  be  barcoded  to  dis-
tinguish transcripts  from different cells,  allowing a high throu-
ghput  gene  expression  profiling  at  single-cell  resolution[60−62].
Based on the  differential  gene expression patterns,  these  cells
can be grouped into different  clusters,  which can be classified
to  specific  cell  types.  The  analysis  of  cell  clusters  enables  to
understand  the  cell  heterogeneity  and  provides  additional
markers  for  each  cell  type[60].  Since  the  cells  that  are  under-
going  the  transition  from  one  to  another  state  could  be
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captured,  novel  cell  types  may  be  uncovered,  and  using
pseudo-time  analysis  to  make  the  order  between  single  cells
based  on  the  similarity  of  gene  expression  patterns  could
deduce  the  developmental  trajectories  of  the  clusters  (cell
types).  New  regulators  controlling  developmental  transition
can  be  identified,  improving  the  investigation  of  dynamic
developmental processes.

Microfluidic-based scRNA-seq was first applied in Arabidopsis
roots and showed the feasibility of high throughput scRNA-seq
in  plants[63].  Additional  scRNA-seq  studies  in Arabidopsis roots
used  either  drop-seq[64−67] or  10X  genomics  methods[68] to
provide  detailed  spatiotemporal  information  for  different  cell
types,  including  the  quiescent  center  that  has  stem  cells,  and
reconstruct  the  continuous  differentiation  trajectory  of  root
epidermal,  endodermical  root  hair  cells,  and  other  cell  types.
scRNA-seq was also applied to rice roots[69,70] and other tissues
of  plants,  including  shoot  tips,  lateral  roots,  gametophytes,
anthers, etc.[71−81]. Compared to these model plant species, the
application of scRNA-seq in trees is limited. The first scRNA-seq
was  performed  in  the  differentiating  xylem  of Populus  alba ×
Populus  glandulosa[24].  This  study  profiled  9798  cells  and
identified 12 cell clusters, encompassing vessel cells, fiber cells,
ray  parenchyma  cells,  and  xylem  precursor  cells.  Further
pseudo-time  analysis  revealed  the  differentiating  trajectory  of
fiber  cells,  ray  parenchyma  cells  and  vessels.  Chen  et  al.[23].
performed scRNA-seq on protoplasts harvested separately from
P.  alba var. pyramidalis stem  bark  and  wood.  This  study  also
identified the marker genes for the phloem, and reconstructed
the  cell  differentiation  trajectories  for  phloem  and  xylem
development  from  cambium.  The  scRNA-seq  technique  was
very recently used to investigate vascular cell specification and
differentiation  in  trees  at  single-cell  resolution  using  poplar
stems[23,24].  Compared to spatial transcriptome technology like
Stereo-seq,  the  information  we  can  obtain  from  scRNA-seq  is
still very limited.

Most  of  the  current  studies  in  plants  used  protoplasts  for
scRNA-seq, which relies on successful protoplast preparation. It
is challenging to isolate high quality protoplasts from the cells
that are located in the inner tissue of an organ and have thick
cell  walls,  especially  in  trees.  High  protoplast  preparation
efficiency needs to be improved for some specific tissues and in
most species. Longer incubation times of enzymatic digestions
to  remove  cell  walls  may  lead  to  certain  changes  in  transcrip-
tional  activity[82].  Single-nucleus  RNA  sequencing  (snRNA-seq)
can  avoid  the  protoplasting  effect,  and  snRNA-seq  protocols
have  been  established  in Arabidopsis and  rice[83−88],  and
recently in poplar[89]. Although it was observed that expression
of  fewer  genes  was  captured  per  cell  by  snRNA-seq  than
scRNA-seq,  it  is  still  worth  to  expand  snRNA-seq  for  other
tissues.  The  scRNA-seq  data  can  be  integrated  with  other
transcriptome  data  to  explore  key  regulators  and  novel
mechanisms.  For  example,  the  integration  analysis  of  snRNA-
seq  and  snATAC-seq  elucidated  cell-type-specific  patterns  of
chromatin  accessibility  for  the  cell-type-specific  markers,
showing that chromatin accessibility can be used as molecular
markers  to  indicate  root  hair  and  endodermal  cell  develop-
mental  states[83].  Through  analysis  of  single  cell  transcriptome
overexpression  of VND7, MYB46 and MYB83,  Turco  et  al.
identified that other four targets of  VND7, but not MYB46 and
MYB83, were involved in VND7-mediated switch of root cells to
xylem cell identity[90]. Further wide applications of scRNA-seq in

mutants or transgenics will enhance the understanding on the
transcriptional  regulation  of  a  gene  of  interest.  However,
scRNA-seq lacks spatial information, which can be overcome by
combination with the spatial transcriptome[91,92], and this com-
bination  has  not  been  reported  in  plants.  Overall,  increasing
number  of  scRNA-seq  studies  have  been  performed  in  plants
and  provide  insights  into  the  transcriptional  regulation  of
cellular  state  during  organ  formation.  It  is  anticipated  that
other  analyses,  including  chromatin  immunoprecipitation
(ChIP)-seq,  DNA  methylation,  protein-protein  interactions  at
single-cell  level,  will  also  be  achieved  successfully  in  plants  in
the  near  future.  The  limiting  factors  for  implementation  of
scRNA-seq to forest trees include the challenges in target tissue
isolation  and  removal  of  cell  walls.  Compared  to  other  plant
species,  both  target  tissue  isolation  and  cell  wall  removal  in
woody  plants  are  more  challenging  due  to  rigidness,  and
lignified and thickened cell walls.

 Haploid induction and breeding

High-levels  of  heterozygosity  are  a  significant  obstacle  for
not  only  the  genome  sequencing  and  assembly  but  also  tree
breeding through inbred lines,  which can be used to generate
heterosis  through  crossing.  Although  the  endosperms  origi-
nated  from  female  gametophyte  tissue  (n)  in  gymnosperms
seeds  and  some  angiosperm  seeds  are  haploid,  the  haploid
tissue  in  a  single  seed  is  generally  insufficient  for  extracting
enough  DNA  for  haploid  genome  sequencing.  Generating
inbred  lines  for  creating  heterosis  through  cross-hybridization
takes at least six generations to achieve approximate complete
homozygosity  in  most  agricultural  crops.  This  can  take  even
more generations and longer time for tree species due to their
higher levels of heterozygosity, long juvenile phases, and long-
generation cycles as well as self-incompatibility. Therefore, it is
practically  impossible  to  implement  inbreeding  improvement
strategy  in  trees  in  the  conventional  manner.  A  strategy  to
overcome  these  obstacles  is  to  obtain  haploid  plants,  which
can  not  only  facilitate  genome  sequencing  and  assembly  but
also  generate  homozygosity  through  chromosomal  doubling.
Doubled  haploid  (DH)  lines  are  even  better  than  inbred  lines,
and  thus  can  be  of  great  value  for  tree  breeding,  genome
sequencing  and  assembly,  and  also  other  genome-based
research.

For  agricultural  crops,  haploids  can  be  induced  in  natural
conditions  or  artificially  by  a  physical  or  chemical  treatment.
Spontaneous  haploids  occurred  in  many  species  including
maize,  cotton,  rice  tomato,  barley,  and  brassica[93].  However,
the  induction  rates  are  very  low  in  many  species,  and  as  a
result,  selection of spontaneous haploids from natural  popula-
tions  is  not  cost-effective.  Subsequently,  numerous  endeavors
have been made to increase the frequency of  artificial  haploid
induction. It has been found that a specific maternal or paternal
parent  can  give  rise  to  a  higher  induction  frequency.  For
example, a maize inbred designated as 'stock 6' could generate
3.23%  haploids  in  10,616  progenies[94].  Hence,  selection  of
parents  that  have  higher  haploid  induction  frequency  was
effective  and  accelerated  maize  inbreed  line  generation.  To
date, various techniques have been employed in different plant
species,  some  of  which  have  been  reviewed  in  several
reviews[95−97].  One  of  these  technique  is  distant  pollination,
namely  wide  crossing,  which  is  one  of  the  most  effective
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methods  for  female-derived  haploid  production.  For  example,
haploid  plants  were  obtained  from Lactuca  sativa pollinated
with the pollen from distant species like Helianthus annuus and
H. tuberosus[98]. The pollen tubes of the distant species may not
release  the  sperm  cells  into  the  ovaries  but  can  stimulate  the
development  of  ovaries  into  haploid  seeds.  In  addition,  the
female-derived haploid induction by pollination with the pollen
pretreated  with  various  physical  or  chemical  agents  has  also
been  used  in  many  species.  For  example,  haploid  plants  were
obtained by pollination with irradiated pollen in melon[99,100]. In
addition,  gynogenesis  induction  by  direct in  vitro culture  of
unfertilized  ovaries  or  ovules  is  another  viable  approach  for
haploid  production  for  some  species,  such  as  cucumber  and
red  beet[101,102].  Moreover,  androgenesis  induction  by  anther
culture is  one of the more frequently used methods in various
plant  species,  such  as  wheat[103],  cucurbita[104]; Cannabis
sativa[105].  Those  methods  that  were  successfully  used  in
agricultural crops need to be tested for trees which are mostly
self-incompatible.

To  date,  some  aforementioned  approaches  have  been
adapted  or  modified  to  produce  haploids  in  forest  trees.  For
example, cross-pollination with stress-treated pollen that stimu-
late  parthenogenesis  for  inducing  haploid  trees;  the  pollen
grains  are  often  pretreated  with  physical  stresses  like  high
temperature[106],  heat[107],  irradiation[108],  or chemical like tolui-
dine  blue[109].  In  addition,  the  unpollinated  ovaries  were
reported  to  develop  into  haploid  poplar  trees[110],  which  indi-
cates  that  the  female  gametophyte  and  megaspore  of
angiosperms  can  be  induced in  vitro for  sporophytic  develop-
ment,  thereby  creating  a  new  avenue  to  haploid  breeding.
Moreover,  the  endosperms  of  most  gymnosperms  comprise
haploid cells developed directly from the female gametophyte,
and thus can be used to induce haploids directly. For example,
haploid calli  have been generated by culturing Taxus chinensis
endosperm[111].  Haploid  plants  of Eucommia  ulmoides were
induced via parthenogenesis  with  heat  treatment  on  female
flower  buds  during  the  developmental  stage  of  embryo  sac
formation[112].  Anther  or  pollen  culture  coupled  with  plant
hormone  treatments  under  tissue  culture  conditions  was  the
most  commonly  used  method  in  tree  species[113−116].  In  con-
trast to a wide variety of crop species that have been subjected
to  haploid  induction,  much  fewer  haploid  tree  species  have
been generated in vitro because of their recalcitrance to tissue
culture and regeneration. Furthermore, the DH trees generated
from haploids usually show poor vitality and can hardly survive
for  more  than  a  few  years  until  they  reach  flowering  age.  To
date, no DH population of tree species has been reported to be
established  due  to  poor  adaptation  caused  by  high  homozy-
gosity.  In  the  future,  more  efforts  should  be  made  to  increase
induction  efficiency,  establish  effective  procedures  that  can
facilitate acquisition of a large number of DH lines, and increase
their survival under greenhouse and field conditions. In recent
years,  a  CENH3-mediated  haploid  induction  system  has  been
established,  which  has  the  potential  to  be  extended  to  tree
species  since  CENH3  is  universally  present  in  eukaryote
species[117−119].

 Recalcitrance to genetic transformation and
regeneration in trees

Generation  of  transgenic  trees  with  new  or  improved  desir-
able  traits  relies  on  genetic  transformation  and  subsequent

regeneration.  Transformation  of  foreign  genes  for  molecular
breeding or gene/genome editing is the key to successful tree
trait  improvement.  Various  transformation  protocols  including
Agrobacterium-mediated  transformation,  Polyethylene  glycol
(PEG)-mediated direct transfer and biolistic bombardment have
been  applied  for  plants[120] .  Among  the  most  widely  used  is
Agrobacterium-mediated  T-DNA  transformation  which,  in
general,  has  the  highest  transformation  efficiency[121].  Subse-
quent  regeneration  is  an  essential  process  to  recover  trans-
genic  plants.  Callus  induction, de  novo organogenesis,  and
somatic  embryogenesis  of  conventional  tissue  culture-based
regeneration  protocols  have  been  widely  developed  in
trees[122].  The  earliest  reports  on  transgenic  poplar  and
European  larch  trees  are  dated  1987[123] and  1991[124],  respec-
tively. Although genetic transformation and regeneration have
been widely applied to many other tree species, the practice for
genetic transformation and regeneration in trees is  still  largely
restricted to model forest (poplars and Eucalyptus)[125] and fruit
trees[121,126],  and has  been rarely  applied to  industrially  impor-
tant  trees  such as  rubber  trees[127] and conifers[128] because  of
the recalcitrance of  transformation and regeneration.  Thus far,
the  following  efforts  have  been  made  to  overcome  recalci-
trance in genetic transformation and regeneration practices.

The  most  widely  employed  approach  to  overcome  recalci-
trance is the selection of most amenable genotypes and tissues
such as juvenile leaves, petioles, cotyledons[129−133] and the use
of  phytohormones[134,135] such  as  auxin  and  cytokinin.
Although  these  approaches  work  for  some  species,  they  have
different  effects  in  different  species  and  have  little  general
applicability.  For  example,  for  Amur  cork  trees[136−138] and
willow trees[139,140],  even the juvenile leaves and stem explants
are  recalcitrant  to  transformation  and  shoot  regeneration,  the
shoot  apical  meristems  germinated  from  the  mature  seeds
exhibit amenability to transformation and subsequent regene-
ration.  In  conifers,  somatic  embryogenesis  from  the  immature
zygotic embryos is the only way to regenerate plantlets[141,142].
The  amenability  of  explants  to  genetic  transformation  and
regeneration  differs  among  explant  types  (juvenile  or  mature)
and  genotypes;  regeneration  capacity  of  explants  generally
declines  as  age  increases.  Different  genotypes  have  widely
exhibited  distinct  regenerative  responses  even  in  the  same
species.  Loss  of  phytohormone  responsiveness  is  a  putative
cause  for  declined  regenerative  capacity.  As  plants  get  older,
the  developmental  stages  and  differentiation  as  well  as  epi-
genetic  modifications  deactivate  phytohormone  responsive-
ness, thereby resulting in different degrees of recalcitrancy[143].
Some genes that control transformation amenability/regenera-
tion  have  been  identified,  e.g. Baby  boom (BBM), WUSCHEL,
SHOOT  MERISTEMLESS (STM), WOX[144,145],  and  the  synthetic
gene  for  the  GROWTH-REGULATING  FACTOR  (GRF)-  GRF-
INTERACTING  FACTOR  (GIF)  chimeric  protein[146],  and  these
genes  have  been  used  to  improve  regeneration  potential.
Co/pre-transformation has also been reported to boost genetic
transformation and regeneration in trees[147,148].

In  general,  phytohormones  including  auxin,  cytokinin,  and
abscisic  acid  trigger  signaling  events  for  plant  regeneration
which  then  relieve  epigenetic  constraints  and  activates  the
above  developmental  regulator  genes  to  initiate  cell-fate
transitions  (dedifferentiation)  and  expression  of  downstream
genes  for  plant  development  -  usually  the  hormone  biosyn-
thesis and signaling genes (redifferentiation)[143,149,150]. GRF-GIF
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chimeric protein has recently been highlighted for  its  capacity
to remove epigenetic regulatory barriers against plant regene-
ration. The expression of developmental genes driving the cell
transition  processes  for  dedifferentiation  and  redifferentiation
during  plant  regeneration  are  strictly  regulated  by  a  closed
chromatin state that can be opened by epigenetic factors such
as  SWITCH/SUCROSE  NONFERMENTING  (SWI/SNF)  complexes.
GRF  and  its  cofactor  GIF  form  chimera  which  then  can  recruit
SWI/SNF complexes to regeneration-related genes to remodel-
ing  chromatin  structures  and  states,  relieving  the  constraints
for  the  transcription  of  those  genes  to  promote
regeneration[151].

Owing  to  the  above  efforts,  genetic  transformation  and  re-
generation have significantly improved; however, the following
questions on recalcitrance remain to be answered:

(1) What are the upstream regulatory genes for the develop-
mental  genes  that  control  transformation  amenability/regen-
eration including BBM, WUSCHEL, STM,  and WOX, and how are
the  developmental  genes  upon  a  phytohormone  treatment
triggered and regulated?

(2) What factors cause loss of phytohormone responsiveness
during aging and how to revert the process?

(3)  What  are  the  key  factors  that  determine  embryogenic
competence during somatic embryogenesis?

(4)  How  are  the  external  signals  such  as  stresses  and
phytohormones  transduced  to  initiate  upregulation  of  those
factors during somatic embryogenesis?

(5)  How  does  the  aging  or  subculture  affect  embryogenic
competence of explants?

Providing  answers  to  these  questions  will  significantly  ad-
vance  our  understanding  of  transformation  and  regeneration.
Moreover, conventional regeneration protocols based on tissue
culture  are  laborious  and  time-consuming,  especially  for  trees
which  generally  have  a  longer  generation  time  than  crops.
Some scientists  have  tried  to  bypass  the  regeneration process
to  circumvent  regeneration-recalcitrant  issues.  For  example,
tissue  culture-free  transformation  systems  have  been  estab-
lished in Arabidopsis and tobacco[152,153].  However,  these novel
protocols  cannot  yet  completely  bypass  the  tissue  culture  in
the whole transformation process, and are not yet been applied
to  tree  species.  Overall,  the  efforts  to  overcome  the  recalci-
trancy issue have greatly advanced the genetic transformation
and  regeneration  in  trees,  but  there  is  still  a  long  way  to  go.
There  is  little  evidence  that  substantiates  the  molecular
mechanism  underlying  recalcitrance  and  further  work  should
be continued to obtain in-depth insights into the process. It will
be  of  great  significance  in  gene  transformation  and  regene-
ration practices in trees.

 Nitrogen fixing: A special feature of Leucaena-
Rhizobium symbiosis

Legume-Rhizobium symbiosis  is  a  beneficial  mutualistic
interaction  between  legume  hosts  and  compatible  rhizobia
that  exhibit  species  specificity.  Most  current  knowledge  of
legume-Rhizobium symbiosis has been derived from studies of
nodulation  and  nitrogen  fixation  in  field  legumes,  such  as
alfalfa,  peas,  beans,  and  soybean,  and  model  legume  species,
such as Lotus japonicus and Medicago truncatula,  through their
interactions  with  compatible  rhizobia[154].  The  knowledge  of
nitrogen-fixing symbiosis between tree legumes and rhizobia is

relatively  scarce.  Moreover,  some  tree  legumes  have  uncom-
mon features,  for example, Acacia koa,  a  tree legume endemic
to  the  Hawaiian  Islands,  produces  both  root  and  canopy
nodulation  in  symbiosis  with Bradyrhizobium[155].  Symbiotic
nitrogen  fixation  in  the  tree-legume Leucaena in  association
with  specific  fast-growing  rhizobia  has  an  additional  feature.
Leucaena  produces  a  toxic  compound,  mimosine,  which  is
present  in  all  parts  of  the  plant,  including  roots  and  root
nodules.  Mimosine  is  also  secreted  to  the  rhizosphere  in  the
root  exudate[156].  Rhizobia  in  the  rhizosphere  or  in  the  nodule
have  to  overcome  mimosine  toxicity.  Rhizobia  that  effectively
nodulate Leucaena degrade mimosine in both rhizosphere and
inside root nodules.

The  genes  for  mimosine  degradation  have  been  well-
characterized  in Rhizobium sp.  strain  TAL1145  that  effectively
nodulates Leucaena. Mimosine degradation by Rhizobium takes
place  in  two  steps.  First,  mimosine  is  degraded  to  ammonia,
pyruvate  and  3-hydroxy-4-pyridone  (3H4P)  by  a  C–N  lyase,
called  'rhizomimosinase'  encoded  by  the Rhizobium  midD
gene[157,158].  3H4P  is  further  degraded  to  ammonia,  pyruvate,
and formate by a dioxygenase and a hydrolase encoded by the
Rhizobium  pydA and pydB genes,  respectively[159].  The midD
gene  for rhizomimosinase is  a  part  of  the midABCD operon,
where midABC encodes three constituent proteins of ABC tran-
sporters:  a periplasmic mimosine-binding protein,  a permease,
and  the  ATP-binding  protein,  for  transporting  mimosine  into
Rhizobium cytoplasm.  By  constructing  several midA::gus,
midC::gus and midD::gus fusions,  it  was  demonstrated that  the
midABCD operon  is  expressed  in Rhizobium in  the  nodule  and
also  inducible  by  mimosine[157].  Similarly,  by  constructing
midA::phoA insertion  mutant  derivatives  of  TAL1145,  it  was
shown  that  the midABCD operon  expressed  in Rhizobium
bacteroids  inside  the Leucaena root  nodules  (Fig.  1).  The
expression  of  the midABCD operon  is  regulated  by  a  positive
regulatory protein encoded by midR, which has high sequence
similarity  with  the  LysR  family  of  positive  regulators.  In  the
rhizosphere,  some  amounts  of  mimosine  may  be  degraded  to
3H4P, which can be also taken up by Rhizobium using a specific
ABC  transporter  encoded  by pydC, pydD,  and pydE genes.  The
pydA, pydB, pydC, pydD,  and pydE genes  are  inducible  by
mimosine, 3H4P, and several analogs of 3H4P[6].

The ability to degrade mimosine is not essential  for forming
nitrogen-fixing  nodules  on Leucaena.  However,  mimosine-
degrading ability provides a competitive advantage for nodule
occupancy  and  efficient  nitrogen  fixation  in Leucaena
nodules[160].  Mimosine  is  a  bacteriostatic  compound  and  the
mimosine-non-degrading Rhizobium strains,  such  as  CTAT899,
do  not  have  a  mimosine-specific  ABC  transporter.  Therefore,
these  rhizobia  can  survive  and  grow  in  the Leucaena rhizo-
sphere  or  inside  root-nodules  even  in  the  presence  of
mimosine.  Mimosine  chelates  Fe3+ ions  in  the  rhizosphere  by
forming  Fe3+-mimosine  complexes,  thereby  depriving  these
rhizobia of Fe3+ and reducing their growth. On the other hand,
mimosine-degrading strains, such as TAL1145, can uptake Fe3+-
mimosine  complexes  and  utilize  them  as  a  source  of  carbon
and  nitrogen.  Therefore,  they  can  grow  in  the  presence  of
mimosine and occupy nodules more effectively. In the absence
of  mimosine-degrading  rhizobia,  non-degrading  rhizobia  can
occupy Leucaena nodules.  About  40%  of Rhizobium isolates
obtained  from  the  nodules  of Leucaena growing  in  several
locations on the island of Oahu contained mimosine-degrading
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rhizobia[161].  Our  current  understanding  of  the  role  of
mimosine-degrading  free-living  rhizobia  in  the Leucaena
rhizosphere  is  depicted  in Fig.  2.  Leucaena  can  grow  success-
fully  even  in  alkaline  soils  where  iron  forms  insoluble  hydro-
xides, which cannot be taken up by plants. Mimosine, secreted
by Leucaena roots, has high binding affinity for Fe3+ at alkaline
pH,  where  it  forms  Fe3+-mimosine  complexes  that  are  water
soluble  at  alkaline  pH.  Depending  on  the  availability  of
mimosine in  the soil,  three types  of  Fe3+-mimosine complexes
are  possible,  where  the  ratios  of  Fe3+ and  mimosine  in  the
complexes may be 1:1,  1:2,  or  1:3[3] (see the box in Fig.  2).  The
water-soluble  Fe3+-mimosine  complexes  are  taken  up  by
Leucaena roots  through  transporter  proteins  belonging  to  the
oligopeptide  transporter  family,  which  includes  YSL  transpor-
ters.  Such  an  iron  uptake  system  using  phytosiderophore  and
oligopeptide  transporters  is  common  in  grasses  and  is  known
as strategy II of iron uptake. Leucaena also employs strategy I of
iron  uptake  that  involves  a  membrane-bound  ferric  chelate
reductase for converting Fe3+ to Fe2+, which is then taken up by
the  plant  through  an  iron-regulated  transporter  (IRT).  Free-
living rhizobia inhabiting in the Leucaena rhizosphere may also
uptake  Fe3+-mimosine  complexes  and  degrade  mimosine,
releasing  Fe2+ to  the  rhizosphere,  where  it  is  taken  up  by  the
plant using an IRT transporter (Fig. 2). Thus, besides providing a
selective  advantage  to  occupy Leucaena root  nodules,  such
mimosine-degrading  rhizobia  inhabiting  in  close  proximity  of
the  Leucaena’s  root  system,  enhance  iron  availability  in  the
Leucaena rhizosphere.  Future  research  will  apply  genome
editing  technology  to  develop  new  varieties  of Leucaena for
regulated  expression  or  inhibition  of  the  mimosine
biosynthesis genes.

 Genome assembly and evolution

The  publication  of  the  genome  sequence  of  the  first  tree
species Populus  trichocarpa in  2006[162] marked  the  beginning
of the genomic era of tree species. In the first decade after the
poplar  genome  was  released,  a  total  of  47  tree  species  were
sequenced.  With  the  technical  advantages  brought  by  more
powerful  DNA  sequencing  technology,  draft  or  reference
genomes of  357 tree species,  including 266 arboreal,  71 shrub
and  20  vine  species,  were  assembled  by  the  end  of  February
2022, which accounts for about 36% of all sequenced plants.

The  advantage  of  third-generation  long-read  sequencing
technology  is  the  key  driving  force  behind  the  substantial
improvement  of  genome  assembly  continuity  in  recent  years.
The contig N50 of published plant genome was increased from
99.5  ±  48.1  kb  in  2010  to  3,395.2  ±  735.4  kb  in  2020[163].  The
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT) are the two mainly long-read sequencing platforms used
in the tree genome project,  and to date,  the adoption ratio  of
PacBio to ONT is five to one. The lower sequencing error rate of
PacBio  is  the  main  reason  for  its  preference,  especially  its
recently  updated  circular  consensus  sequencing  (CCS)  mode
which  can  generate  highly  accurate  long  high-fidelity  (HiFi)
reads[164].  In  comparison  with  continuous  long-read  (CLR)
mode,  the  CCS-based  assembly  is  more  efficient  and  time-
saving.  It  is  reported  that  a  27  Gb-sized  hexaploidy  coast
redwood  (Sequoia  sempervirens)  has  been  sequenced  and
assembled in  only  two weeks  with  a  high contig  N50 value  of
1.92  Mb[165].  Due  to  its  advantages,  CCS  will  be  more  widely
applied  for  tree  genome  sequencing,  especially  for  giant
genomes and genome phasing.
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Fig. 1    Light microscopy of 20-µM thick sections of 5-week-old Leucaena leucocephala nodules. (a) Induction of alkaline phosphatase activity
in  the Leucaena nodule  formed  by  the midA::phoA mutant  RUH128  of Rhizobium TAL1145.  (b)  Another  mutant  RUH129,  in  which  the phoA
insertion  on midA was  in  the  opposite  orientation,  was  used  as  a  negative  control.  Nodule  sections  were  stained  for  phosphatase  activity.
RUH128  cells  inside  the  nodule  expressed  phosphatase  activity  whereas  RUH129  cells  inside  the  nodule  did  not  show  any  detectable
phosphatase activity. Bar represents 400 µM. (c) Schematic of a Leucaena nodule occupied by a Rhizobium strain that degrades mimosine into
pyruvate, formate and ammonia.
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Furthermore,  cost  and  time-effective  methods  as  high
throughput  chromatin  conformation  capture  (Hi-C)[166] and
BioNano  optical  mapping[167] have  greatly  accelerated  the
scaffolding  of  contigs  to  generate  chromosome-level  genome
assemblies, especially for forest trees in which building a high-
density  genetic  map  is  generally  very  time-consuming  and
labor-intensive.

With  these  latest  technological  advances,  we  now  have  the
ability  to  assemble  near-complete  genomes  for  any  tree
species, including conifers which account for 39% of the world’
s  forests  but  with  giant  genomes.  Recently,  based  on  PacBio
and Hi-C technology,  the 25.4 Gb chromosome-level  assembly
of  Chinese pine (Pinus  tabuliformis)  was published[168] which is
60  times  larger  than  that  of  the  first  sequenced P.  trichocarpa
genome and represents a new milestone in the development of
forest tree genomics.

Despite  the  recent  progress,  forest  trees  comprise  an
estimated  ~73,000  species  globally[169].  Thus  the  decoded
genomes  of  357  tree  species  merely  represent  a  very  small
portion  of  diverse  forest  tree  species.  Moreover,  there  are  still
great challenges for the haplotype-solved assembly of complex
genomes,  especially  for  autopolyploid  genomes  owing  to  the
high similarity of their subgenomes[170]. Although several freely
available  pipelines  including  TrioCanu[171] ,  ALLHiC[172],  and
FALCON-Phase[173] have  been  developed  for  plant  genomes
assembled  as  chromosome-scale  haplotypes,  only  four  auto-
ploid  genomes,  i.e.,  the  sugarcane Saccharum  spontaneum
genomes (2n = 8x = 64, 2n = 4x = 40)[174], the cultivated alfalfa

genome  (2n  =  4x  =  32)[170],  and  tetraploid  potato[175] were de
novo assembled at the chromosome level.

In  addition  to  genome  sequencing  and  assembly,  the
annotation  of  gene  space  has  also  received  more  attention.
Recent  RNA-seq studies  hint  that  the transcriptomes are often
substantially  underestimated,  even  in  the  extensively  studied
important model organisms like Arabidopsis[176] and rat (Rattus
norvegicus)[177].  Large-scale  RNA-seq  data  of  at  least  a  few
hundred  samples  of  different  tissues  conditions  can  provide
direct transcript resources and enable an unbiased gene space
annotation  with  high  resolution[168].  However,  obtaining  di-
verse samples including different tissues and various induction
conditions  for  RNA-seq  analysis  remains  a  labor-intensive
challenge.

As more complete and accurate reference genomes become
available,  comparative  genomics  is  rising.  Due  to  newly  deve-
loped sequencing technologies and updated assembly tools for
producing  longer  reads  and  reducing  assembly  errors,  many
previous evolutionary findings are also worth re-examining. As
all  earlier  draft  released  gymnosperm  genomes  reported  a
much  older  LTR  outbreaks  time  which  were  later  found  to  be
overestimated  by  fragmented  and  less  accurate  assembly[178].
In  addition,  as  more genomes of  related species become avai-
lable, pangenome-oriented studies are imminent.

 Perennial growth and seasonality regulation

Boreal and temperate climates are characterized with annual
alterations  of  seasons  that  are  favorable  (spring  and  summer)

 
Fig. 2    Roles of mimosine and free-living rhizobia in iron uptake by Leucaena. (1) Leucaena root exudates contain mimosine, which chelates
Fe3+ to form Fe3+-mimosine complexes (2). Three types of Fe3+-mimosine complexes may be formed depending on the amount of mimosine
available in the rhizosphere (box). The Fe3+-mimosine complexes are taken up by Leucaena roots using an oligopeptide-type of transporter (3).
Fe3+-mimosine  complexes  can  also  be  taken  up  by  mimosine-degrading  rhizobia  in  the  rhizosphere  using  an  ABC  transporter  (4).  Rhizobia
degrade Fe3+-mimosine complexes and release Fe2+ into the rhizosphere (5). Fe2+ is taken up by Leucaena through an IRT transporter (6).
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and  unfavorable  or  prohibitive  (fall  and  winter)  to  growth.  To
survive  the  freezing  and  dehydration  stress  during  fall/winter
months,  woody  perennials  from  temperate  latitudes  tempo-
rarily  suspend  growth  and  protect  the  shoot  apical  meristem
and  the  subtending  leaf  primordia  in  a  specialized  organ,
known as the bud. The morphological, physiological and deve-
lopmental processes taking place during this period are known
collectively as dormancy.

Significant  progress  has  been  made  in  understanding  the
different  stages  of  dormancy  including  the  transitions  from,
and  to,  active  growth.  Here  we  focus  only  on  the  genomics
aspects  and  prospects  in  forest  trees.  The  molecular  mecha-
nisms regulating dormancy in  fruit  trees  and vines,  have been
well reviewed[179−187].

Although  genomics  attempts  to  study  dormancy-related
traits  in  forest  trees  were  initiated via sequencing  expressed
sequence  libraries  (EST)[188],  it  burgeoned  only  after  the  sequ-
encing  of  the  first  tree  genome  in  2006[162] and  subsequently
other  forest  tree  genomes[189−193] when  these  studies  were
scaled to the genome-wide level. Most prominently, availability
of  genome  sequences,  enabled  for  the  first-time,  a  glimpse  at
the  gene  level  landscapes  of  the  QTL  associated  with
dormancy[194]. Candidate genes found within the intervals were
consistent  with  the  molecular  studies  and  pointing  to  genes
encoding  light  receptors,  circadian  clock  oscillators  and
regulators  of  the  flowering  time  genes.  In  addition  to  QTL
methods,  the  progress  in  genome  sequencing  spurred  deve-
lopment  of  entirely  new  approaches  known  as  association
genetics  and  bringing  the  mapping  resolution  to  the  nucleo-
tide  level  (e.g.,  single  nucleotide  polymorphism  (SNP))[195].
Similar to the QTL studies, these approaches brought validation
to  the  molecular  studies  and  also  identified  new  regulators  of
unknown functions[195].

Perhaps  the  most  wide-spread  application  of  genomics
approaches  to  dissection  of  dormancy  traits  is  the  characte-
rization  of  transcriptomes  associated  with  different  stages.
These were first  done using microarrays  and more recently  by
employing  the  more  advanced  RNA-seq  technology[196−204].
Because of the advanced genomics tools and early adoption as
a  model  for  forest  tree  biology,  many  of  the  early  and  major
transcriptomic  characterization  of  dormancy  were  undertaken
in poplar[196,201,205,206].  These studies  have been expanded into
many  forest  trees  including  angiosperms  and  gymnosperms
and  in  different  continents  including  North  America,  Europe
and Asia[196−204].  These studies, when focusing on transcription
factors,  have employed chromatin immunoprecipitation (ChIP)
to  identify  the  direct  targets  among  the  many  differentially
expressed  genes[207,208].  This  has  allowed  insights  into  the
hierarchical structure of the underlying networks and has led to
discovery of new key regulatory factors. For example, transcrip-
tion  profiling  of  transgene-modified  for  the  Early  Bud  Break  1
(EBB1) transcription factor of the AP2/ERF family has led to the
discovery  of  Short  Vegetative  Phase-like  (SVL)  transcription
factor[206].  This  was  later  found  to  be  another  key  regulator  of
bud-break  and  other  dormancy  stages[207,208].  However,
although  the  above  referenced  studies  only  employed  ChIP,
the  use  of  ChIP-seq  should  further  expand  the  horizon  of
studies in this area and realize greater potential.

Role  of  epigenetics  in  regulation of  dormancy traits  is  often
speculated  but  rarely  studied.  Advances  of  epigenomics
technologies  could  potentially  address  this  void,  including
characterization  of  DNA  methylation via bisulfide  sequencing,

posttranslational  modifications of  histones using ChIP-seq and
sequencing  of  small/non-coding  (nc)  RNA  libraries.  However,
these approaches have been rarely applied to dormancy traits.
A  notable  exception  is  a  study  looking  at  the  role  of  the
DEMETER DNA demethylase on the genome-wide methylation
pattern  during  the  acquisition  of  growth  competence  after
chilling and its correlation with transcriptomic changes[209]. This
study  pointed  to  key  genes  and  processes  affected  during
reactivation  of  growth  including  key  regulators  of  meristem
activity.

Methylation and acetylation marks at specific amino acids of
the  histone  proteins  are  important  cues  regulating  gene
expression,  and  their  effects  can  be  studied  via  ChIP-seq
approaches employing antibodies binding specifically to these
modifications.  Although  the  histone  marks  at  individual  gene
loci  in  forest  trees  and  mostly  fruit  trees  have  been
studied[210,211], a genome-wide map through different stages is
still  unavailable.  Such  maps  combined  with  studies  on
methylation patterns as referred above can provide significant
insights  into  the  role  of  chromatin  modification  in  regulating
dormancy.

Small  RNAs  and  ncRNAs  have  been  recently  linked  to  regu-
lation of many processes, including vernalization[212],  a process
suggested to be regulated in a similar fashion as dormancy[182].
Roles  of  these  regulatory  RNAs  and  their  links  to  chromatin
regulation are severely understudied in forest trees.  miRNAs,  a
class  of  small  regulatory  RNAs  have  been  linked  to  the
‘memory’  spruce  embryos  retain  about  the  temperatures  they
experience during their  development[213].  The temperatures at
the  time  of  embryo  development  can  change  phenological
traits  in  one  generation  and  these  changes  are  stable  over
many  years.  For  example,  high  temperatures  during  embryo
development  lead  to  later  growth  cessation  and  cold  accli-
mation.  It  was  speculated  that  epigenetic  mechanisms  are
responsible and allow a high level  of  plasticity and adaptation
that  does  not  require  lengthy  cycles  of  natural  selection.
Sequencing of microRNA libraries have found correlation of the
abundance  of  these  molecules  with  different  stages  of  this
'memory' acquisition[214−216].

As  genomics  technologies  become  more  advanced  and
affordable, there will  be an even further increase in amount of
genomics data.  Although very useful,  this  data at  the moment
is  largely  descriptive.  Development  of  advanced  machine
learning  and  artificial  intelligence  algorithms  that  can  take
advantage  of  this  large  data  and  provide  insights  into  the
causality,  hierarchy  and  the  regulatory  landscape  of  the
underlying mechanisms are needed.

Application  and  integration  of  multi-genomics  and  multi-
omics  approaches  are  required  to  provide  system  level
knowledge of the underlying processes, however, these studies
are  still  limited[201].  Conde  et  al.[209] compared  the  genes  with
differential methylation pattern and changed expression to the
gene  set  that  was  found  with  polymorphisms  linked  to  bud-
break[195].  Incorporation  of  such  systems-level  approaches
spanning different regulatory and omics levels can bring novel
insights and applications.

 Quantitative trait loci and association studies in
forest trees

In  order  to  design  optimal  early  selection  methods  and
breeding strategies, it is imperative to dissect the genetic basis
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and  identify  favorable  alleles  that  underlie  economically
important  and  ecologically  relevant  traits.  Most  forest  trees,
unlike  annual  plants  such  as Arabidopsis and  rice  that  would
allow  the  use  of  reverse-genetic  approaches  to  detect
underlying genes,  lack visible large collections of  mutations of
quantitatively  inherited  traits.  Therefore,  forward-genetic
approaches such as QTLs and linkage disequilibrium (LD)-based
association  studies  (AS)  have  been  developed  for  identifying
and  dissecting  quantitative  traits  in  forest  trees[217].  QTLs  and
AS  have  been  broadly  performed  on  traits  of  interest  in
numerous  tree  species,  including  growth  and  yield,  wood
properties, resistance to biotic and tolerance to abiotic stresses,
and  adaptive  traits[217,218],  to  promote  the  progress  of  mole-
cular marker-assisted selection (MAS) breeding in trees[219].

Due to the long juvenile periods and high heterozygosity of
most forest trees, QTL mapping usually employs F1 full- or half-
sib  progenies.  The  availability  of  two-way  pseudo-testcross
strategy  has  promoted  the  construction  of  linkage  maps  in
major timber species, but the limited resolution of these maps
may  not  warrant  a  successful  positional  cloning  of  QTLs.
Therefore,  the  use  of  high-throughput  sequencing  technolo-
gies can improve the accuracy and resolution of genetic maps,
and  allows  the  validation  of  the  quality  of  scaffold  anchoring
and  whole-genome  assembly  in  trees[220].  Researchers
developed  several  practical  mapping  algorithms  to  improve
the speed and reliability  of  genetic  distance estimation,  which
might  alleviate  the  computing complexity  and burden caused
by map marker redundancy[221,222].  Currently,  the bin mapping
strategy[223] has  become  the  method  of  choice  to  construct
dense genetic linkage maps.

QTL  mapping  has  been  conducted  on  a  large  scale  in  all
major  tree  species  groups  for  more  than  two  decades.  The
classic  strategies  for  QTL  analyses  include  bulk  segregation
analysis  (BSA),  interval  mapping  and  multiple  interval
mapping[224,225].  Currently,  ultrahigh-density  genetic  maps
based  QTLs  mapping  in  combination  with  systems  genetic
methods  has  provided  the  possibility  of  fine  mapping  and
identifying  genes  in  trees[226,227].  For  instance,  an  integrated
linkage-LD mapping was developed to improve the resolution
and  effect  sizes  of  dynamic  QTLs  during  stem  growth  in P.
tomentosa[228,229].  The  mapping  noise  caused  by  heterozygous
genetic  background  can  be  greatly  reduced  by  constructing
haplotype  modules  based  on  linkage  information  and
employing haplotype-based AS in QTL intervals[219]. In addition,
genetic  dissection  of  the  segregation  distortion  of  allelic
variations  is  regarded  as  a  key  question  of  fine  mapping  and
will likely be used in breeding in forest trees.

Forest  trees  are  mostly  undomesticated  populations  with
wide  geographical  distribution,  high  maintenance  of  genetic
variation, and low population differentiation, and thus are ideal
systems for conducting AS and MAS breeding. Since Porth et al.
conducted the first genome-wide association study (GWAS) for
wood chemistry traits  in black cottonwood (P.  trichocarpa)[230],
hundreds of  genetic marker loci  have been found significantly
associated with wood chemical composition and ultrastructural
traits  in Populus[231,232], Eucalyptus[217,233], Pinus[234],  and
Picea[235]. Next-generation sequencing (NGS) has enabled more
types  of  genetic  variation  such  as  insertion/deletions  (InDels),
structural variation (SV), and copy number variants (CNV) to be
applied to GWAS to solve the problem of 'missing heritability'.
For  example,  InDels  can  explain  14%  of  average  phenotypic

variance  in  growth  and  wood  property-related  traits  in P.
tomentosa[236],  and  haplotype-based  association  analysis  of
multiple  variation  loci  was  also  performed  in Populus[219] and
Eucalyptus[237].  In  addition,  by  integrating  heterogeneous
phenotypic data from different ages, loci, and pedigrees in 120
field  experiments  of  483,424  progenies  of  Norway  spruce,  the
accuracy  of  GWAS  phenotypic  values  were  largely
improved[235]. In recent years, the analytical strategy combining
GWAS with multiple omics data has been applied widely in the
investigation  of  the  genetic  architecture  of  wood
variation[228,238,239].  Various  new  methods  and  strategies  have
been  gradually  applied  to  GWAS  to  improve  the  analytical
accuracy, such as the development of high-throughput pheno-
typing  techniques[240],  and  to  the  detection  of  rare  allelic  and
major structural variation[217,241].

In  boreal  and  temperate  ecosystems,  the  adaptation  of
perennial  plants  to  their  surroundings  is  the  major  cue  to
regulate  the  seasonally  synchronous  annual  growth  cycle[207],
particularly,  the  key  factors  for  the  adaptation  to  changing
conditions  and  environmental  stressors  over  generations  and
the  maintenance  of  standing  genetic  variation[242,243].  The
application  of  environmental  association  analysis  (EAA)  allows
the detection of  the  candidate  genes  involved in  the  environ-
mental adaptation that results from populations across environ-
mental  gradients[244].  Many  adaptive  genetic  variations  have
been  determined  in  diverse  and  widespread  woody  plant
genera.  For  example,  a  locus  centered on PtFT2 was  identified
using  fitting  latent  factor  mixed  models  (LFMM)  in Populus,
whose  allele  frequencies  displayed  a  strong  clinical  pattern  in
latitude  and  had  major  effects  on  bud  set[245].  In  the Quercus
range-wide  model,  six  candidate  SNPs  were  explored  among
the  strongest  environment-associated  SNPs,  offering  robust
evidence  for  local  adaptation  at  multiple  spatial  scales[246].
These  studies  have  determined  the  functional  genes  involved
in  the  local  adaptation  that  can  be  regarded  as  a  gain  or
maintenance  of  divergent  selection  associated  with  complex
environmental  variables,  and  could  potentially  be  utilized  in
ecological molecular breeding.

In  reent  years,  our  knowledge  on  the  roles  of  epigenetic
variation  in  diverse  populations  that  underlie  phenotypic
variation has been growing. The rise of epigenetic quantitative
trait  loci  (QTLepi)  mapping  and  epigenome-wide  association
studies  (EWAS)  allow  the  detection  of  causal  QTLsepi and
candidate genes, to overcome the insufficient effect of genetic
dissection in explaining the 'missing heritability'. The first high-
density linkage epigenetic map in tree species was constructed
in P. tomentosa,  and the QTLsepi that control growth and wood
property  traits  were  detected[247].  This  study  may  serve  as  a
paradigm  for  making  headway  in  the  systematic  mapping  of
complex  traits  in  trees.  Likewise,  EWAS  has  deepened
epigenetics  variation  research  in  trait  regulation[248,249].  The
discovery  of  the Bad  karma locus  in  somaclonal  variants  of  oil
palms is  one of  the more prominent  EWAS examples[250].  DNA
methylation variation associated with climate gradients  is  also
important  for  phenotypic  plasticity  and  their  ecological
adaptation  of  forest  trees[251].  The  role  of  CG  methylation  in
adaptation  to  climate  and  spatial  variation  was  approved  in
natural  oak  populations[252].  Recently,  DNA  methylation  level
was  reported  to  be  affected  by  genetic  variation  cues.  Trait-
associated  differentially  methylated  regions  (DMRs)  were
reported to show evidence of chromatin interactions, enhancer
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activities[253] or  in  linkage[248] disequilibrium  (LD)  with  nearby
SNPs[254,255].  The  interaction  between  DNA  and  methylation
variations  remains  to  be  further  investigated.  The  integrated
linkage-LD mapping method using F1, F2, and backcross1 (BC1)
populations will help to disentangle the causal methylation loci
or  regions  that  are  responsible  for  heritable  morphological
variation  from  parents  to  progenies[256].  This  will  specifically
reveal  the  contribution  of  allelic  variants  and  overcome  the
inherent limitations of QTLepi mapping.

'Missing heritability' has occurred in many QTL studies of tree
species  due  to  a  variety  of  reasons  that  include,  but  are  not
limited to, small sample sizes, rare alleles, allelic heterogeneity,
and  epistasis.  The  genetic  contribution  of  rare  functional  va-
riants with high proportions of low-frequency genetic polymor-
phisms  in  forest  trees  remains  unexplored[232,234].  Future
studies on rare alleles in genetically  diverse forest  populations
may  perform  experimental  segregating  validation  in  family-
populations,  and  also  improve  detection  efficiency  using  new
statistical  models  and  methods,  such  as  the  sequence-based
kernel  association  test  (SKAT)[221],  regional  genetic  mapping
(RHM)[218] and  haplotype  association  analysis[235].  We  are  in-
creasingly capable to address questions through a combination
of  alleles  and  haplotypes  for  traits  of  interest.  However,
functional interpretation and annotation of loci is still  a critical
challenge,  especially  as  the  majority  of  susceptible  loci  are
located  in  non-coding  or  intergenic  regions.  The  pleiotropic
effects  of  genetic  epistasis  on  gene  expression,  metabolites,
and  growth  can  explain  the  biological  regulatory  mechanisms
beneath  the  statistical  associations.  Systems  genetic  approa-
ches  can  help  provide  a  comprehensive  understanding  of
quantitative  traits  and  enable  the  molecular  design  of  new
cultivars.

For the quantitative trait loci and association studies in forest
trees,  we  expect  that  advances  in  systems  genetics,  including
dense  genetic  linkage  mapping,  GWAS  with  multiple  types  of
genetic  variations,  EAA,  QTLepi mapping,  EWAS,  and dissection
of  rare  alleles,  will  promote  data  integration,  upgradation  and
renovation,  and  provide  a  more  powerful  breeding  guiding
system for forest trees. The advent of precision genome editing
such  as  CRISPR  system  in  either  genetic  or  epigenetic  back-
grounds  will  validate  the  causality  of  mutual  exclusion  (or
heritable covariation) of traits and linkage drag, and will  be an
ideal method for the development of superior cultivars of forest
trees.

 Genetic diversity and climate adaptation

Genetic diversity in forest trees is the foundation supporting
their  evolutionary  potential  in  future  generations.  Populations
with  low  levels  of  standing  genetic  diversity  are  predicted  to
have  reduced  responses  to  selection[257],  which  could  lead  to
increased risks of  population decline or extinction under rapid
environmental  change.  The  genetic  reservoir  in  a  species  is
shaped  by  both  stochastic  neutral  demographic  events  and
natural  selection  over  the  course  of  species'  evolutionary
history.  Species  with  wide  distribution  ranges  often  show  a
linear  relationship  between  population  genetic  distances  and
geographical  distances,  a  pattern  defined  as  isolation  by
distance (IBD)[258],  which reflects decreasing rates of gene flow
between more  distantly  located populations.  IBD causes  allele
frequency  clines  among  populations.  Additionally,  repeated

founder  events  along  species'  migration  routes  can  produce
discrete  genetic  clusters  and  further  amplify  IBD[259,260].  In
species  that  are  widely  distributed  over  heterogeneous
landscapes, locally adapted populations are expected to harbor
genetic compositions selected by the local environments. Gene
flow among locally adapted populations is limited by selection
because  of  lower  fitness  of  immigrants,  a  process  defined  as
isolation  by  environment  (IBE)[261,262].  The  consequences  of
these  dispersal-demographic  factors  and  selective  forces  are
not  mutually  exclusive,  and  they  often  act  together  in
generating  population  differentiation  in  natural
systems[259,261,263,264].  Dissecting  the  separate  contributions  of
these neutral and selective processes to population diversity is
thus the first step towards a mechanistic understanding about
the distribution of genetic diversity across a landscape.

Quantifying  genetic  variation  in  forest  tree  populations  has
been  transformed  by  high  throughput  sequencing  technolo-
gies  in  recent  years,  and  transitioned  from  limited  organellar
and  nuclear  SSR  markers  to  genome-wide  scans.  A  variety  of
genome-wide  genotyping  methods,  such  as  restriction-site
associated DNA sequencing, genotyping-by-sequencing, whole
exome capture sequencing, SNP array and resequencing, have
provided  improved  spatial  and  temporal  resolution  of  evolu-
tionary dynamics of major forest tree species[265−271].  However,
defining the genetic basis of local adaptation is not a straight-
forward task due to the complex biological processes involved.
The detection of  adaptive variation from genome-wide data is
often  approached  by  using  outlier  detection,  association  of
allele  frequencies  with  environmental  variables  (GEA),  and
evaluation  of  the  contribution  of  IBD  and  IBE  to  population
differentiation  using  redundancy  analysis  (RDA).  By  constrai-
ning  either  geography  or  environment  in  partial  RDA  models,
the  independent  contributions  of  the  two  factors  can  be
quantified.  One  pattern  emerging  from  conifer  species  is  that
environment  alone  explains  less  than  10%  of  the  allele  fre-
quency shifts among populations at all genomic SNPs, however
this  portion  can  go  up  to  ~20%  at  GEA  and FST outlier  SNPs,
although  still  leaving  a  large  portion  of  the  genetic  diversity
due  to  joint  effects  of  IBE  and  IBD[259,263,269,271,272].  The  strong
confounding effect of IBE and IBD in natural populations makes
disentangling  adaptive  variations  among  loci  from  the
geographic relationships difficult[273].

When  both  phenotypic  and  genomic  data  are  available  in
parallel,  phenotype-genotype  associations  can  be  evaluated
using genome-wide association studies (GWAS), which offers a
possibility  of  identifying  the  genetic  causes  of  phenotypic
variation.  GWAS  have  been  successful  in  pedigree  materials,
but  association  mapping  in  natural  populations  often  end  up
with  weak  predictive  powers  of  causal  loci  due  to  the
confounding  factors  mentioned  above  and  complex  genetic
interactions  for  polygenic  traits[274,275].  Hall  et  al.[269] illustrates
this problem in their  study on frost hardiness variation among
Scots  pine  populations.  They  analyzed  genotype–phenotype
associations  across  10  000  SNPs,  and  found  a  high  marker-
estimated  heritability  of  the  hardiness  variation  (0.56),
illustrating the  ability  of  genomic  SNPs  to  capture  the  genetic
variation  in  the  trait.  However,  few  loci  appeared  to  have
identifiable  effects  on  the  trait.  The  promising  message  from
these  studies  is  that  as  long  as  neutral-processes  causing
population structure are properly  controlled and false positive
rates are set at a reasonable level,  GEA and GWAS can provide
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valuable  information  about  adaptation  dynamics  across
environmental gradients.

Knowledge  about  genetic  adaptations  across  landscapes  is
informative  for  predicting  the  degree  of  genetic  offset  of
current populations to future conditions[276]. The offset is often
presented  as  a  genetic  distance  between  the  extant  and  re-
quired genomic compositions for matching a future condition,
assuming  the  current  genotype-environment  relationships  in
local populations are at equilibrium[276,277]. Gradient forest (GF),
a  machine  learning  algorithm,  has  been  increasingly  used  to
characterize GEA and to predict regions in a distribution range
that  are  most  vulnerable  to  climate  change[259,276,278].  Offset
projections  can  be  simulated  under  different  climate  change,
migration  and  gene  flow  scenarios  to  gain  a  preliminary  asse-
ssment  of  potential  actions  needed  to  track  changing  condi-
tions.  Although a  very  attractive  approach,  many assumptions
in  offset  simulations  are  difficult  to  meet  with  certainty,  e.g.,
defining  adaptive  and  neutral  genetic  variation  and  the
position of local populations on the adaptive landscape[259,279].
As  illustrated  in Fig.  3,  genomic  offset  projections  using
different SNP sets convey different biological implications, thus
may not align well with each other. A future improvement is to
incorporate fitness effect estimates of allele frequency changes
into GF models of species distribution shifts[279].  In this regard,
long-term  large-scale  provenance  trials  remain  irreplaceable
even in the genomic era for model validation of environmental
responses of forest trees.

To conclude, rapid climate changes represent a challenge for
many forest tree species. Due to their long generation time and
the  often-limited  seed  dispersal,  genetic  adaptation  in  forest
populations  lags  behind  environmental  change.  Knowledge
about  genetic  diversity  and  genetic  adaptation  in  natural
populations is  therefore essential  for sustainable management

of  forest  ecosystems.  Applications  of  this  research  include  the
development of guidelines for assisted gene flow[280], breeding
zones,  seed transfer  for  forest  restoration,  and conservation of
endangered species and populations.

 Genotyping efforts and genomic selection in
forest trees

Intensively  managed  forests  are  essential  sources  of  fiber,
biomass,  pulp/paper,  and  timber  in  many  countries
worldwide[281].  Managed  forests  provide  raw  materials  to
industry  sustainably  while  reducing  the  pressure  on  natural
forests. For example, in the southern United States, about 20%
of  forestland  is  managed  for  softwood  production,  yet  the
region  produces  more  than  55%  of  the  timber[282].  Managed
forests are significant sources of carbon storage, and they help
mitigate  greenhouse gas  emissions.  Forest  tree  breeding is  an
essential  part  of  growing  woody  biomass  sustainably.  More-
over,  genetics  and  breeding  are  usually  the  only  way  to
improve the forests for biotic (pests and pathogens) and abiotic
(air pollution, climate-change-related factors) stresses.

Despite  the  critical  role  of  forest  tree  breeding  for  planted
forests,  forest  tree  breeding  has  not  received  the  needed
resources and support as crop and animal breeding programs.
Forest  tree  breeding  is  still  in  its  early  stages.  Tree  breeding
activities  in  some  developing  countries  (e.g.,  Sweden,  Finland,
and  the  USA)  started  in  the  1950s;  however,  modern  tree
breeding did not start  in many countries until  the 1980s.  Even
though  the  breeding  of  the  major  conifers  started  more  than
60 years ago, the progress has been limited. The slow progress
of tree breeding is due to the lack of resources, as tree breeding
has not  been considered as  important  as  crops.  Other  reasons
are biological. Forest trees, especially conifers, take many years

a c

b d

 
Fig. 3    (a), (b) Predictions of genomic offset to future climate change in Pinus densata using a full set of 47,612 SNPs in exome sequences. (c),
(d)  Subset  of  2,025 significant  GEA SNPs.  (a)  and (c)  reflect  scenario representative concentration pathway (RCP)  2.6  2070;  (b)  and (d)  reflect
scenario RCP 8.5 2070. Red and blue indicate high and low genomic offset, respectively (Adapted from Zhao et al.[259]).
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to  mature  and  flower.  The  flowering  is  not  frequent  for  many
northern  latitude  conifer  species.  Field  testing  takes  years,
sometimes  a  decade,  to  collect  data  and  make  selection
decisions. Shifting program priority and scientist turnover, may
also disrupt the long breeding effort.

Advances  in  DNA  sequencing  technologies  have  impacted
plant  and  animal  breeding  since  2008.  Breeders  are  now
equipped  with  thousands  of  single  nucleotides  polymorphic
(SNP)  markers  to  fundamentally  change  plant  and  animal
breeding.  SNP  markers  are  promising  to  make  selection  of
breeding  germplasm  at  a  juvenile  stage,  a  process  called
genomic  selection.  Genomic  selection  has  doubled  genetic
gain  per  unit  of  time  in  cattle  breeding[283].  The  impact  of
genomic  selection  and  other  applications  of  DNA  markers  in
forest  tree breeding is  expected to be even higher  because of
longer  breeding  cycles  of  forest  trees[284].  SNP  arrays  and
genotyping-by-sequencing  are  the  most  common  genotyping
platforms  for  forest  trees[285−288].  Forest  tree  breeders  have
shown a great interest in genomic selection (GS) to reduce the
long  breeding  cycles[289,290].  Several  studies  on  cost-benefit
analysis suggested that GS selection is feasible[291,292]. However,
the  progress  in  the  implementation  of  GS  in  forest  tree
breeding is  still  behind animal  and major  crop breeding.  High
genotyping  cost  per  sample  is  one  of  the  limiting  factors.
Developing  more  cost-efficient  genotyping  platforms  is  still
active  research[293].  For  example,  at  North  Carolina  State
University  Tree  Improvement  Program,  AgriSeq  Targeted  GBS
panel  designed  by  Thermo  Fisher  Scientific  is  promising  for
some  molecular  applications  in Pinus  taeda breeding
(unpublished).  The  panel  is  based  on  a  small  subset  of  SNP
markers  selected  from Pinus  taeda SNP  array  Pita50K[285].  The
quality  control  statistics  are  comparable  to  the  SNP  array.  For
example,  the sample call  rate is  86%, and sample uniformity is
89%. The following plot shows how the AgriSeq Targeted GBS
panel clustered eight full-sib families compared to the Pita50K
SNP  array  and  a  subset  of  array  markers  amplified  for  AgriSeq
panel (Pita995) (Fig. 4).

A  routine  application  of  GS  requires  a  reliable  and  cost-
efficient  genotyping  platform.  Although  the  cost  of  DNA
sequencing  has  dropped  sharply  since  2008,  the  cost  per
sample  using  SNP  arrays  is  still  somewhat  high,  especially  for
many  developing  countries.  Targeted  sequencing-based
methods  are  promising  genotyping  platforms  to  reduce  the

cost.  Research  in  developing  cost-efficient  genotyping  plat-
forms will continue to be an important subject. Developing and
updating high-quality reference genomes of forest trees needs
to  be  prioritized.  Improved  reference  genomes  can  greatly
enhance marker discovery, annotation, haplotype construction,
imput  of  missing  genotypes,  and  QTL  discovery.  The  current
reference  genomes  of  forest  trees,  especially  conifers,  are
highly fragmented[294]. To be useful for many applications, they
need  substantial  improvement  using  the  latest  long-read
sequencing technologies, such as PacBio sequencing.

 Computational biology approaches in identifying
genes controlling biological processes and
complex traits in forest genomics-based research

The  advent  of  microarray  and  RNA  sequencing  (RNA-seq)
technologies  has  generated  an  enormous  high-throughput
gene expression data,  which are usually  analyzed with various
statistical  methods,  leading  to  differentially  expressed  genes
(DEGs).  Following  that,  DEGs-based  enrichment  analyses
including  gene  ontology  (GO),  protein  domain  and  pathway
enrichment analyses can be performed using Fisher Exact Test
or  hypergeometric  distribution  to  reveal  enriched  moieties  or
entities[295].  These  analyses  are  useful  but  provide  little
information about the organization of the genes in regulatory,
collaborative,  or  interactive  networks,  which  are  essential  for
discovering  underlying  and  novel  molecular  mechanisms
essential  for  advancing  our  understanding.  To  build  gene  re-
gulatory  networks,  many  algorithms  based  on  various  mecha-
nistic  and  statistical  modelings  have  been  developed.  These
methods  can  be,  by  and  large,  classified  into  two  categories:
dynamic  and  static  methods.  Dynamic  methods  include
differential  equation[296],  finite  state[297],  dynamic  Bayesian[298],
control  logic[299],  Boolean[300],  and  stochastic  networks[301],
which requires  true  time-course  data  with  small  intervals.  This
kind  of  data  can  be  readily  generated  for  prokaryotes  and
unicellular  organisms  like  yeast.  Static  methods,  which  do  not
necessarily  require  time-course  data,  are  represented  by
graphical  Gaussian  models  (GGM)[302],  mutual  information
based relevance networks[303], Algorithm for the Reconstruction
of Accurate Cellular Networks (ARACNE)[304], Context Likelihood
of  Relatedness  (CLR)[305],  C3NET[306],  Mutual  Information  3
(MI3)[307],  and  Bayesian  probabilistic  network[299].  Although

 
Fig. 4    Clustering eight Pinus taeda full-sib families (colored circles) based on three different SNP marker sets. AgriSeq Targeted GBS panel (on
the  right)  clustered  the  full-sib  families  similar  to  the  same  SNP  markers  selected  from  the Pinus  taeda SNP  array  (in  the  middle).  Trees  not
clustered are likely pedigree errors or the half-sibs (sharing one parent of another full-sib family).
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static  methods  can  also  be  used  to  analyze  time-course  data,
they  do  not  take  temporal  dependance  and  causality  into
consideration,  which  may  cause  some  information  loss.
Although  these  dynamic  and  static  methods  can  broaden  our
understanding of underlying gene regulatory networks (GRNs),
they  are  not  designed  and  tailored  to  generate  inferences
about the hierarchical architecture of the GRNs.

Recently,  algorithms  for  construction  of  hierarchical  GRNs
from high-throughput gene expression have been established.
These  approaches  can  be  used  to  infer  the  multilayered
hierarchical  network  mediated  by  a  transcription  factor.  For
example,  Top-down  GGM  Algorithm[308] for  constructing  a
multilayered gene regulatory network mediated (ML-hGRN) by
a  regulatory  gene  like  a  transcription  factor  (TF).  Top-down
GGM  algorithm  has  been  employed  to  construct  a  ML-hGRN
mediated  by  PtrSND1[308],  PuHox52[309],  PpnGRF5[310],  Ptr-
miRNA319a[311] and  BplERF1[312].  The  method  is  especially
valuable when being used in conjunction with the perturbation
of a regulator gene/TF followed by RNA-seq assay; the method
has  been  shown  to  capacitate  the  separation  of  direct  from
indirect  target  genes  with  high  accuracy[308].  On  the  contrary,
Bottom-up  GGM  Algorithm[311,313] and  Backward  Elimination
Random  Forest  Algorithm[314] have  been  developed  for
inferring  ML-hGRN  operating  above  a  biological  process  or  a
pathway.  From  the  ML-hGRN  built  with  Top-down  GGM
Algorithm, the hierarchical regulators at different levels can be
identified.  Thus far,  Bottom-up GGM Algorithm has  been used
to  identify  Ptr-miRNA319a[311] functioning  above  lignin  poly-
merization pathway, and PuMYB40 and PuWRKY75 functioning
as  high hierarchical  regulators  above the biological  process  of
low  phosphorus  (LP)-mediated  adventitious  root  (AR)
formation.  Bottom-up  GGM  Algorithm  and  Bottom-up  GGM
can be used synergistically to infer the ML-hGRN encompassing
a TF[315], as shown in Fig. 5.

One of the central tasks of genomics is to identify the genes
regulating a biological process or a complex trait directly from
high-throughput  transcriptomic  data.  To  do  this,  the  high-
throughput  data  needs  to  be  generated  from  a  tissue  or  an

organ in which a trait of interest is under a transition. This kind
of  transcriptome  is  easy  to  produce.  However,  until  now  the
genes controlling a trait have been primarily identified through
linkage mapping and genome-wide association studies,  which
is labor-intensive and time-consuming, and may not guarantee
a  success  in  most  cases  where  pleiotropy  is  dominant.  Never-
theless,  a  new  theory  has  been  proposed  for  identifying  the
genes  regulating  a  biological  process  or  a  complex  trait  from
transcriptomes,  which  assumes  that  the  genes  that  regulate  a
biological process or a complex trait often collaborate through-
out the time period during which the biological process or the
complex train is under a transition[316,317]. Based on this theory,
a  method  was  developed  for  building  the  collaborative  gene
regulatory  network  which  was  then  decomposed  into  many
small subnetworks, each containing regulatory genes collabora-
tively controlling a biological process or a trait. The method has
been  applied  to  multiple  transcriptomic  data  sets  in  multiple
species  and  the  results  showed  that  regulatory  genes
governing  a  biological  process  or  a  complex  trait  were
captured in almost every case.

Recently,  a  method  for  joint  construction  of  multiple  gene
GRNs  using  gene  expression  data  from  multiple  tissues  or
conditions  was  developed[318].  The  method  allows  for  identi-
fying the common regulators across multiple tissues/conditions
and unique regulators peculiar to just one tissue. In addition to
this,  integrative  analysis  of  spatial  transcriptome,  single-cell
RNA-seq and RNA-seq data has emerged[25,91], which indicates a
new era for interpretation of spatiotemporal data yielded from
development  and  differentiation  processes  has  arrived.  Obvi-
ously,  more  advanced  software  pipelines  and  tools  for
analyzing  multi-sourced  data  or  real  spatiotemporal  data  are
needed.

 Concluding remarks

It  becomes  increasingly  clear  that  high-throughput  sequ-
encing technologies, together with the newly available scRNA-
seq, CRISPR-mediated genome editing, CRISPR-mediated upre-
gulation/downregulation,  spatial  transcriptome  and  advanced

 
Fig.  5    Illustration of  how to construct  a  multilayered hierarchical  gene regulatory  network (ML-hGRN)  to  encompass  a  given transcription
factor (TF) using Top-down GGM and Bottom-up GGM Algorithms synergistically.
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bioinformatics  analysis  technologies  have  provided  unprece-
dented  opportunities  to  leverage  the  important  and  unique
development  and  differentiation-related  issues  of  forest  trees.
The  large  amounts  of  data  will  help  to  study  molecular  me-
chanisms of tree growth and development as well as genome-
assisted  forest  tree  breeding.  Future  research  in  forest  geno-
mics  is  being  refocused  on  some  important  developmental,
evolutionary,  and  adaptative  problems,  for  example,  stem  cell
entity  maintenance,  tissue,  organ  and  architecture  formation,
secondary  growth,  transformation  recalcitrance,  nitrogen
fixing,  perennial  growth  and  seasonality  regulation,  genome
evolution, genetic diversity and climate changes, QTL mapping
and genomic selection, and regulatory mechanisms underlying
various  complex  traits.  Forest  genomics  research  is  moving
towards more interdisciplinary endeavors.  With effective colla-
boration  among  global  researchers  from  different  disciplines,
we  can  optimistically  foresee  the  even  greater,  and  faster  ad-
vancement in forest genomics and systems biology, which will
maximize  the  potential  of  developing  'desirable,  customer-
designed  forest  trees',  for  improving  our  environment,  and
fighting climate change.
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