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Abstract
Understory  vegetation  accounts  for  a  large  proportion  of  floral  diversity.  It  provides  various  ecosystem  functions  and  services,  such  as

productivity, nutrient cycling, organic matter decomposition and ecosystem self-regeneration. This review summarizes the available literature on

the current status and progress of the ten most studied branches of understory vegetation on both its structural and functional aspects based on

global  climate  change  and  forest  management  practices.  Future  research  directions  and  priorities  for  each  branch  is  suggested,  where

understory vegetation in response to the interplay of multiple environmental factors and its long-term monitoring using ground-based surveys

combined  with  more  efficient  modern  techniques  is  highlighted,  although  the  critical  role  of  understory  vegetation  in  ecosystem  processes

individually  verified in  the context  of  management practices  or  climate changes have been extensively  investigated.  In  summary,  this  review

provides  insights  into  the  effective  management  of  the  regeneration  and  restoration  of  forest  ecosystems,  as  well  as  the  maintenance  of

ecosystem multilevel structures, spatial patterns, and ecological functions.
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 Introduction

Understory vegetation is  a vital  stratum of forests,  including
seedlings (< 1.5 m tall),  shrubs, herbs, bryoids (i.e.,  mosses and
lichens), and lianas. Both vascular (woody and non-woody) and
nonvascular  (liverworts,  hornworts,  and  mosses)  plants  are
essential  components  of  understory  vegetation[1],  which  plays
important  roles  in  forest  ecosystem  structure  and  functioning
(e.g., biodiversity, regeneration, biomass, and nutrient content,
as well as functional traits) and provision of ecological services
(e.g.,  soil  nutrient  cycling  and  biological  processes,  water
conservation,  as  well  as  mitigating  emissions  of  greenhouse
gas  from carbon (C)  sequestration and nitrogen (N)  dynamics)
(Fig.  1)[2,3].  They can also provide food,  shelter,  and habitat  for
animal  species,  especially  for  soil  arthropods  and  large
herbivores[4]. Nevertheless, the composition and distribution of
understory  vegetation  are  strongly  influenced  by  competition
(generalizability)  or  facilitation  (specificity)  from  the  overstory
trees[5−7].  Understory  species  are  always  seen  as  'noxious

weeds'  with  exploitative  competition  for  light,  water,  and
nutrients  or  interference  competition  involving  allelopathic
effects  against  target  overstory  trees,  especially  plantation
forests[8,9].  Moreover,  overstory  management,  mainly  thinning
and  pruning  practices,  can  directly  and  indirectly  affect  the
formation  of  understory  vegetation,  which  in  turn  regulates
understory community resistance, adaptation, and resilience to
general climate changes (e.g.,  drought, global warming, and N
deposition),  extreme  climate  events  (e.g.,  fire,  heatwaves,  and
freezing  rain),  and  other  adversities  (e.g.,  strong  irradiance,
pests,  and  pathogens)[10−12].  As  a  result,  more  experiments
based  on  understory  removal  and  overstory  management  are
being carried out  to explore the role  of  understory  vegetation
in  ecosystem  function,  with  some  controversial  results[9,13,14].
This  review  recapitulated  the  current  status,  progress,  and
future  direction  of  forest  understory  vegetation  studies.  We
expect that this review can help understand the mechanisms of
understory  developments  to  support  ecosystem  multifunc-
tionality and sustainability against unpredictable global climate
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change. We hope that it  will  also provide professionals,  mana-
gers,  and  policy  makers  with  scientific  guidelines  for  the
sustainable management of forests.

 Biodiversity of understory vegetation

High  diversity  is  vital  for  maintaining  multiple  ecosystem
functions[15] and  regulating  forest  regeneration  dynamics[16].
Understory  vegetation  biodiversity  often  exhibits  significant
variations  along  a  range  of  abiotic  and  biotic  gradients  (e.g.,
rainfall[17],  productivity[18],  and  latitude[19]),  contributing  to  the
structural  complexity  and  biodiversity  of  forest
ecosystems[20,21].  In  tropical  forests,  herbaceous  plants
generally account for 14%–40% of all forest vascular species[22],
in contrast to more than 80% of vascular species in temperate
forests[20].  However,  lianas  and  epiphytes  account  for  27%  of
plant  species  in  tropical  forests,  but  they  are  depauperate  in
temperate forests (< 3% of species). The proportion of shrubs in

tropical  forests  is  also  7%  higher  than  in  temperate  forests[16].
Spatial  and  temporal  variations  in  the  biodiversity  of  under-
story  vegetation  can  lead  to  significant  differences  in  forest
ecosystem functioning[15]. Therefore, understanding the driving
mechanisms  of  understory  biodiversity  can  have  important
implications for biodiversity conservation and ecosystem func-
tion maintenance in global climate change.

Various mechanisms have been proposed to account for the
formation  and  maintenance  mechanisms  of  understory  vege-
tation  biodiversity[23−26].  Though  they  are  far  from  conclusive,
there  are  two  dominant  hypotheses  in  the  context  of  intra-
specific  competition  and  resource  availability  (Fig.  2).  Conspe-
cific negative density dependence (CNDD), which is also known
as  the  Janzen-Connell  hypothesis  (JCH),  is  a  critical
explanation[27,28].  It  assumes  that  the  offspring's  demography
performance (e.g., growth, recruitment, and survival) would be
reduced  when  surrounded  by  a  higher  density  of  conspecific
adults  or  located  near  conspecific  adult  trees  due  to  similar

 
Fig. 1    Conceptual roles of understory vegetation in forest ecosystem functioning and services, and its response to management practice and
climate change. CO2, carbon dioxide; SOC, soil organic carbon; N, nitrogen.

 
Fig.  2    The  patterns  and  mechanisms  underlying  understory  vegetation  diversity.  1)  Understory  diversity  pattern  varies  significantly  along
spatial scales and ecological gradients. 2) Conspecific negative density dependence (CNDD) and resource availability hypothesis (RAH), which
can be used to account for the formation and maintenance mechanisms of understory vegetation biodiversity. The strength of CNDD change
along the conspecific density gradient, while the role of RAH varies with resource (e.g., light and soil fertility) availability.
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resources  requirements  or  through  host-specific  enemy
attacks[27,28].  As  a  result,  CNDD  is  generally  stronger  for
common  species  than  for  rare  ones,  thus  regulating  the
understory  diversity.  Numerous  studies  have  investigated  the
effects  of  CNDD  in  driving  understory  species  diversity[29−32],
but  results  show  that  its  strength  varies  significantly  among
climatic  zones[33−35] and  local  habitat  conditions[36,37].  In
particular,  the  effect  of  CNDD  increases  with  increasing
resource  availability[36,37] and  from  the  temperate  to  tropical
zones[33−35].  Plant  functional  groups  also  show  different  sus-
ceptibilities  to  CNDD[38−40];  fast-growing  species,  arbuscular
mycorrhizal species, and shade-tolerant species suffer stronger
CNDD than slow-growing species, ectomycorrhizal species, and
shade-intolerant  species,  respectively.  In  addition,  increasing
mechanistic  studies  have  shown  that  other  biotic  stress  (e.g.,
fungal  pathogens,  insects,  and  herbivores)  is  likely  to  be  a
driving force behind these patterns[41−43].

The  resource  availability  hypothesis  (RAH)  is  another  domi-
nant  interpretation  for  variability  in  understory  vegetation
diversity since understory vegetation inhabits  resource-limited
environments[44,45]. RAH highlights the role of environmental or
resource  heterogeneity  (e.g.,  light  and  soil  nutrients).  For
example,  increased  light  availability  not  only  promotes  the
growth and survival of understory vegetation, but also provides
additional  ecological  niches  for  species  with  different  life
history  strategies  to  meet  their  light  demand,  thereby
increasing diversity[46−48]. Soil properties are also critical factors
driving  understory  species  diversity[49,50].  The  diversity  of
understory  species  decreases  with  decreasing  soil  pH  and
available N and phosphorus (P) contents. Moreover, succession
history[51], forest management strategies, and fragmentation[52]

can  also  drive  understory  vegetation  diversity  by  altering  the
supply  of  resources.  Over  the  last  decades,  evidence  has
accumulated  that  there  are  persistent  imprints  on  understory
vegetation  diversity[53] by  anthropogenic  disturbances,  e.g.,
thinning[10],  invasive  species[54],  and  wildfires[55],  as  well  as
climate  change,  e.g.,  drought[56],  warming[57],  and  acidifying
deposition[58].

Understanding  the  patterns  and  mechanisms  underlying
understory  vegetation  biodiversity  is  a  longstanding  goal  in
ecology.  However,  there are still  significant  gaps ranging from
the  lack  of  integrated  studies  considering  multiple  climatic
factors,  neglecting  the  interaction  of  multiple  trophic  levels,
and  the  lack  of  practical  monitoring  tools.  Hence,  we  devise
three  directions  for  future  research.  First,  climate  change  has
been  widely  recognized  as  a  major  driver  of  species  diversity.
Multiple  climate  variables  can  interactively  influence  plant
diversity  at  local,  regional,  and  global  scales.  Because  most
previous  studies  focused  on  individual  climate  factors,  it  is
difficult  to  reflect  the  actual  situation  under  climate  change.
Therefore,  it  is  necessary  to  strengthen  the  study  on  the
mechanisms  of  understory  vegetation  responding  to  the
interaction  of  multiple  climate  factors.  Second,  the  high
diversity enables the understory to be a 'biodiversity reservoir'
and  to  provide  better  habitat  and  refuge  for  arthropods  and
large  herbivores[4].  For  instance,  large  herbivores  are  critical
factors  that  maintain  understory  diversity  by  consuming
vegetation.  Herbivores can also alleviate plant competition for
light  by  selectively  targeting  taller  species  and  increasing  the
availability  of  light  for  shorter  plants[59].  However,  it  remains
unclear  how  multiple  trophic  interactions  contribute  to

maintaining  species  abundance  and  richness  of  understory
vegetation  and  ecosystem  function.  Third,  accurate  and  more
efficient  characterization  and  measurement  of  understory
species  diversity  in  the  context  of  global  climate  change  and
biodiversity loss remains an issue. Currently,  the monitoring of
understory  vegetation  is  still  dominated  by  ground-based
surveys.  Although  this  approach  can  accurately  describe  the
vegetation  composition  and  dynamics,  it  is  time-consuming
and  laborious  at  larger  scales  and  over  extended  periods.
Application  of  more  efficient  methods,  such  as  3D  LiDAR
scanning  technology  and  hyperspectral  scanning  technology,
would  greatly  improve  the  understanding  of  understory
vegetation diversity.

 Regeneration of understory vegetation

Understory  vegetation  regeneration  is  a  crucial  ecological
process  in  forest  ecosystems  to  achieve  self-reproduction  and
recovery,  which  is  essential  for  maintaining  forest  community
structure  and  enriching  biodiversity[60].  Understory  regene-
ration  includes  trees,  shrubs,  herbs,  and  bryophytes,  with  tree
regeneration being the dominant  process  in  forest  understory
layer.  It  also  involves  the  various  stages  of  plant  growth  from
seed  production,  dispersal,  and  germination  to  seedlings'
settlement, survival, and growth[61].  The seedling stage is most
sensitive to external environments during tree regeneration[62],
which  is  particularly  vulnerable  to  abiotic  factors  (e.g.,  gap
dynamics,  drought,  and  shading)  and  more  susceptible  to
stress  from  pathogens  and  herbivores[63,64],  as  well  as  other
biological  factors  (e.g.,  competition  from  neighboring  plants
and effect by mycorrhizal fungi symbiosis) (Fig. 3)[3,65,66]. Forest
gap  disturbance  and  understory  vegetation  competition  are
key  bio-abiotic  effect  factors  of  primary  forest  regeneration
processes[3,67,68].  Forest  gaps  can  adjust  the  competition
between  tree  seedlings  and  understory  plants  by  changing
stand  structure  and  microenvironmental  factors  (including
sunlight,  moisture,  and  soil  nutrients)[69−72].  Among  these
abiotic  and  biotic  factors,  sunlight  is  widely  accepted  as  the
dominating  factor  driving  understory  regeneration  since  it
provides  vital  energy  and  signals  for  plant  grow  and  develop-
ment and is the most heterogenous factor in forests[73−75]. Here,

 
Fig.  3    Pathways  of  bio-abiotic  factors  effect  on  understory
vegetation  regeneration.  Positive  effects  of  bio-abiotic  factors  to
understory  vegetation  are  shown  as  plus  signs  (+),  and  negative
effects as negative signs (−).
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we  reviewed  the  unique  role  of  sunlight  (light  intensity  and
light  quality)  concerning  understory  vegetation  regeneration
and discussed its drivers.

Sunlight  can  strongly  influence  the  survival  and  growth  of
understory  vegetation.  Its  effect  magnitude  may  depend  on
habitat light intensity[76]. Light availability substantially impacts
understory  shrub  and  herb  communities  by  changing  vital
functional  traits,  mainly  due  to  responses  by  different  species
groups[47].  Low  light  availability  in  the  understory  is  generally
considered  a  stress  for  tree  seedlings,  limiting  their  net  C
accumulation  and  growth[14],  while  high  light  intensity  can
increase  their  growth  rates.  Thus,  light  heterogeneity  may
determine  understory  vegetation  biodiversity  due  to  diffe-
rences  in  light  utilization  strategies  among  species[77].  More
critically,  solar  radiation  penetrating  the  understory  has  sub-
stantial  seasonal  and  diurnal  variability  in  the  spectral  com-
position  (from  280  to  750  nm,  including  ultraviolet  radiation,
visible  light,  and  far-red  light).  Such  variation  is  caused  by
changes  in  solar  zenith  angle,  wind  disturbance,  and  forest
canopy effects (e.g. light attenuation, absorption, and reflection
by overstory leaves)[78]. Molecular studies on model species find
that each spectral composition can specifically regulate a wide
range  of  plant  ecophysiological  processes  (seed  generation,
leaf  photosynthesis,  morphology,  and  biomass  accumulation),
individual  performance,  growth,  and  phenology[79−81].  Recent
studies  on  understory  herbaceous  plants  have  found  that
ultraviolet-B  (UV-B)  radiation  (280−315  nm)  significantly
reduces the total leaf area of shade-tolerant species, while blue
light  (400−500  nm)  significantly  increase  their  photosynthetic
rate[82].  For  tree species with a long-life  cycle,  previous studies
involving spectral interaction (light quality) mainly focus on the
ratio of  red light to far-red light (R/FR)  in the context  of  shade
syndrome[83−85]. For instance, Razzak et al.[86] found that a high
R/FR  ratio  significantly  increased  the  cotyledon  length  and
chlorophyll content of Scottish pine seedlings, while a low ratio
increased  the  hypocotyl  length.  In  terms  of  canopy  spectral
biology, however, most results are obtained in the laboratory or
greenhouse at  fixed spectral  ratios of  the visible bands.  At  the
same time, light effects on tree seedlings are still less clear.

Recently,  a  few  studies  have  attempted  to  explore  how
changes in canopy spectral  composition regulate tree seeding
growth,  aiming  to  provide  new  scope  to  forest  regeneration.
For  instance,  one  growth-chamber  study  using  LED  spectral
control  indicated  that  blue  light  increased  the  sturdiness  and
altered  the  branching  patterns  in  seedlings  of  Norway  spruce
and  Scots  pine[87] while  improving  the  water-use  efficiency
(WUE)  of  silver  birch[88].  Another  garden  study  found  that
seedlings  of Pinus  koraiensis and Quercus  mongolica had
significantly  different  spectral  adaptation  strategies[89]. Q.
mongolica tends to use spectral changes to adjust morphology
to  increase  light  capture  ability,  while P.  koraiensis adjusted
physiological  and  biochemical  processes  to  improve  C  assi-
milation efficiency. Such results are consistent with those from
shade-tolerant  and  intolerant  herbs  in  the  understory[82,90].
However,  the  lack  of  studies  on  tree  species  to  solar  radiation
limits  our  exploration  of  the  mechanism  of  light-driven  forest
regeneration.

Global  changes  will  profoundly  affect  future  forest
ecosystems[91], driving understory vegetation regeneration and
understory  functioning  by  altering  resource  availability  and
habitats. Extreme climate events are projected to become more

prevalent  in  the  future  and  significantly  modify  solar  spectral
composition  (e.g.,  evaluating  solar  UV  radiation)  that  under-
story tree species receive, by changing atmospheric conditions
(e.g.,  stratospheric  ozone,  aerosols,  and  cloud  cover),  modifi-
cation  of  land  cover  (e.g.,  snow,  ice,  and  vegetation),  and
alteration  in  the  timing  of  development  in  organisms  (i.e.,
phenology)[92]. However, there are still significant uncertainties
about  how  understory  regeneration  is  affected  by  the  inter-
action  of  global  change  and  solar  radiation.  To  better  under-
stand  the  underlying  mechanism  of  understory  regeneration,
we  suggested  focusing  on  the  following  aspects:  First,  direct
and indirect effects via global changes will be equally crucial in
determining  understory  regeneration,  especially  plant  species'
light  competition.  Few  studies  focus  on  the  mutual  effect  of
understory solar spectral composition and N deposition on tree
regeneration.  Second,  understory  plants  typically  grow  in
dynamic natural light environments[93,94].  However, most exist-
ing studies have focused on seedlings'  growth under constant
light conditions, which may over or underestimate the effect of
fluctuating  light  on  seedling  growth.  Therefore,  evaluating
seedlings'  responses  under  varying  light  conditions  is  critical.
Third, studies of how light intervenes plant–soil feedbacks and
affects  understory  vegetation regeneration are  still  rare.  Incor-
porating the above- and below-ground responses of seedlings
into  a  unified  framework  in  the  context  of  global  change  will
provide novel insights for understory regeneration.

 Biomass, nutrient content and storage of
understory vegetation

Assessment  of  biomass  storage  is  often  an  essential  part  of
quantifying nutrient storage. Biomass storage is generally used
to  evaluate  the  performance  and  health  of  different  plant
individuals  or  strata  in  forest  ecosystems.  Variations  in  forest
biomass  and  nutrient  storage  have  been  well  studied  across
different  forest  types  and  spatial-temporal  scales[95−97],  while
these  studies  usually  exclude  understory  vegetation.  Under-
story  plays  a  crucial  role  in  nutrient  cycling  and  maintaining
forest productivity. Therefore, understory biomass and nutrient
storage  have  recently  gained  more  attention.  This  section  will
review the understory vegetation biomass and its contribution
to the nutrient storage of forest ecosystems.

As an essential component of a forest ecosystem, understory
species  contribute  disproportionately  to  forest  biomass[98].
Understory  vegetation  biomass  averaged  6.5  t·ha–1,  contribu-
ting  more  than  6%  to  total  forest  biomass[99].  It  varied  largely
with climatic regions and forest types. The average understory
biomass  in  the  cold  temperate  region  is  higher  than  in  other
climate  regions.  The  average  understory  biomass  is  higher  in
natural  forests  than  in  planted  forests  at  a  large  scale[99].  Also,
the  changes  in  understory  biomass  show  an  apparent  spatial
pattern[99].  Specifically,  understory  biomass  decreased  with
increasing  longitude  but  decreasing  latitude,  elevation,  and
mean  annual  temperature  and  precipitation.  These  findings
provide  a  comprehensive  understanding  of  the  spatial  distri-
bution  pattern  of  understory  biomass.  These  spatial  patterns
may  be  attributable  to  the  variation  of  canopy  tree  species
composition and environmental  conditions (e.g.,  precipitation,
light,  temperature,  soil,  and  topography),  which  in  turn  could
alter  resource  distribution  in  the  forest  understory  and  then
affect  the  establishment  of  understory  plants  and  understory
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biomass  accumulation.  Stand  structure  strongly  affects  the
changes in understory biomass, but the results are inconsistent.
Understory  biomass  is  negatively  correlated  with  stand  age[99]

due  to  weakening  the  light  resource  and  increasing  intraspe-
cific competition. However, changes in understory biomass are
inconsistent  across  different  successional  stages,  and  it
generally  increases  in  the  early  successional  stages[100].  The
current  evidence  is  insufficient  to  understand  the  temporal
dynamics of understory biomass.

The lack of practical and accurate assessment methods limits
understory  vegetation  biomass  assessment.  The  traditional
destructive  harvesting  and  oven-drying  method  is  the  most
accurate method to measure understory biomass. However, it is
labor-intensive and time-consuming,  disturbs the soil  environ-
ment,  and  hinders  successive  monitoring,  especially  for  long-
term  experiments.  The  application  of  biomass  estimation
models  is  a  non-destructive  alternative  in  which  biomass  is
estimated  based  on  easily  measured  attributes  of  a  plant  or
community. This method helps weaken the harm to vegetation
and  trace  the  long-term  changes  in  stand  biomass.  Biomass
allometric  equations  for  understory  vegetation  mainly  include
species-specific  and  mixed-species  models  based  on  the
number  of  species  to  be  modeled[101,102].  The  species-specific
model is mostly individual- or species-level allometric model for
specific  dominant  shrubs,  which  generally  use  relatively  easy-
to-obtain  filed  measurements  of  biometric  data  (e.g.,  crown
diameter,  percentage  cover,  height,  stem  basal  diameter,  or
their  combinations  of  two  or  three  parameters),  as  a  biomass
predictor  variable  of  shrub  individuals[102−104].  This  model  is
widely  used in  plantations  with  a  good predictive  capacity  for
dominant  species[102].  However,  this  model  is  unsuitable  for
estimating the biomass of all species due to higher biodiversity
in  the  understory  layer,  resulting  in  considerable  uncertainty.
Mixed-species  model  is  generally  established  for  a  specific
plant  functional  group  (e.g.,  shrubs  and  herbs)  using  corres-
ponding  community  structure  parameters  (e.g.,  percentage
cover, average height, and average stem basal diameter)[105,106].
Jin  &  Bao[105] fitted  an  optimal  mixed-species  model  for  the
understory  layer  in  a  cypress  plantation  using  the  volume
calculated  as  percentage  cover  multiplied  by  the  average
height.  Although the accuracy may be partly  lost  due to great
variations  in  morphology  and  structure  of  understory  species
(e.g.,  much-branched  and  tillering),  the  mixed-species  model
dramatically  improves  estimation  efficiency  and  widen  the
range  of  applications.  Presently,  the  mixed-species  model  is
rarely used and needs more attention.

Understory  vegetation,  as  a  substantial  nutrient  pool,  is  an
essential  contributor  to  nutrient  cycling  due  to  its  rapid
turnover  and  the  large  proportion  of  high-quality  (low  C/N
ratio)  and  easily  decomposable  litter[107,108].  Nutrient  storage
patterns  are  generally  similar  to  biomass  storage  trends
because  understory  biomass  determines  nutrient  storage.
However,  plant  nutrient  content  may  affect  the  estimation
accuracy  of  nutrient  storage.  A  global  synthesis  showed  that
woody  plants  have  higher  C  contents  (averaged  48.0%)  than
herbaceous  plants  (averaged  43.1%);  woody  organ  C  contents
range from 47.4  to  48.6%,  while  herbaceous organ C contents
range  from  42.4  to  44.7%[109].  Notably,  this  study,  with  small
samples,  did  not  identify  the  C  contents  of  shrubs.  Plant  or
community  C  storage  may  be  overestimated  using  the  widely
employed  C  content  of  50%,  especially  for  understory
vegetation. The ratio of the understory layer C storage to forest

total  C  storage  ranges  from  2.2  to  18.8%,  and  the  ratio  for  N
ranges  from  6.0  to  26.0%  in  different  subalpine  conifer
forests[110], indicating that the contribution of understory could
not be neglected. Other nutrient contents (e.g., N, P, potassium
(K), magnesium (Mg)) in the understory are higher than those in
overstory  trees,  and  herbaceous  species  have  the  highest
amounts  of  nutrient  contents[3,20,111].  Landuyt  et  al.[112] found
that  N  and  P  contents  of  understory  vegetation  in  temperate
deciduous forests averaged 2.7% and 2.7‰, respectively. These
findings  are  mainly  focused  on  specific  understory  dominant
species  or  forest  types,  leading  to  significant  uncertainties  in
nutrient  storage  assessment.  Therefore,  we  suggest  that  the
specific  nutrient  contents  of  various  organs,  life  forms,  and
forest  types  across  climatic  regions  should  be  considered  in
estimating  nutrient  storage.  Although  the  understory  layer  C
storage  has  been  intensely  studied  at  the  stand  or  regional
scales[113],  the  generalization  of  other  nutrient  storage  is  less
understood. Moreover, site-specific single-point studies may be
inaccurate  and  incomplete  against  various  environmental
conditions.  Synthesis  analysis,  such  as  the  meta-analysis
method,  would  be  an  optimal  option  in  assessing  the  relative
contribution  of  understory  to  forest  nutrient  storage  in  the
context of climate change and land use.

 Carbon and nitrogen relationship of understory
species

Plant  species  in  the  understory  largely  depend  on  maintai-
ning  a  positive  net  C  balance  under  shade  conditions  (i.e.,
Carbon  Gain  Hypothesis[114]).  Leaf  N  is  a  determining  factor  of
understory plant C assimilation, as N is a dominant component
of the photosynthetic apparatus (carboxylation enzyme, Calvin
proteins,  and  leaf  chlorophyll)[115].  Generally,  leaf  N  concen-
tration  in  understory  species  is  higher  than  in  overstory  tree
species[116], corresponding to the maximization of C gain under
light  limitation.  Alternately,  root  N  uptake  is  a  C-cost  process.
More  C  would  be  allocated  to  the  roots  of  understory  plants
when assimilate production is enhanced[117].  Therefore,  under-
story  plant  C  gain  and  N  uptake  are  well  coupled.  However,
global changes (e.g., greenhouse emissions, warming, drought,
and  N  deposition)  can  modify  the  relationships  between
understory  plant  C  gain  and  N  uptake  and  consequently
challenge  biodiversity  and  the  net  primary  productivity  (NPP)
of  forest  ecosystems[118,119].  Here,  we  reviewed  the  effects  of
main  global  changes  on  understory  plants'  C  and  N
relationships.

Carbon dioxide (CO2) is one of the critical substrates of plant
photosynthesis. The concentration of CO2 is relatively sufficient
for  understory  plants  due  to  the  lowered  maximum  light-
saturated  photosynthetic  rates  under  limited  light  conditions.
In  the  context  of  climate  change,  elevated  CO2 (e[CO2])  may
increase  the  photosynthetic  light  use  efficiency  of  understory
plants  to  compensate  for  the  restrained  leaf  C  gain[120].  How-
ever,  down-regulation  of  photosynthesis  has  also  been
observed in understory seedlings under e[CO2][121]. Such incon-
sistency  can  be  partially  explained  by  the  difference  in  N
partitioning  regimes  among  understory  species  grown  in
diverse  environments[122].  Generally,  photosynthesis  and
growth are temporarily stimulated by e[CO2] but attenuated in
the  long  term  because  plants  are  unable  to  acquire  sufficient
N[123].  For optimizing N use efficiency under e[CO2]  conditions,
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a significant fraction of leaf N is invested in the photosynthetic
apparatus[124].  For  example,  the  dwarf  bamboo increased con-
centrations of both carbohydrate and N for e[CO2] acclimation,
indicating  the  close  relationships  between  C  gain  and  N
utilization  in  the  understory[125].  The  free-air  CO2 enrichment
(FACE) experiments have also provided direct evidence for the
link  between  photosynthesis  acclimation  and  N  supply  under
e[CO2] concentrations[124].

Global  warming  can  affect  plant  survival  and  growth,
community  structure,  ecosystem  NPP,  and  consequently
terrestrial  C  sequestration[126].  Significant  thermophilization
(warm-affinity)  of  understory  plant  communities  has  been
documented,  reflecting  an  increase  in  species  adaptation
ability to warmer conditions[119]. Macroclimate warming (of the
free  atmosphere)  can  affect  microclimates  (of  the  understory),
and vice versa;  the local microclimatic effects of the understory
could  regulate  the  impacts  of  macroclimate  warming[126].
Warming  generally  stimulates  enzymatic  activities  in  plants
(e.g.,  improved  photosynthetic  enzyme  activity  for  C  fixation
and  nitrate  reductase  for  N  uptake),  allowing  understory
species  to  quickly  approach  the  optimal  temperature  of
photosynthesis  as  a  consequence  of  improved  growth  and
reproduction.  Soil  warming  in  the  context  of  global  warming
also  plays  a  vital  role  in  soil  nutrient  availability,  especially  N
nutrition[127].  An  increase  in  soil  temperature  can  promote
microbial  activity,  further  stimulating  the  decay  rate  of  plant
organic matter and N mineralization[128]. Thus, understory plant
N availability can be enhanced and N limitation will be relieved
under soil warming, leading to improved N uptake by root. Not
only  is  root  N  absorption  affected  by  global  warming,  but  the
leaf-level  C  assimilation  can  be  altered  by  heterogeneous
microclimates  in  the  understory.  Understory  species  growth  is
characterized  by  thermal  limitation  due  to  the  reduced  solar
radiation  by  the  canopy.  A  field  study  pointed  out  that  high
light  supplements  can  boost  understory  plant  responses  to
warming  due  to  limited  light  availability  and  temperature
under  closed-canopy  forests[118].  In  addition,  N  fertilization
combined  with  warming  did  cause  strong  community
responses  (i.e.,  biodiversity)  of  understory,  although  extra  N
inputs  alone  had  only  minor  effects  in  N-saturated  temperate
forests[118].  It  remains  unclear  how  warming  interplays  with  N
addition affecting the understory plant C gain and N uptake in
N-limited forests.

In the understory, plants are mostly characterized by shallow
root  systems,  which  makes  them  particularly  susceptible  to
drought  and  nutrient-poor  soils.  Drought  can  challenge  plant
hydraulic  conduction,  decrease  leaf  photosynthetic  capacity
and  production,  and  distinctly  modifies  plant  C  and  N
relationship[129].  Assimilates  transported  from  the  source  (leaf)
to  the  sink  (root)  are  simultaneously  stopped  or  reduced  on
account  of  drought-induced  hydraulic  failure[130].  Meanwhile,
drought-induced xylem embolization commonly reduces water
transportation from roots to aboveground parts, which further
restrains  N  transportation  in  woody  seedlings  in  the  under-
story.  Drought  also  reduces  root  nutrient  uptake  and  nutrient
mobilization  in  soil[131] and  inhibits  N  mineralization  due  to
restrained  microbial  metabolic  activities[132].  Besides,  warmer
air temperatures and increased vapor pressure deficit  with the
open  canopy  influence  the  habitat  microclimate  and  resource
availability where understory seedlings grow[133], further inten-
sifying the adverse effects of water and nutrient deficiencies. As
a whole, drought can decouple the above- and below-ground C

and N relations of understory seedlings, which may potentially
regulate forest ecosystem production and nutrient cycling.

N deposition is one of the major issues of global change. An
increase  in  N  input  can  stimulate  plant  N  uptake  and  con-
temporarily  improve  leaf  C  assimilation  by  enhancing  soil  N
availability[134].  Meanwhile,  additional  nutrients  also  increase
the capacity of understory plants to utilize the sporadic burst of
high  irradiance  in  sunflecks[135].  Extensive  research  has  been
conducted  on  understory  and/or  canopy  N  additions  to  simu-
late  the  effects  of  atmospheric  N  deposition  on  understory
plants'  C  allocation and N uptake[136−138].  Due to specific  diffe-
rences in N sensitivities[116], N deposition may even change the
understory  community  structure  through  enhanced  species'
survival with high N tolerance and low light requirements. Huo
et  al.[139] reported  that  the  survival  rate  and  the  competitive-
ness  of Q.  aliena seedlings  in  the understory  can be improved
by increased soil N in the pine-oak mixed forest, promoting the
succession  of  pine  (P.  tabulaeformis)  forest  to  oak  (Q.  aliena)
forest[140].  Moreover,  increased  growth  and  cover  of  canopy
trees  under  N  enrichment  may  reduce  light  availability  for
understory  plants,  suppressing  leaf  photosynthesis.  For
instance,  Mao  et  al.[137] found  that  understory  plant  growth
might  be  more  limited  by  light  than  N  in  tropical  reforested
ecosystems. Furthermore, N deposition in tropical regions may
accelerate  ecosystem  P  limitation,  which  can  decline  the
photosynthetic  performance of  some understory  species  in  N-
rich  tropical  forests[141].  Thus,  it  is  necessary  to  consider  the
combined  effects  of  various  nutrients  in  determining  under-
story plant C gain and N uptake.

Currently,  studies  are  still  very  scarce  about  understory
plants'  C  and  N  relationships  in  responses  to  interactions
among global change factors[3]. Here, we suggest that: i) global
changes  should  be  taken  into  account  in  synchronisation  to
reveal  the  underlying  mechanisms  of  understory  plant  C  gain
and  N  uptake  responses;  ii)  integrated  investigation  of  under-
story  functional  responses  (C  and  nutrients  utilization  and
cycling)  will  be  crucial  to  predicting  functional  changes  in  the
understory  comprehensively.  Developing  a  conceptual  frame-
work  synthesizing  the  possible  effects  of  multiple  global
changes  will  benefit  our  understanding  of  the  driving  mecha-
nisms mediating forest ecosystem functioning (Fig. 4).

 Functional traits of understory species

Understory  vegetation  is  susceptible  to  environmental  cha-
nges and can alter functional traits to improve its adaptability,

 
Fig. 4    A framework of global change effects on carbon gain and
nitrogen uptake by understory vegetation.
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e.g.,  enhancing  defense  and/or  resource  acquisition[136,142,143].
A  classic  example  is  the  specific  leaf  area  (SLA)  of  understory
plants,  which  can  increase  with  increasing  nutrient  availability
to  enhance  light  acquisition[143,144].  Given  the  vital  role  of
understory  plants  and  their  complex  relations  with  changing
environments, we reviewed recent advances in functional traits
of  understory  species  and  their  acclimation  to  environmental
changes.  We  focus  on  the  impacts  of  e[CO2],  global  warming,
drought,  and  increased  N  deposition  on  leaf  morphology,
physiology, and biochemical traits of understory species (Fig. 5).

e[CO2] is conducive to plant growth due to the critical role of
CO2 in photosynthesis (i.e., fertilization effect). Thus, e[CO2] can
enhance  the  net  photosynthetic  rate  but  decrease  total
chlorophyll  concentrations  in  leaves[145].  Consequently,  e[CO2]
could  increase  leaf  area  and  decrease  SLA  due  to  C
accumulation[146].  Numerous  studies  have  found  that  e[CO2]
can  affect  C  allocation  and  distribution,  altering  the  concen-
trations  of  chemical  compounds[125,146].  For  example,  carbohy-
drate  concentrations,  such  as  sucrose,  sugar,  starch,  and  non-
structural  carbohydrate  (NSC),  have  been  increased  by  long-
term  e[CO2][125,146].  In  addition,  e[CO2]  can  also  affect  the
process of C-water exchange. For instance, e[CO2] can decrease
leaf stomatal conductance, resulting in low water loss and high
plant WUE[125].

The physiology and ecology of forest understory species are
often highly sensitive to changes in temperature[147].  However,
the  effects  of  warming  on  understory  vegetation  are  still
unclear[147,148].  On  the  one  hand,  previous  studies  have  found
that experimental warming can promote individual height and
productivity  of  understory  plants[148].  Since  plants  under  high
temperatures  had  an  early  onset  of  leaf  senescence,  on  the
other  hand,  some  studies  also  found  that  warming  can
decrease  photosynthesis,  stomatal  conductance,  and  total
biomass[147].  For  leaf  traits,  enhanced  temperature  decreases
leaf  dry  matter  content,  nutrient  and  pigment  concentrations,
SLA,  and  stomatal  parameters[149].  In  addition,  plant  species
have  remarkable  differences  with  contrasting  life  forms  in
response  to  increased  temperature[148].  For  example,  warming
affects understory herbs than woody species[150].

The  frequency  and  intensity  of  drought  will  increase  in  the
future,  which can result  in plants undergoing several  changes.
In  general,  drought  significantly  affects  plant  water  cycles[151].
Leaf water potential is negatively affected, while leaf C isotopic
composition  (or  intrinsic  WUE)  is  positively  affected  by  the
drought[151].  Moreover,  drought  stress  can  decrease  leaf  size,
stomatal  number,  and  leaf  surface,  and  thicken  cell  walls,
profoundly  inhibiting  the  leaf  biomass,  plant  height,  and
aboveground  biomass  of  understory  plants[152].  The  accumu-
lated evidence indicates that the response of understory plant
functional  traits  to  drought  depends  on  the  climate  zone  and
plant  functional  groups.  For  instance,  leaf  photosynthesis  is
generally  insensitive  to  drought  in  temperate  forests  but
sensitive in rainforests, leading to the depletion of leaf starch in
shrubs  of  understory  plants[56].  Drought  decreases  the  SLA  of
grasses  but  not  that  of  forbs  in  temperate  systems,  which
might  be  associated  with  a  phenotypic  adjustment  that
enhances  WUE  under  water  stress[153].  In  sub-Mediterranean
systems,  however,  grasses  significantly  increase  SLA  under
drought conditions, which might be related to their strategy to
allocate resources to belowground parts[153].

N  deposition  has  dramatically  increased  since  the  1980s,
exerting  huge  impacts  on  functional  traits  and  acclimation  of
understory  plants[136,154,155].  Previous  studies  have  shown  that
variations  in  SLA,  leaf  dry  matter  content,  leaf  nutrient  con-
centrations,  and  chemical  compounds  are  closely  related  to  N
deposition[136].  First,  increased  N  deposition  can  reduce  the
light  availability  of  understory  plants  due  to  an  increase  in
canopy coverage;  thus,  understory  species  could enhance SLA
and  chlorophyll  to  increase  light  capture  ability[144].  Second,
increased  N  deposition  can  increase  leaf  N  but  decrease  P
concentrations  and  the  contents  of  nutrient  cations  (e.g.,  K+,
Ca2+,  and  Mg2+),  which  might  lead  to  a  risk  of  N-meditated
nutrient  imbalance[156].  Third,  increased  N  deposition  can
reduce  lignin  while  increasing  concentrations  of  leaf  organic
acids,  protein,  and  NSC  of  six  understory  species[136].  Addi-
tionally,  Mao  et  al.[156] found  that  N  addition  increased  the
soluble  protein  and/or  free  amino  acids  in  understory  plants
but  lowered  photosynthesis  capability  since  nutrient  imba-
lance.  Furthermore,  the  response  of  understory  plants  to  N
deposition  also  differs  among  plant  functional  groups.  It  has
been  shown  that  medium-light  and  shade-tolerant  species
have a minor physiological response to N addition, but shade-
intolerant species (i.e., Alchomea trewioides) are sensitive[156].

Although  the  responses  of  understory  plants  to  global
changes have been widely studied over the past century, most
studies focused on a single factor.  It  might not be sufficient to
uncover  the  impacts  of  global  changes  on  understory  plants
since  those  changes  in  a  given  habitat  always  coincide  in
nature[157].  Their  effects  can  be  antagonistic  or  synergistic.
Therefore,  there  are  some  crucial  questions  for  future  atten-
tion.  First,  more  work  is  necessary  to  explore  how  multiple
environmental  changes  affect  understory  plants'  functional
responses  and  acclimation.  In  this  aspect,  both  earth  system
models  and  multiple-factor  experiments  may  be  good  tools.
Second,  untangling  causality  between  understory  and  canopy
plants  is  also urgent.  The correlations between the understory
and  canopy  communities  remain  poorly  understood,  resulting
in a considerable gap in revealing how environmental changes
affect  understory  plants  and  forest  ecosystem  functioning.
Together, it is necessary to further reveal the responses of plant

 
Fig.  5    The  overview  on  the  responses  of  understory  plant
function traits to environmental changes in forest ecosystems.
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functional  traits  and  their  contributions  to  understory  plant
defense and growth under multiple global changes.

 Litter decomposition of understory vegetation

Litter decomposition is a primary biological process which is
the key to understanding the global C cycle[158,159].  Understory
vegetation only accounts for a small  fraction of forest biomass
but contributes significantly to litter biomass accumulation and
nutrient  recycling[160−162].  According  to  the  well-known  trian-
gular  model,  litter  quality  (e.g.,  lignin  and  C/N  ratio),  climatic
conditions (e.g.,  temperature and moisture),  and decomposers
(e.g.,  soil  fauna  and  microorganisms)  all  drive  global  litter
decomposition[163,164]. In this paradigm, litter decomposition of
understory  vegetation  may  follow  a  distinct  trajectory  from
canopy  trees,  and  its  decomposition  rate  varies  with  environ-
mental  conditions,  ecosystems,  and  vegetation  types[165].
Global  change  has  further  increased  the  uncertainty  of  litter
decomposition  of  understory  vegetation[166].  However,  the
litter decomposition of understory vegetation has been largely
ignored in previous studies of forest litter decomposition. Here,
we  reviewed  'trees-shrubs-herbs'  decomposition  in  a  mixed
litter  composite,  highlighted  the  unique  microhabitats  and
decomposers  upon  litter  decomposition  associated  with
understory  vegetation,  and  projected  the  future  study's  focus
on  improving  our  understanding  of  the  C  cycle  of  forest
ecosystems.

Compared with the decomposition of solely tree litter, taking
understory  vegetation  litter  into  consideration  pioneers  serial
studies  of  'trees-shrubs-herbs'  mixed  litter.  According  to  the
theory  of  the  'resource  complementarity  effect',  understory
vegetation  can  substantially  promote  the  decomposition  of
tree litter[167−169].  For example, Fujii et al.[168] reported that tree
species  diversity  did  not  significantly  change  the  litter
decomposition rate of trees in northern Japan, but there was an
apparent  synergistic  effect  when  mixed  with  understory  herb
litter. A similar case was recently found in southwestern China,
where  understory  litter  significantly  promoted  mixed  litter
decomposition  with  trees[167].  Inconsistent  results,  however,
were reported by Roeder et al.[170], who showed that vine litter
did not affect the decomposition of mixed litter with tree plant
species.  Decomposition  of  the  mixed  litter,  particularly  for  a
mixture of  understory and tree litter  (i.e.,  a  highlight on 'trees-
shrubs-herbs' decomposition), is thus pending further explora-
tion  towards  a  deep  understanding  of  the  mechanisms  that
underlie their  patterns.  These mechanisms include but are not
limited  to:  i)  Nutrient  transfer  and  resource  complementarity.
Nutrients  transfer  from  nutrient-rich  understory  vegetation
litter  to  nutrient-poor  tree  litter  and  accelerate  the  decom-
position  process  of  the  mixture[169,170];  ii)  Changes  in  the
microclimate.  The  mixed  litter  usually  has  a  higher  water-
holding  capacity,  which  benefits  the  decomposition[171,172];  iii)
Feedback  regulation  of  food  resources  by  decomposers.  The
higher  the  diversity  of  litter  species  is,  the  richer  the  decom-
position  substrates  it  provides  for  microorganisms  and  soil
fauna, resulting in a faster biodegradation process[167,173,174]; iv)
The presence of specific compounds. Secondary metabolites in
one litter (e.g., polyphenols) can promote or limit the activity of
decomposers and alter the decomposition[175,176].

Beyond  the  direct  effect  of  understory  vegetation  litter
mixed  with  those  from  trees,  understory  vegetation  provides

unique  habitats,  including  microclimates  (e.g.,  temperature,
moisture  contents,  and  light)  and  ecological  niches  (e.g.,
shading  and  physical  interception)[177−179],  thus  indirectly
impacting  on  the  processes  of  understory  vegetation  litter
decomposition  (Fig.  6).  On  the  one  hand,  shading  by  under-
story  vegetation  can  increase  the  understory  water-holding
capacity  and  keep  the  understory  water  relatively  stable,
benefiting  the  decomposition  of  litter  in  water-limited  forests
(e.g.,  semi-arid  and  karst  forests)[180].  On  the  other  hand,
photodegradation driven by solar radiation has been identified
as  another  important  driver  controlling  litter  decay  and  C
cycling across various ecosystems[181]. Although solar irradiance
is  relatively  low  in  the  forest  understory,  there  is  increasing
evidence  that  photodegradation  promotes  litter  decomposi-
tion in mesic forest ecosystems, e.g., tropical[182], subtropical[183],
temperate,  and  boreal  forests[184−186].  For  instance,  a  recent
study  in  a  temperate  forest  showed  that  photodegradation
significantly  increased  litter  mass  loss  by  120%[186].  Photode-
gradation  may  be  pronounced  for  a  considerable  part  of  the
standing woody and leaf litter that remained in no contact with
grounds  due  to  the  physical  interception  of  understory
vegetation. Moreover, canopy (understory vs gaps) and season
(open vs closed  canopy  phenology)  can  greatly  modulate  the
effect  of  solar  radiation  on  nutrient  dynamics  during  litter
decay[187].  However,  such  an  unexpected  impact  of  solar
radiation on the C cycle in the understory is  generally  ignored
in  the  previous  estimation  of  the  terrestrial  C  budget.  The
interactive  effect  of  understory  microclimate  and  ecological
niches,  especially  interactions  between  understory  water
holding  capacity  and  photodegradation,  on  understory  litter
decomposition needs particular attention.

Litter,  microorganisms,  and  soil  fauna  make  up  the  basic
understory detritus food web, where top-down and bottom-up
control  litter  decomposition  and  their  decomposers  during
decomposition[169,188,189]. Litter diversity can affect decomposer
diversity  from  the  bottom  to  the  top via the  food  web[190],
which  provides  vital  feedback  on  litter  decomposition.
Conversely,  soil  fauna  and  microbial  diversity  can  influence
litter decomposition from top to bottom[189].  These theoretical
perspectives,  however,  have  seldom  been  considered  in  the
field  of  understory  litter  decomposition,  calling  for  studies
focusing  on  coupled  litter  diversity  and  decomposer  diversity
with  combined  molecular  techniques  (e.g.,  high-throughput
sequencing  and  eDNA)  and  isotopic  labeling  techniques  (e.g.,
13C  and 15N).  In  addition,  leaching  and  fungal  mycelia  are
considered  two  major  pathways  responsible  for  transferring
nutrients  among  mixed  litters[175,191,192],  but  how  these  path-
ways work together to drive the nutrients from one vegetation
litter to another is unclear. Indeed, the transfers of C and other
nutrients  among  mixed  litter  differ  depending  on  litter
materials  and  local  niches[173,175].  The  transfers  of  various  C
components  are  also  not  precisely  known[167,193],  which
impedes the accurate prediction of nutrient transfer among the
mixture. Further study should innovate the methodology issues
concerning the additive and non-additive effects behind mixed
litter decomposition.

Global  changes  can  profoundly  affect  understory  litter
decomposition directly or indirectly by altering the understory
microclimate, vegetation functional structure, and decomposer
activities[166,194−198].  For  example,  according  to  a  meta-study,
warming increased the rate of litter decomposition by 4.2% on
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a  global  scale[197].  The  influence  of  e[CO2]  on  litter  decompo-
sition  is  relatively  inconspicuous  compared  to  that  of  tempe-
rature  rise,  but  e[CO2]  can  remarkably  change  C  and  other
chemicals in fresh leaves, thus mediating the trajectory of litter
decomposition  through  modifying  litter  quality[199].  Moreover,
N availability drives both plant productivity and litter recycling,
and  the  responses  of  understory  litter  decomposition  to  N
deposition are closely related to its levels. Low levels of N input
commonly  tended  to  promote  litter  decomposition,  but  high
levels tended to produce inhibition effects[200].

Nevertheless,  global  changes  also  can  synchronize  to  pro-
duce strong interaction effects upon decomposition processes.
For example, photodegradation is a contributing driver of litter
decomposition  across  biomes[181],  and  the  relevant  role  of
photodegradation  may  explain  why  C  cycling  is  underesti-
mated  by  the  empirical  models  in  terrestrial  ecosystems.  It  is
projected  that  the  exposure  of  plant  organic  matter  to  solar
radiation  will  be  significantly  modified  by  interactions  of
stratospheric  ozone,  climate  (e.g.,  cloud  cover),  and  land  use
(e.g., deforestation) at the global and regional scale[201], and by
forest  canopy  structure  and  phenology,  and  understory
vegetation  at  the  stand  scale[187].  A  better  understanding  of
how  understory  sunlight  controls  C  and  nutrient  dynamics  in
forest ecosystems is essential to accurately assess the response

of global biogeochemical cycles to climate changes. Therefore,
how  multiple  global  change  factors  jointly  drive  understory
litter's  decomposition  and  nutrient  release  demands  more
attention.

 Understory vegetation and overstory tree
interactions

The  interaction  between  under-  and  over-story  plays  a
critical  role  in  driving the composition,  structure,  and function
of  forest  ecosystems[1],  which  is  central  to  understanding  the
mechanisms  of  species  coexistence,  biodiversity  maintenance,
and  forest  management[202,203].  Their  interaction  is  generally
sustained  under  competitive  conditions  for  resource  availabi-
lity,  such  as  light,  nutrients,  and  water[204,205],  encompassing  a
range  of  negative  and  positive  relationships  by  forming
adaptive  gradients  from  inhibition  to  tolerance  and
facilitation[7,206]. These relations can also change dramatically in
the  face  of  environmental  variability[12,207,208].  This  motivates
the  urgency  of  exploring  the  potential  driving  mechanisms  of
reciprocal under- and over-story interactions[9], especially since
only  a  few  studies  have  focused  on  the  link  of  understory
vegetation  to  overstory  trees[202,209].  Here,  we  reviewed  recent
advances in the interactions among multiple vegetation layers

a

b

 
Fig.  6    Litter  decomposition  of  understory  vegetation  and  potentially  drivers.  The  potential  drivers  include  litter  quality  in  a  'trees-shrubs-
herbs' mixed litter,  microclimates (e.g.,  temperature, moisture contents, and light),  and decomposers (e.g.,  microorganisms and soil fauna) in
the context of global changes, all in a close relatedness to understory vegetation. (a) Difference in temperature and the other potential drivers
among  the  overstory,  understory,  and  canopy  gap.  (b)  Difference  in  water  availability  and  the  other  potential  drivers  among  the  overstory,
understory, and canopy gap. Two panels highlight the unique habitats of the forest understory.
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managed  mainly  by  understory  removal  (i.e.,  bottom-up
control)  and  tree  thinning/pruning  (i.e.,  top-down  control)
because  both  are  widely  applied  strategies  in  current  forest
management.

Photosynthetic  physiological  responses  of  overstory  to
understory management are essential for tree growth, regene-
ration,  and  productivity[210,211].  A  few  studies  showed  that
understory  vegetation  removal  elicited  large  increases  in
photosynthetic  characteristics,  such  as  net  CO2 assimilation
rate,  stomatal  conductance,  transpiration  rate,  as  well  as  N,  P,
and  other  nutrients  use  efficiency  in  coniferous  (e.g., P.
densiflora and Cunninghamia lanceolata) and broadleaved (e.g.,
Eucalyptus  globulus and B.  ermanii)  trees,  but  a  decrease  in
WUE[7,212,213].  These  changes  were  pronounced  in  the  upper
leaves,  whereas  the photosynthetic  performance of  the  leaves
from  the  middle  to  lower  canopy  was  not  significantly
affected[214].  However,  others  have  reported  no  effect  on
photosynthetic  capacity  in  the  absence  of  understory
vegetation[215,216].  In  addition,  C  balance  (gain  and  utilization),
commonly  characterized  by  NSC  dynamics,  is  another  critical
factor  affecting  tree  growth[217,218].  Understory  removal  does
not affect NSC concentration and their fractions (soluble sugar
and  starch)  in  both  the  above-  and  below-ground  organs/
tissues  (e.g.,  needle,  xylem,  inner-bark,  and  fine  root)  of
coniferous  trees[216,219].  However,  it  is  in  contrast  to  a  positive
increase  in  tree  NSC  pools  that  differ  between  the  dry  season
and the rainy season in a mid-story removal experiment[210]. To
a large extent,  photosynthetic C processes are associated with
changes  in  leaf  functional  traits  of  overstory  trees[203],
particularly  SLA,  which  responds  more  strongly  to  understory
removal at the leaf level[220, 221].

The dynamic  demand of  understory  vegetation for  environ-
mental  resources  often  controls  the  growth  and  natural  rege-
neration of overstory trees. Understory vegetation removal can
improve relative growth rates, e.g.,  annual increments of trunk
diameter,  height,  basal  area,  and  stand  volume  for  desirable
tree  species,  including  their  seedlings,  due  to  enhanced  SLA
and  foliar  photosynthetic  physiology[7,13,210,221−224]. A  meta-
analysis  showed  that  the  magnitude  of  the  increase  in  tree
growth  mediated  by  understory  removal  depended  on  the
tree's  development  stage  and  treatment  applied  age[225].  This
status  greatly  increases  the  aboveground  biomass  and
productivity[226−228],  despite  a  negative  relationship  with
inherent  site  fertility.  Subsequently,  understory  removal  has
positive  effects  on  the  natural  regeneration  of  overstory  trees
(i.e.,  emergence,  survival,  reproduction,  and  growth)[220,229],  in
which  early-successional  tree  species  are  more  strongly
affected by removal than mid- or late-successional species (see
review in De Lombaerde et al.[14]). However, the growth rate of
overstory  trees  does  not  benefit  from  understory  vegetation
continuously  absent  at  a  long-term  stage[215,224].  It  even
decelerates  at  the  stand  level[6,216],  irrespective  of  photosyn-
thetic  performance.  The  increment  in  growth  rates  tends  to
disappear  in  small-diameter  trees,  possibly  due  to  a  strong
suppression  from  larger-diameter  trees  at  a  specific  stand
density  and  age  after  removal[216,224,230].  Consequently,  the
effect  of  understory  on  the  growth  and  regeneration  of
overstory trees is likely to be moderate, nil, or severe.

The effects of overstory trees on understory strata have been
fully identified in the last two decades[5,9]. Tree thinning/canopy
trimming  alone  or  in  combination  with  other  abiotic  factors,

such  as  wildfire,  drought,  and  grazing,  results  in  various
ecophysiological  responses  in  understory  vegetation  through
heterogeneous  microhabitats[10,231].  In  general,  previous
studies  have  mainly  focused  on  the  impacts  of  overstory
management  on  understory  vegetation  and  fractional  cover
growth  rate[211],  composition[208],  diversity[232],  photosynthetic
characteristics[233], biomass allocation[107], and regeneration[234].
However,  changes  in  overstory  trees  may  induce  a  positive  to
neutral  to  a  negative  effect  on  understory  vegetation  charac-
teristics  at  the  plot  scale  or  stand  scale,  as  understory  species
vary  from  bryophytes  to  grasses  to  shrubs  in  varying
plantations[1,11].  Moreover,  existing  studies  were  conducted
either  in  natural  stands  and  mature  plantations  or  in  very
young  plantations.  They  completely  neglected  long-term
monitoring  of  overstory  on  understory  vegetation  from  the
seedling  stage  through  tree  canopy  closure[235],  which  is  an
essential  process  in  determining  stand  development  and
ecological function.

Overall, the differential effect of understory management on
overstory  trees,  or vice  versa,  may  be  controlled  by  multiple
factors  (Fig.  7),  such  as  species  types  (e.g.,  coniferous vs
broadleaved  tree),  stand  age  (e.g.,  mature vs young  stand),
planting density (e.g.,  low vs high density),  site attributes (e.g.,
mesic vs hydric  site),  and  management  timing  and
duration[202,236].  Three  primary  processes  driving  under-  and
over-story  interactions  were  proposed:  i)  Overstory  effect:
canopy  openness  would  affect  light  and  rainfall  interceptions,
leading to differences in the light quality and water availability
utilized  by  understory  species;  ii)  Understory  effect:  the  dense
understory  vegetation  can  shape  surface  microenvironments
(e.g.,  temperature and moisture)  and several  critical  ecological
processes,  such  as  litter  decomposition  and  nutrient  minerali-
zation,  thus  influencing  soil  resources  uptake  of  trees;  iii)
Belowground effect: complex roots interactions including their
mycorrhizal networks extend the soil volume explored by over-
and understory,  transfer  resource and information[8,9].  Further-
more,  the  allelopathy  of  plant-produced  phytochemicals
induced by plant invasion or agroforestry also alters under- and
over-story interactions through direct interspecific competition
for  soil  resources  or  indirect  effects  on  the  nutrient  cycling  of
forest  ecosystems[213,223].  It  is  worth  noting  that  these  effects
tend to co-occur, and their importance should be distinguished
in a comprehensive study.

Under-  and  over-story  interactions,  a  persistent  topic  in
forest  ecology,  are  complex  and  asymmetric.  However,  there
are  still  significant  gaps  in  our  knowledge,  which  need  to  be
explored  on  a  large  scale  from  the  community  ecophysiology
to  belowground  networks  in  an  integrated  study.  Thus,  we
answer  the  following  questions  to  better  understand  the
under-  and  over-story  relationships  under  different  manage-
ment  practices,  especially  in  climate  change.  First,  plant
ecophysiological  processes  are  major  determinants  of  growth
and  development,  influencing  community  dynamics  and
productivity. Few studies have specifically assessed community
ecophysiology  at  the  canopy  level  through  different  tissues/
organs, including fine and coarse roots, in response to thinning
or  understory  removal.  Moreover,  the  contributions  of  the
bryophyte and lichen layers are completely ignored. Therefore,
it  is  necessary  to  strengthen  the  study  of  hierarchical
interactions  among  multiple  vegetation  layers,  which  would
provide  insight  into  C  balance  and  nutrient  cycling  in  forest
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ecosystems.  Second,  in  addition  to  competition  for  light  and
water, the cross-talk between neighboring roots of under- and
over-story plants, especially involving mycorrhizae, is crucial for
regulating  soil  structure  and  resources  and  alleviating  abiotic
stress  in  forest  understory  communities.  However,  it  remains
unclear  how  mycorrhizal  networks,  root  exudates,  and
microbiota  shape  the  belowground  process  and  intervene  in
under-  and  over-story  interactions.  Finally,  due  to  the  uncer-
tainty  in  under-  and  over-story  interactions,  long-term  studies
towards  joint  management  or  in  combination  with  climate
change (e.g.,  warming,  drought,  and N deposition)  need to be
further  explored,  consequently  gaining  a  finer  understanding
of the spatiotemporal variability of the interactions. An isotope
tracing  approach  is  strongly  recommended  to  shorten  the
experimental period and improve our knowledge of interaction
processes.

 Understory vegetation effects on soil chemistry

Understory  vegetation  is  essential  in  promoting  forest  soil
nutrient  cycling  and  regulating  soil  chemical  processes  by
directly  and  indirectly  changing  soil  nutritional
status[226,229,237,238].  The  root  exudates  and  litter  of  the  under-
story  strongly  affect  soil  nutrient  content  and  availability[239].
Moreover,  understory  vegetation  can  indirectly  influence  soil
chemical  properties  due  to  its  effects  on  the  ground

environment,  such  as  reducing  solar  radiation,  lowering  soil
temperature, and increasing soil water content[240]. Research on
the  understory  function  is  primarily  conducted  in  plantation
ecosystems[241−243] because  it  is  generally  removed  to  reduce
its  resource  competition  with  target  tree  species  in  long-term
forestry  practices.  Increasing  biomass  and  diversity  of  under-
story  vegetation  are  generally  regarded  as  important  ways  to
improve  soil  fertility  in  plantation  forests[244,245].  Here,  we
reviewed  recent  advances  in  the  influence  of  understory
vegetation  on  soil  chemistry,  which  is  mainly  reflected  in  soil
pH  and  the  concentration  and  dynamics  of  SOC,  N,  P,  K,  and
other  vital  elements  (Fig.  8)[241,246].  It  would  provide  the
scientific  basis  for  understanding  forest  management  and
ecosystem functioning responding to climate change and land
use.

Soil  pH  is  one  of  the  most  pivotal  soil  chemical  properties,
affecting soil chemical and biochemical processes. Most studies
have  shown  that  understory  removal  in  plantations  had  no
significant  effect  on  soil  pH[240,245,247].  However,  Fu  et  al.[246]

found  that  increased  understory  vegetation  diversity  elevated
soil pH after 27 years of reforestation. Similarly, the invasion of
some  exotic  understory  plants  in  deciduous  forests  increased
soil  pH[248].  Additionally,  Zhao  et  al.[245] found  that  unless
removing  all  aboveground  vegetation,  the  removal  of  only
understory  vegetation  did  not  change  soil  pH.  These  results
suggest that understory vegetation may mildly regulate soil pH,

 
Fig.  7    Interactions  between  understory  vegetation  and  overstory  trees.  Key  regulation  processes  are  shown:  1)  Light  and  rainfall
interceptions by overstory change the understory microclimate; 2) Composition and diversity of understory vegetation influence preconditions
for seed germination and regeneration of overstory; 3) Under- and over-story interactions affect ground surface arthropods, surface runoff and
litter decomposition; 4) Root interactions between under- and over-story, including mycorrhizal network, root exudate and allelopathic effect,
alter  belowground  water  and  nutrient  cycling  as  well  as  information  transformation;  5)  Abiotic  and  biotic  factors  such  as  drought,  fire,  and
insect pests, directly influence the dynamics of the whole forest community; 6) Large mammalian herbivores and some arthropods also directly
feed  on  understory  vegetation;  7)  Soil  micro-food  webs  feed  on  roots  (i.e.,  root-feeding  nematodes)  and  consume  related  residues,  thus
resulting in changes in soil  environments.  These above- and below-ground processes can shape under-  and over-story interactions,  thereby
influencing  their  photosynthetic  physiology,  growth,  regeneration,  productivity,  and  the  like.  However,  bryophytes  and  lichens  are  always
overlooked, and the root system has also received little attention.
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but short-term understory removal cannot affect soil pH due to
its smaller biomass.

Understory  vegetation  significantly  drives  soil  C  and  N
dynamics[249,250].  In  general,  understory vegetation contributes
to soil C and N conservation. SOC would decrease following the
removal  of  understory  vegetation[229],  owing  to  a  decrease  in
substrate  input  from  roots  and  litter[251],  an  increase  in  SOC
decomposition[241], and loss by surface runoff[240]. A decrease in
SOC  after  understory  removal  is  also  related  to  a  decrease  in
litter  decomposition  because  understory  removal  decreases
soil  fungal  abundance  and  increases  the  C  limitation  of
microbial communities[239]. Although understory removal alters
the quantity and quality of organic matter that inputs into the
soil,  the  responses  of  SOC  components  to  vegetation  removal
under  the  forest  vary.  Understory  removal  reduces  soil  parti-
culate  organic  C  and  mineral-associated  organic  C  concen-
trations  in  Chinese  fir  forests[241].  At  the  same  time,  the
presence  of  ferns  decreases  the  lignin  concentration  and
increases  the  ratio  of  syring-based  to  vanilla-based  lignin[252].
Meanwhile,  understory  removal  decreases  SOC  but  does  not
affect  water-soluble  organic  C  (WSOC)  and  microbial  biomass
C[253].  In  addition,  understory  removal  can  also  modify  soil
microenvironments  (e.g.,  an  increase  in  soil  temperature),
indirectly  increasing  organic  matter  mineralization  and
WSOC[242,254]. These suggest that understory vegetation should
be  preserved  to  maintain  soil  quality  in  forests,  especially
plantations, based on its role in forest C sequestration.

NH+4 NO−3

NH+4
NO−3

The effects of understory vegetation on soil total N (TN) and
N  availability  are  still  debated.  Some  studies  have  shown  that
understory removal has a minor effect on soil TN, ammonium N
( -N),  and  nitrate  N  ( -N)[247,254,255].  However,  the
significant response of mineral N and TN to understory removal
is  often  detected,  although  the  conclusions  are  inconsistent.
For  instance,  understory  removal  increased -N[241],

-N[244],  and  mineral  N[241],  while  other  study  found  the
opposite  results[253].  This  inconsistency  suggests  that  the
understory  vegetation  effect  on  N  availability  appears  to  be
comprehensively  regulated  by  N  mineralization,  tree
competition,  and  microbial  immobilization.  Previous  studies
reported  that  soil  net  N  mineralization  and  nitrification  rates
increased  after  understory  removal[256−258] because  of  the
reduction  in  microbial  immobilization.  Microbial  growth  is
accompanied  by  N  fixation,  while  understory  removal  reduces
soil  microbial  biomass,  decreasing  in  microbial  N  immobili-
zation  and  increasing  in  net  N  mineralization[259].  In  addition,
the  net  soil  nitrification  rate  may  be  limited  by  NH4

+-N
availability due to the competition from understory vegetation
and  nitrifying  bacteria.  After  understory  removal,  a  decreased
plant  N  uptake  may  lead  to  a  higher  nitrification  rate  due  to
more N substrates for nitrifying bacteria[241]. However, reduced
N  mineralization  and  nitrification  rates  in  subtropical  forests
after  understory  removal  have  also  been  detected  because
SOM  is  a  source  for  heterotrophic  microorganisms[260].  It  may
be  interpreted  that  reduced  SOM  inhibits  microbial  N

 
Fig.  8    Conceptual  diagram  illustrating  the  effects  of  understory  removal  on  soil  chemistry.  The  symbol  to  the  right  of  the  parameter
represents the possible response of the parameter after understory removal based on literatures. The upward and downward arrows represent
the promotion and inhibition effects, respectively; the short horizontal line indicates that the influence is not significant, and the question mark
represents the uncertain effect. SOCmin, soil organic carbon mineralization rate; Nmin, soil net nitrogen mineralization rate; WSOC, water-soluble
organic carbon; N, nitrogen; P, phosphorus; K, potassium.
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mineralization  and  nitrification  processes[240].  Therefore,  the
mechanism  of  how  understory  affects  soil  N  availability  and
mineralization remains to be further investigated.

Understory  vegetation  seems  to  have  little  effect  on  the
other  major  elements  in  the  soil  except  for  C  and  N.  Soil  P  is
supplied  by  parent  material,  litter,  and  fertilizer  input.
Understory removal seems to have no significant effect on soil
total and available P in plantation forests[243,253,261],  although it
may affect  a  certain  P  fraction,  e.g.,  the  occluded P[243].  Like  P,
available  K  also  appears  less  susceptible  to  understory
removal[240].  Understory vegetation has a significant impact on
soil C and N dynamics. At the same time, its effects on pH and
other  elements  are  limited  due  to  the  small  proportion  of
understory  biomass  relative  to  trees.  Additionally,  understory
vegetation  may  affect  other  soil  chemical  parameters,  such  as
the  cation  exchange  capacity  and  redox  potential  of  soil,  but
relevant research has not paid enough attention.

Studies  on  the  effects  of  understory  vegetation  on  soil
chemical  properties  have  received  widespread  attention  in
plantation  and  natural  forest  ecosystems[194,211].  However,
natural  forests  have  high  biodiversity,  strong  resistance  to
external  disturbances,  and  more  complex  soil  ecological
processes than plantations. Whether the understory vegetation
effect on soil chemistry is consistent in plantations and natural
forests  is  worth  investigating.  Second,  previous  studies  have
mainly  focused  on  extreme  cases,  that  is,  the  impact  of
complete  removal  and  retention  of  understory  vegetation  on
soil  ecological  processes[226,249,258].  However,  there  are  many
intermediate  degrees  between  the  presence  or  absence  of
understory  vegetation,  such  as  the  impact  of  understory
biomass  amount  and  biodiversity  complexity  on  ecological
processes[246].  Recently,  several  studies  have  established  the
relationship  between  understory  biodiversity  and  soil  proper-
ties,  but  there  are  relatively  few  studies  on  the  regulatory
mechanism of this relationship.

Furthermore,  although  we  generally  understand  the  under-
story  role  in  soil  chemistry,  there  is  not  enough  mechanistic
research on these results. For example, it is not fully understood
how  the  quantity  and  chemical  composition  of  litter,  root
exudates,  and  SOC,  as  well  as  the  related  microbial  commu-
nities,  are  involved  in  C  and  N  dynamics.  In  recent  years,  new
technologies  and  methods,  such  as  stable  isotope
technology[252],  microbial  high-throughput  analysis[255],  and
organic matter grouping[241,243], may provide new paths for the
mechanism exploration in forest understory vegetation studies.

 Understory vegetation effects on soil microbial
communities

Understory  vegetation  is  closely  associated  with  below-
ground  ecological  processes.  Soil  organisms  are  major  drivers
of  many  soil  biogeochemical  processes,  including  organic
matter  decomposition[262],  N  mineralization,  and  SOC  forma-
tion,  playing  an  important  role  in  maintaining  and  driving
forest  ecosystem  function  and  productivity[263].  Forest  under-
story vegetation with higher species richness can provide more
complex  and  diverse  living  spaces  and  environments  for  soil
organisms[264].  Its  variation  can  directly  or  indirectly  regulate
soil  organism communities  and structure  by changing the soil
environment  or  supplying  nutrient  substrates  from  plant  litter
and  root  exudates[265,266].  Therefore,  studying  the  interaction

and  feedback  between  understory  vegetation  and  soil
organisms  is  conducive  to  an  in-depth  understanding  of
ecosystem  diversity,  soil  function,  and  forest  ecosystem
stability,  especially  for  soil  microorganisms,  due  to  their
importance  and  the  greater  attention  they  have  received.
Understory  removal  is  an  essential  ecological  component  due
to  its  modification  of  plant  belowground  C  allocation  and  N
supply  as  critical  determinants  of  microbial  community
composition[267].  Here,  we  reviewed  the  coupled  relationships
between  understory  vegetation  and  soil  microorganisms  and
the  impacts  of  understory  removal  on  soil  microorganism
dynamics.

The interaction between soil microorganisms and understory
vegetation  has  received  extensive  attention  under  the  driving
forces of climate change and human activities.  Most of studies
indicate  that  the  effect  of  understory  vegetation  on  the  soil
microbial  community  depends  on  its  composition.  In  general,
understory  removal  decreases  fungal  phospholipid  fatty  acids
(PLFAs)  and  fungal:  bacterial  ratio  while  having  a  minor  effect
on soil bacterial PLFAs in subtropical Chinese fir plantations[268].
Similar  findings  were  obtained  in  subtropical Eucalyptus
plantations[264,269] and Acacia mangium plantations[242]. It might
be related to the different nutrient requirements of soil bacteria
and  fungi[270].  However,  in  tropical Eucalyptus plantations,
understory  removal  significantly  increased  bacterial
PLFAs[267,271].  It  suggests  that  the  effect  of  understory
vegetation on soil  microorganisms varies  according to climate
type.  However,  previous  studies  have  concentrated  on
subtropical  and  temperate  low-altitude  and  tropical  areas,
while few are in boreal and high-altitude areas. In addition, the
treatment  duration  of  understory  vegetation  removal  is
another  important  factor.  For  instance,  the  biomass  of  soil
arbuscular  mycorrhizal  fungi  decreased  after  removing  plant
functional  groups  for  five  months  in  alpine  shrub  ecosystems,
although  this  effect  disappeared  after  17  months[271].  It
suggests  that  the  understory  effect  on  the  soil  microbial
community  is  highly  complex[272].  In  addition,  most  of  the
previous  studies  are  conducted  at  one  or  two  sites,  and  the
experimental designs are mutually independent; there is a lack
of  a  general  conclusions  on  the  role  of  understory  vegetation
on influencing soil microbial communities on a large scale.

Furthermore,  the  mechanism  of  understory  vegetation
influencing soil microorganisms has been becoming a research
hotspot.  An increasing amount of studies have evidenced that
changes  in  understory  vegetation  can  directly  affect  soil
microbial community via changing plant-microbe associations,
quality  and  quantity  of  root  exudates,  and  litter  input,  or
indirectly affect the diversity and composition of soil microbial
community  through  changing  soil  physical  and  chemical
characteristics,  such  as  soil  moisture  content,  pH  value,  and
nutrient  availability  (Fig.  7)[273−275].  However,  the  mechanisms
by  which  understory  vegetation  alters  microbial  communities
and influences microbial functions in forest ecosystems remain
largely  elusive.  It  would  limit  our  understanding  of  how
understory  vegetation  composition  controls  soil  nutrient
cycling  by  modifying  soil  microbial  activities  in  a  forest
ecosystem.  In  addition,  these  findings  are  derived  from  some
outdoor  simulation  control  experiments,  and  whether  these
results can be applied to forestry management measures such
as understory clearing needs further exploration.

As a whole, the mechanisms of forest understory vegetation
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driving  soil  microbial  communities  awaits  further  exploration.
First,  future  research  should  focus  on  how  the  soil  microbial
community responds to changes in forest understory on a large
scale, which could contribute to a better understanding of the
impact  of  understory  vegetation  on  the  ecosystem  function.
Second,  it  is  critical  to  quantify  the  drive  pathways  and
mechanisms  of  understory  vegetation  on  the  soil  microbial
community  to  better  understand  the  mechanistic  links
between  belowground  processes  and  aboveground  producti-
vity.  In  addition,  the  relative  contribution  of  understory
vegetation to soil  bacterial  and fungal communities should be
quantitatively  determined.  Finally,  community  assembly
processes are intrinsically associated with ecosystem functions
owing  to  their  essential  roles  in  shaping  the  microbial
community  structure.  The  knowledge  of  how  understory
vegetation  affects  the  soil  microbial  community  assembly,
thereby generating important feedback on ecosystem produc-
tivity, remains to be explored.

 Understory vegetation effects on soil and water
conservation

Soil  and water conservation is one of the major functions of
forest  vegetation,  including  reducing  the  splash  erosion  of
rainfall, weakening runoff and sediment erosion, and improving
soil  structure[276,277].  Although the overstory  canopy intercepts
the  amount  of  rainfall  that  reaches  the  ground,  it  significantly
increases  the  size  diversity  of  raindrops.  In  the  case  of  a  high
overstory-canopy  forest  with  less  understory  vegetation  and
litter layer, these large raindrops (i.e., throughfall) would have a
substantial  impact  on  the  soil  surface,  resulting  in  soil  erosion
(Fig.  9).  Therefore,  understory  vegetation  is  essential  in  forest
ecosystems  as  a  protective  barrier  against  soil  erosion[278−282].
Here, we reviewed the importance of understory vegetation in

soil  and  water  conservation  in  both  natural  and  plantation
forests,  aiming  to  provide  more  attention  to  the  effect  of
understory vegetation on forest ecosystem function.

In  natural  forests,  throughfall  is  redistributed  by  understory
vegetation before finally reaching the ground. It minimizes the
kinetic energy of throughfall by decreasing the falling height to
protect  the  soil  surface  and  its  structure[283].  Moreover,
understory  vegetation  modifies  the  amount  of  throughfall
interception,  and  facilitates  soil  infiltration  into  the  subsoil
layer,  ultimately  reducing  surface  runoff  and  soil
erosion[284−287].  Previous  studies  have  also  reported  that  soil
erosion  increases  with  a  decreased  understory  vegetation  in
forests[288].  Artificial  manipulation  in  a  moso-bamboo  forest
shows  that  understory  vegetation  removal  accelerates  splash
erosion and soil erosion rate[289]. In the evergreen broadleaved,
Japanese  cypress  and  cedar  forests,  understory  removal
increases  runoff  coefficients  and  the  rate  of  soil  erosion[290].
Similar  results  have  also  been  observed  in  coniferous
forests[291,292].  These  consistent  findings  imply  why  natural
forests  without  disturbance,  generally  have a  solid  function of
soil  and  water  conservation.  However,  the  mechanism  of
understory  vegetation in  forest  ecosystem's  hydrological  cycle
needs to be further clarified, which is necessary to evaluate the
role of understory vegetation in soil erosion modelling.

In  reforestation  and  tree  crop  plantations,  however[171,293],
understory  vegetation  is  sparse  compared  to  natural  forests
due  to  tillage  management,  fertilization,  and  herbicide
applications. It increases the risk of soil and nutrient losses[294].
Thus, most of the tree plantations that are monoculture forests
generally  have  a  severe  risk  of  soil  erosion.  A  typical  case  is
observed in the Eucalypts plantation in southern China[295]; due
to the lack of understory vegetation under the tree canopy, the
runoff  coefficient  and  erosion  rate  are  higher  than  those  in
mixed  forests.  Therefore,  protecting  or  developing  understory

 
Fig. 9    Schematic diagram of forest understory functioning on soil and water conservation. Rainfall is first intercepted by overstory, and then
throughfall  (large  raindrops)  directly  impacts  on  the  soil  with  high  kinetic  energy  (splash  erosion),  if  there  is  no  second  interception  by
understory vegetation. It would result in more water runoff and sediment erosion.
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vegetation  can  alleviate  soil  erosion  and  nutrient  loss  in
reforestation  and  tree  crop  plantations[293,294,296].  Understory
vegetation should be retained as much as possible if its height
is  low  enough  to  slow  splash  impact.  For  instance,  intercrop-
ping legumes in an olive plantation reduces soil loss[297]. Splash
erosion  in  rubber  plantations  is  effectively  controlled  by
constructing  a  rubber  agroforestry  system[298].  Surface  runoff
and soil loss are limited by promoting understory vegetation in
teak plantations[299]. All highlight the importance of understory
vegetation  in  soil  and  water  conservation  and  suggest  appro-
priate management in controlling runoff and soil erosion.

Although  in  recent  years,  more  studies  have  been  focusing
on  the  effect  of  understory  vegetation  on  soil  and  water
conservation,  we identified that  many critical  knowledge gaps
still need to be filled. First, optimizing soil erosion modelling by
integrating  the  function  parameters  of  understory  vegetation
in  forest  hydrological  cycle  processes  is  necessary.  Most
interception loss models have focused on canopy components
to accurately estimate soil erosion in forests, while interception
loss  from  understory  vegetation  is  largely  ignored[300].  A
complete interception model is essential for understanding the
kinetic  energy  of  rainfall  splashes  and  soil  erosion.  Second,
understory species have specific abilities in reducing runoff and
soil  erosion.  Therefore,  future  research  should  focus  on
different  types  of  understory  vegetation  in  improving  soil
conditions  to  reduce  soil  erosion,  such  as  increasing  soil
infiltration,  enhancing  soil  aggregate  stability,  and  improving
soil  resistance  through  roots.  Finally,  reducing  soil  erosion  is
essential  for  guaranteeing  forest  ecosystem  function.  A  full
assessment  of  different  understory  vegetation  management
practices is needed in diverse forest systems to achieve soil and
water  conservation,  especially  for  tree  plantations.  An  optimal
management practice should be proposed to contribute to the
sustainable development goals of human beings.

 Closing remarks

Understory  vegetation  as  the  'darling'  of  forest  ecosystems
has  received  increasing  attention.  The  present  review  high-
lighted recent advances and achievements in studies of under-
story vegetation, with a focus on its species characteristics and
potential  ecological  effects.  Topics  ranged  from  forest
biodiversity, ecosystem structure and functioning to ecological
services. Even though understory vegetation plays a significant
role  in  forest  ecosystems,  many  problems  remain  to  be
addressed.  In  the  context  of  pervasive  global  change,  future
research  should  focus  on  the  plant‒soil  relationship  and
above‒below feedback of understory vegetation and overstory
tree  interactions,  which  is  driven  by  multiple  climate  drivers
interacting  with  forest  management  practices  at  regional
scales.  It  will  be  achieved  by  applications  of  cutting-edge
methods,  including  isotope  labeling  techniques,  high-
throughput sequencing analysis, organic matter grouping, and
the like.  Additionally,  more  nondestructive  approaches  should
be  developed  for  monitoring  and  characterizing  understory
vegetation  dynamics  together  with  biodiversity  ground-based
surveys.  Especially,  3D  LiDAR  scanning  and  hyperspectral
scanning  techniques  feature  the  advantages  of  time  savings,
low cost,  ease of operation, and high possibility for large-scale
studies  over  extended  periods.  We  hope  that  these  new
insights  can  better  guide  understory  vegetation  management
to  achieve  a  'win‒win'  situation  of  forest  ecological  and
economic benefits.
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