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Abstract
Acidity and tannins are among the grape berry quality traits that influence wine quality. Despite advantageous environmental tolerances of Vitis
aestivalis-derived 'Norton', its acidity and tannin concentrations often deviate from expectations set for V. vinifera. Identification of the genetic

determinants of malic acid, tartaric acid, pH, and tannin can assist in the improvement of new hybrid cultivars. For this purpose, a 'Norton' and V.
vinifera 'Cabernet Sauvignon' hybrid population containing 223 individuals was used to construct a linkage map containing 384 simple sequence

repeat (SSR) and 2,084 genotyping-by-sequencing (GBS)-derived single nucleotide polymorphism (SNP) markers. The resulting map was 1,441.9

cM in length with an average inter-marker distance of 0.75 cM and spanned 19 linkage groups (LGs). Quantitative trait loci (QTLs) were detected

for  malic  acid,  tartaric  acid,  pH,  and  tannin.  QTLs  for  malic  acid  (LG  8)  and  pH  (LG  6)  were  observed  across  multiple  years  and  explained

approximately 17.7% and 18.5% of the phenotypic variation, respectively. Additionally, QTLs for tartaric acid were identified on linkage groups 1,

6, 7, 9, and 17 and tannin on LG 2 in single-year data. The QTLs for tartaric acid explained between 8.8−14.3% and tannin explained 24.7% of the

phenotypic variation. The markers linked to these QTLs can be used to improve hybrid cultivar breeding through marker-assisted selection.
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INTRODUCTION

Vitis  aestivalis-derived  'Norton',  a  North  American  species-
based  cultivar,  is  grown  in  the  midwestern  and  eastern
United  States,  regions  with  high  disease  pressure  and  cold
winter  temperatures  for  which V.  vinifera is  not  adapted[1,2].
The  "best  red  wine  of  all  the  nations"  is  how  Dan  Mouer,  an
eastern United States  winemaker  and writer,  describes  some
'Norton' wines produced from old Missouri vines, but he was
not  the  first  to  state  it.  That  distinction  was  awarded  by
judges of the 1873 World Fair in Vienna[3,4]. 'Norton' lacks the
intense  "foxy"  aromas  associated  with Vitis × labruscana
cultivars  (e.g.  'Concord')[5,6].  However,  'Norton'  grape
composition  still  presents  several  challenges  for  premium
wine  production,  the  most  commonly  reported  being  high
organic acids, high pH, and low tannin[7−10].

The  major  organic  acids  in  grapes  are  tartaric  acid  and
malic  acid  which  together  constitute  up  to  90%  of  the  total
berry  acids[11].  High  concentrations  of  malic  acid  result  in
excessive sourness, which is associated with diminished wine
quality[12,13].  Excessive  tartaric  acid  is  of  less  consequence
than malic acid because the solubility of tartaric acid in wine
is limited. Both tartaric and malic acid accumulate in the berry
pre-veraison,  but  malic  acid  is  the  sole  organic  acid
metabolized  in  grapes[14−16].  Thus,  malic  acid  content  on  a

per-berry basis will decrease post-veraison, while tartaric acid
remains  stable.  However,  on  a  concentration  basis,  both
organic  acids  will  undergo  dilution  due  to  berry  expansion
during  ripening[17].  In  'Norton'  malic  acid  and  tartaric  acid
concentrations  typically  range from 3.2  to  7.8  g/L  and 6.0  to
10.1 g/L, respectively, which are high compared to V. vinifera
cultivars. V. vinifera values are often approximately 1.7−4.2 g/L
for malic acid and 1.7−7.9 g/L for tartaric acid[18−20].

Excessive  wine  pH  facilitates  oxidative  and  microbial
spoilage[21].  The  relationship  between  pH  and  total  acid  is
inverse but imperfectly correlated and influenced by variation
in  both  organic  acid  compositions  and  the  partial  exchange
of  titratable  protons  for  minerals,  especially  potassium[21−24].
Ranges for pH in 'Norton' between approximately 3.4 and 3.9
have  been  reported[7,9].  These  ranges  are  comparable  to V.
vinifera reds  pH  (3.2−4.2)[18−20].  A  moderate  pH  for  'Norton',
despite  high  organic  acids,  is  likely  a  consequence  of  its
higher  potassium  content  (up  to  6  g/L)  as  compared  to V.
vinifera[7].

Low  tannin  results  in  low  wine  astringency  which  also
diminishes  wine  quality[25].  Tannin  also  accumulates  prior  to
veraison but remains localized to the seed coating and outer
skin of  grapes[21,26,27].  Whole grape tannin is  generally  low in
Norton,  approximately  2.9  mg/g  via  a  methyl  cellulose
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precipitable tannin assay[9,28].  In comparison, high tannin red
wine  cultivars  like V.  vinifera 'Cabernet  Sauvignon'  have
methyl  cellulose  precipitable  tannin  concentrations  of
approximately 4.2−5.5 mg/g homogenate[29].

While  cultivar-type  and  growing  region  are  substantial
determinants  of  organic  acid  composition,  limited
adjustment  can  be  achieved  with  manipulation  of  the
environment  and  cultural  practices[30,31].  It  can  be,  instead,
more effective to manipulate organic acids during vinification
using  practices  such  as  potassium  bitartrate  precipitation,
carbonate  salt  addition,  and  malolactic  fermentation[32].
However, these practices cannot fully address high acid musts
–  especially  those  with  high  malic  acid  –  and  may  result  in
unwanted  sensory  changes[33].  Low  tannin  wines  can
potentially  be  remediated  by  the  addition  of  exogenous
tannins sourced from grapes or other plant species. However,
the recovery of added tannins to wines is low due to binding
to other wine components especially in those produced from
interspecific  hybrids,  and  the  expected  sensory  impact  is
negligible.

The inheritance of  berry traits  with enological  importance,
such as  acidity  and tannins,  has  begun to  be  investigated in
grapevine.  Chen  et  al.[34] reported  six  QTLs  on  two  linkage
groups  for  malic  acid  with  each  accounting  for  a  small
percentage of variation. Other studies have reported QTLs for
malic  acid,  tartaric  acid,  and  their  ratio[35−38].  However,  the
observed  QTLs  vary  across  studies  and  thus  may  be  unique
for a V. aestivalis-derived cultivar. Identifying the DNA markers
linked  to  fruit  quality  traits  will  be  important  for  the
preservation  of  wine  quality  while  maintaining  pest  and/or
disease resistances possessed by the cultivar.

Modern  marker-assisted  selection  strategies  involve  the
development  of  mapping  populations  and  the  construction
of  linkage  maps.  The  single  nucleotide  polymorphism  (SNP)
markers  have  become  widely  used  for  this  purpose  and
successfully  implemented  in Vitis spp.  in  the  last  10
years[36,39−41].  Specifically,  genotyping-by-sequencing  (GBS)-
derived  SNPs  have  proved  to  be  a  successful,  fast,  and  low-
cost  marker  system[2,36,40],  despite  concerns  regarding  the
high  number  of  SNP  calling  errors  in  heterozygous  species
which  results  from  low  read  depths  associated  with  the
method[42,43].  Using  SNPs  in  linkage  map  construction  can
overcome  the  low  marker  density  of  maps  generated
exclusively  from  simple  sequence  repeat  (SSR)  markers[34,36].
However,  SNP  markers  have  limited  transferability  between
Vitis species[44].  Given  the  widespread  use  of  interspecific
hybrids  for  developing  improved  cultivars,  the  high
transferability  of  SSR  markers  remains  an  important
advantage.  Previously,  a  mapping  population  of  183
genotypes from 'Norton' × 'Cabernet Sauvignon' was used to
construct a linkage map via 411 SSR markers[45]. This map was
then improved by integrating 1,665 GBS-derived SNP markers
to  develop  a  high-density  linkage  map  for  further
horticultural  studies[2].  The use of both SSR and SNP markers
for  linkage  map  construction  provides  the  opportunity  to
improve both marker density and transferability.

The present study investigated the genetic determinants of
tartaric  acid,  tannin,  pH,  and  malic  acid  using  an  expanded
'Norton'  ×  'Cabernet  Sauvignon'  mapping  population.  The
population  was  genotyped  using  GBS-derived  SNP  and  SSR

markers  and  phenotyped  over  three  years.  An  improved,
high-density  linkage  map  was  developed  with  additional
markers and used to identify QTLs for all investigated traits. 

RESULTS
 

Genotyping and genetic maps
A  total  of 63,488 SNPs  were  generated  from  GBS.  After

filtering  GBS  markers  to  minimums  of  90%  population
coverage, 0.10 minor allele frequency, and 0.10 heterozygous
proportion, 9,663 markers  remained.  After  thinning  by
physical position, the GBS marker number was 3,366. All SNPs
were  successfully  converted  to  JoinMap  format  using  the
NGSEP (Next Generation Sequencing Eclipse Plugin) program.
Markers  which  sorted  into  incorrect  groups  based  on  the
reference genome were discarded after an initial mapping. In
total, 2,502 SNP  and  402  SSR  were  used  at  the  outset  of  the
final  map  construction.  The  final  consensus  map
(Supplemental  Fig.  1)  included 2,468 markers  (384  SSR  and
2,084 SNP) which covered 1,441.9 cM and represented 19 LGs
(Table  1).  Linkage  groups  varied  in  size  and  marker  number
from 63.6 cM (LG 15) to 95.8 cM (LG 7) and 81 markers (LG 15)
to  171  markers  (LG  14).  Marker  density  averaged  0.75  cM
between markers.

Of  the 2,468 markers  used,  the  dominant  segregation
patterns  were  informative  for  one  of  two  parents.  Those
which varied in only 'Norton'  (lm × ll)  included 1,400 (56.7%)
SNPs  and  120  (4.9%)  SSRs  while  markers  segregating
exclusively in 'Cabernet Sauvignon'  (nn × np) numbered 552
(22.4%)  SNPs  and  29  (1.2%)  SSRs.  Markers  that  segregated
with two identical alleles in both parents (hk × hk) numbered
132 (5.3%) SNPs and 3 (0.12%) SSR. The remaining 232 (9.4%)
markers  segregated  with  more  than  two  alleles.  SSRs  which
were fully informative for both parents (ab × cd) totaled 147
(6.0%)  and  tri-allelic  SSRs  (ef  ×  eg)  counted  85  (3.4%).

Table  1.    Marker  distributions  of  the  'Norton'  ×  'Cabernet  Sauvignon'
consensus genetic map.

LG
No. of markers Inter-marker distances (cM) Length

(cM)Total SSR SNP Average Maximum

1 149 29 120 0.72 3.4 80.3
2 109 15 94 0.78 3.4 69.1
3 89 13 76 0.86 6.8 63.7
4 154 29 125 0.72 4.5 79.0
5 121 21 100 0.71 4.3 70.4
6 164 17 147 0.67 3.8 78.7
7 170 27 143 0.69 3.6 95.8
8 167 24 143 0.66 3.8 84.8
9 99 14 85 0.85 3.4 70.7

10 99 14 85 0.75 3.6 64.2
11 110 21 89 0.79 5.9 71.4
12 122 14 108 0.72 3.8 66.0
13 145 13 132 0.70 3.1 87.7
14 171 45 126 0.62 3.8 87.0
15 81 8 73 0.96 8.4 63.6
16 114 17 97 0.82 4.3 74.3
17 125 13 112 0.72 2.7 75.1
18 167 36 131 0.72 5.4 94.5
19 112 14 98 0.76 3.4 65.9

Total 2,468 384 2,084 0.75 8.4 1,441.9
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Distorted markers  (α <  0.05)  were seen randomly distributed
on  every  linkage  group  (LG)  with  regions  of  clustering  also
present.  These  markers  were  included  in  the  final  genetic
linkage map unless they hindered linkage map construction. 

Phenotypic evaluations
All  traits varied continuously (Fig.  1).  Each year,  traits were

evaluated in 131 to 186 individuals (Table 2). In 2019, pH and
malic  acid  mean  values  were  lower  than  other  years  while
tartaric  acid  was  greater  in  2019  than  2018.  The  smallest
range for each trait was reported in 2018. Tartaric acid in 2019
and tannin in 2018 were more broadly distributed across the
trait range than seen in the other reported year. The only trait
that was normally distributed was pH in all years, according to
a Shapiro-Wilk's test (p ≥ 0.05). The normality of all  traits was
improved through the Box-Cox transformation.

Malic  acid  reported  here  (0.50−12.3  g/L)  exceeded  the
range  reported  in V.  vinifera populations  (approx.  1.1−
7.6  g/L)[19,24] but  was  within  the  range  of  other Vitis spp.
populations (approx.  0.80−21.3 g/L)[34,36].  Tartaric  acid values

(1.7−19.2)  exceeded  those  reported  for V.  vinifera (1.4−
7.9 g/L)[19,24] and in 2019 slightly exceeded the range seen in
another interspecific hybrid population (1.5−17.2 g/L)[34]. The
pH range (2.2−4.3) was similar to other V. vinifera populations
(3.0−4.3)[1,24].  Mean  tannin  concentrations  in  the  population
(2.3 and 3.1 mg/g epicatechin equivalents in 2017 and 2018,
respectively)  were  comparable  to  or  below  the  lowest  levels
reported in three V. vinifera cultivars using the same assay[29].
Mean values of the hybrid population were similar to 'Norton'
(mean values of 2.5−3.4 mg/g)[9,28]. Overall, malic and tartaric
acid  values  exceeded,  and  tannin  values  were  lower  than
those seen in V. vinifera populations.

Broad-sense  heritability  was  0.24  for  tartaric  acid,  0.46  for
tannin,  0.32 for  pH,  and 0.70 for  malic  acid (Table 2).  Tartaric
acid  was  significantly  correlated  (p <  0.05;  Pearson  test)
between the years 2018 and 2019 (0.23) (Table 3). Significant
correlations  also  existed  for  pH  between  2017  and  2018
(0.54),  2017 and 2019 (0.52),  and 2018 and 2019 (0.67).  Malic
acid was also correlated between years 2017 and 2018 (0.66),
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2019

2018

2017

Y
ea

r

Tartaric acid (g/L)

Tannin (mg/g)

pH

Malic acid (g/L)

Trait

Parent values

Norton

Tannin (mg/g)
0 20 0.0 2 5 105 10 15 7.55.02.5 3 04

Cabernet Sauvignon

 
Fig. 1    Frequency distribution (violin plot) of berry quality traits by year.

Table 2.    Summary statistics and broad-sense heritability values for evaluated traits.

Trait Year N1 Mean H2 (2) Minimum Median Maximum

Tartaric acid (g/L) 18 138 5.5 0.24 1.7 4.4 16.6
19 183 9.7 1.9 9.3 19.2

Tannin (mg/g3) 17 131 2.3 0.46 0.36 2.1 7.7
18 175 3.1 0.07 3.2 6.8

pH 17 179 3.5 0.32 2.9 3.5 4.3
18 143 3.6 3.0 3.6 4.1
19 186 3.1 2.2 3.1 4.0

Malic acid (g/L) 17 178 3.9 0.70 0.52 3.5 12.3
18 138 3.4 1.3 3.2 8.5
19 185 2.5 0.50 2.3 11.0

1 N: Number of individuals, (2) H2: Broad sense heritability, 3 epicatechin equivalents

Table 3.    Pearson correlation coefficients between years of trait evaluation.

pH Malic acid Tannin Tartaric acid

2017 2018 2017 2018 2017 2018

2018 0.54 ***1 0.66 *** 0.13 ns
2019 0.52 *** 0.67 *** 0.50 *** 0.66 *** 0.23 *

1 ***: p < 0.001, *: p < 0.05, ns: not significant
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2017 and 2019 (0.50), and 2018 and 2019 (0.66). Tannin (0.13)
was  not  correlated  between  years.  Due  to  the  logarithmic
nature  of  the  pH  scale,  pH  was  converted  to  hydrogen-ion
concentration ([H+]) for evaluation of linear partial correlation.
Results of the partial  correlations, malic acid and pH (as [H+])
were correlated in 2018 and 2019 (p ≤ 0.05) with coefficients
of  0.40  and  0.20,  respectively.  The  remaining  traits  were  not
significantly correlated. 

QTL detection
Acid-related phenotypes  (tartaric  acid,  pH,  and malic  acid)

were analyzed in three data sets which were divided by year,
while  tannin  was  analyzed  separately  from  the  acid  traits  in
two  data  sets  by  year.  At  the  genome-wide  level  (GW)  of
significance  (p <  0.05),  12  quantitative  trait  loci  (QTLs)  were
identified and distributed across ten linkage groups (Table 4).
Tartaric acid, tannin, pH, and malic acid showed 5, 1, 3, and 3
QTLs,  respectively.  The  GW  significance  thresholds  varied  in
each trait and were relatively high, ranging from a LOD score
of 5.1 (pH 2017, malic acid 2019) to 5.9 (tartaric acid 2018), so
individual  thresholds  were  retained  for  each  trait.  The
maximum LOD scores  for  the reported QTLs  varied between
5.1  (pH  LG  6)  and  9.0  (pH  LG  4,  malic  acid  LG  8)  and  the
percentage of variance explained (PVE) by each ranged from
8.8 (tartaric  acid LG 6)  to  24.7  (tannin LG 2).  Significant  QTLs
were identified in all traits.

Both malic acid and pH had a QTL stable across three years.
The  LOD  maximums  for  the  stable  malic  acid  QTL  on  LG  8
were positioned within a 2.3 cM range in all  three years.  The
1.5  LOD  confidence  intervals  converged  on  the  interval
between  30.6  and  31.2  cM  and  were  associated  with  the
physical interval from 9992297−10385236 bp. Within this QTL
region,  the  alleles  with  the  largest  magnitude  of  effect  (i.e.
effect  size)  on  the  malic  acid  phenotype  all  segregated  for
'Norton'  (Table  5).  Regarding  the  allele  with  the  greatest
effect  size  for  marker  VVS4,  individuals  possessing  the  allele
length  of  183  bp  (progeny  genotypes  183/169  bp  and
183/173 bp) had an average malic acid concentration 0.74 g/L
greater  than  individuals  which  inherited  the  169  bp  allele
from  'Norton'  (progeny  genotypes  169/169  bp  and  169/176
bp).  (Fig.  2a).  Both  SSR  and  SNP  marker  effects  reported  for
this  QTL  were  significant  (p <  0.05).  Additional  single-year

(2019)  QTLs  were  detected  for  malic  acid  on  LGs  14  and  18.
On  LG  14,  phenotype  averages  differed  between  'Cabernet
Sauvignon' alleles while on LG 18 significant effects were seen
from  'Norton'  alleles.  Effect  sizes  from  LGs  14  and  18  were
smaller (0.65 and 0.54 g/L) than those on LG 8 (0.74 g/L).

A  stable  QTL associated with  pH was  located on LG 6  at  a
common interval  of  43.9 to 46.0 cM on the linkage map and
11607560 and 15724160 bp in physical position. An increased
average  pH  corresponded  with  allele  size  128  (Cabernet
Sauvignon)  of  marker  VVS5  (Fig.  2b)  The  effect  size  at  this
marker was a 0.10 difference between alleles (Table 5). Single-
year  QTLs  for  pH  were  also  detected  on  LGs  4  and  8.  The
effects of alleles on LGs 4, 6, and 8 associated with pH were all
attributed to Cabernet Sauvignon. Effects on LG 4 (0.20−0.25)
were  the  greatest  of  those  reported  for  pH.  The  pH  QTL  on
LG8,  which  appeared  to  co-locate  with  the  stable  malic  acid
QTL,  was  attributed  to  'Cabernet  Sauvignon'  but  only  nearly
significant (p < 0.10) allele effects were seen.

The  remaining  traits,  tartaric  acid  and  tannin,
demonstrated  only  single-year  QTLs.  QTLs  associated  with
tartaric  acid  were  located  on  LG  1,  6,  7,  9,  and  17.  'Norton'-
associated allele effects were found on LG 1, 9, and 17, while
'Cabernet Sauvignon' alleles explained variation on LGs 6 and
7. Only two markers were reported on LG 9 as 9_240934 was a
marker  interior  to  the  reported  physical  region  but  also  the
most  distal  informative  marker.  Tannin  also  showed  a  single
QTL located at LG 2 which explained the highest percentage
of  all  trait  variation  at  24.7%.  Tannin  allele  effects  were
significant for alleles from both parents. Effect sizes were very
similar for all reported alleles with the central marker having a
slightly  higher  'Norton'  attributed  effect  (0.84  g/L)  as
compared  to  'Cabernet  Sauvignon'  (0.77  g/L).  Additional
markers were reported to represent both parental effects. 

DISCUSSION

V.  aestivalis-derived  'Norton'  has  achieved  regional
acceptance  in  states  such  as  Missouri,  Arkansas,  and
Virginia[5].  Its  popularity  with  growers  may  be  attributed  to
high levels  of  resistance to  many destructive  diseases,  pests,
and  winter  temperatures.  However,  the  flavor  chemistry  of

Table 4.    Summary of QTLs for wine grape juice components in 'Norton' × 'Cabernet Sauvignon' F1 population.

Trait LG Year Max LOD GW LOD threshold PVE Peak (cM) 1.5-LOD interval (cM) Physical interval (bp)

Tartaric acid 1 2019 7.0 5.2 12.3 43.0 41.5−44.6 8335044−9738524
6 2019 5.2 5.2 8.8 39.1 30.6−41.5 6679935−7615750
7 2019 6.9 5.2 12.1 36.7 35.8−37.3 8215450−9475359
9 2018 7.0 5.9 14.1 5.2 5.0−6.1 198079−460535

17 2018 7.1 5.9 14.3 56.8 56.4−56.8 9295617−10144592
Tannin 2 2018 5.8 5.5 24.7 54.6 36.5−54.6 6360230−15748193
pH 4 2019 9.0 5.3 21.6 53.4 51.8−56.4 16450987−18940320

6 2017 5.1 5.1 16.2 2.8 2.8−43.9 141387−11607560
2018 7.0 5.4 19.2 46.0 44.0−46.0 14849083−15724160
2019 6.6 5.3 20.2 49.4 43.4−54.0 8139288−16573962

8 2018 5.9 5.4 13.0 32.8 32.0−33.2 8553958−10498296
Malic acid 8 2017 9.0 5.2 19.6 30.5 30.2−36.0 9992297−11975066

2018 7.3 5.3 20.1 32.8 14.0−39.6 2400696−11975066
2019 7.6 5.1 13.4 31.2 30.6−31.2 9992297−10385236

14 2019 6.8 5.1 13.7 7.9 6.4−8.2 1426689−1955725
18 2019 5.9 5.1 9.5 21.2 21.2−21.8 4020114−4997180
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'Norton'  (low  tannin,  high  malic  acid)  diminishes  its
acceptability  as  compared  to  international  red V.  vinifera
cultivars,  such  as  'Cabernet  Sauvignon'.  Prior  to  this
investigation  of  berry  quality  traits,  a  'Norton'  ×  'Cabernet
Sauvignon'  mapping  population  was  developed[46] and  two
linkage  maps  were  constructed  for  'Norton'[2,45].  Here  we
report  on  the  increase  of  the  mapping  population,
improvement upon previous maps, and identification of QTLs
related to berry traits.  These advancements may be useful  in
the  marker-assisted  selection  of  progeny  possessing  the
complex agronomical traits of 'Norton'. 

Genotyping and genetic maps
QTL  analysis  results  that  approach  fine-mapping  to  the

greatest  degree  possible  are  desirable  for  accurate  marker-

assisted  selection.  Increasing  mapping  resolution  requires
capturing  more  recombination  events  within  a  region  of
interest. This can be accomplished through larger population
sizes  and  increased  marker  numbers[47].  The  integrated  SSR
and  SNP-based  map  for  this  population  was  improved  by
both the addition of new F1 genotypes and a greater number
of  markers  compared  to  the  previous  SSR[45] and  integrated
SSR  and  SNP[2] maps  (Table  6).  In  comparison  to  the  2019
map,  this  map was constructed using 64 more F1 individuals
in  the mapping population and 396 more markers.  The map
size was reduced by 236.7 cM (1,678.6 cM) from the 2017 map
and  761.6  cM  from  the  2019  map  (2,203.5 cM).  The  average
interval  between markers  was  decreased by 3.4  cM and 0.35
cM from 2017 and 2019, respectively. In addition, there are no

Table 5.    Allele effects and parental genotypes of markers associated with berry acid and tannin QTL.

Trait LG Marker Allele Effect size
Parental genotype

Physical position (bp)
'Norton' 'Cab Sauv'

Tartaric acid 1 1_8118509 T 1.5 *1 AT AA 8118509
VVIP60 332 −2.4 *** 310/332 307/315 8803413

VMC7g5 167 2.3 *** 157/167 171/186 9804330
6 VMC2G2 131 −1.3 * 128 127/131 5819478

6_6679935 A −1.6 ** GG AG 6679935
VMC2F10 105 1.5 * 95/114 95/105 7615750

7 ctg9481 403 −0.40 ns 394/397 394/403 7446186
VMC1A2 149 0.52 ns 108/217 108/149 8230151

7_16971155 A −1.2 − GG AG 16971155
9 9_240934 T −0.30 ns GT GG 240934

FAM26 301 1.0 − 295/301 295/303 461325
17 17_9295617 C 0.62 ns CT TT 9295617

17_9884306 C 1.7 ** AC AA 9884306
17_10144592 C −1.1 − AC AA 10144592

Tannin 2 VVIO55 148 −0.81 *** 144 144/148 5523290
2_6360230 C 0.81 ** CT TT 6360230

FAM24 266 0.84 *** 266/270 270/277 13396269
FAM24 277 0.77 *** 266/270 270/277 13396269

VMC8C2 196 0.80 *** 148/196 148/150 17514943
VMC8C2 150 0.80 *** 148/196 148/150 17514943

pH 4 VVIN75 194 0.20 *** 196/212 188/194 14823485
VMC2E10 59 0.25 *** 53/55 57/59 17456655

VVIP77 191 0.21 *** 180/186 186/191 19317923

62 6_9366152 A 0.09 ** GG AG 9366152
6_12192456 T −0.11 *** CC CT 12192456

VVS5 128 0.10 *** 113/NULL 104/128 12956677
6_13625084 C 0.14 *** GG CG 13625084
6_14347587 T 0.12 *** CC CT 14347587

VMC4G6 130 0.12 *** 124/140 124/130 15179752
8 8_7718022 T 0.03 ns CC CT 7718022

VMC7H2 135 0.07 − 125/132 122/135 10149243
8_10699999 T −0.03 ns CC CT 10699999

Malic acid 82 VVS4 183 0.74 *** 169/183 169/176 9992297
VMC7H2 125 0.68 *** 125/132 122/135 10149243

8_10159975 T 0.69 *** CT CC 10159975
8_10222803 G 0.53 ** AG AA 10222803

FAM16 326 0.67 *** 326/329 329/329 10384476
14 VVC62 204 0.65 ** 184/188 184/204 1426689

14_1714481 A 0.60 ** CC AC 1714481
14_2083206 A 0.51 * GG AG 2083206

18 18_4020114 T 0.42 * AT AA 4020114
18_4607745 G 0.54 * CG CC 4607745
VMCNg1b9 151 0.22 ns 151/160 160/160 5645610

1 ***: p < 0.001, **: p < 0.01, *: p < 0.05, −: p < 0.10, ns: not significant, 2 QTL effects were calculated using BLUP values in place of single year data.
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gaps in length greater than 10.0 cM which is an improvement
over  the  previous  maps  which  contained  26  (2017)  and  4
(2019) such gaps[2,45].  The reduction in map size likely results
from  improved  genotype  error  handling  and  minimized
missing  data[48,49].  Lep-MAP3  uses  genotype-likelihoods
rather  than  observed  genotypes  for  all  calculations  which
makes  map  ordering  more  robust  against  potential
genotyping errors[50]. Additionally, the SNP marker diversity is
more  reflective  of  increased  heterogeneity  expected  from  a
hybrid Vitis spp.  cultivar  -'Norton'  in  comparison  to  a V.
vinifera cultivar  -'Cabernet  Sauvignon'.  Of  the  markers
segregating  in  a  single  parent  (2,102 SSRs  and  SNPs)  nearly
three-fourths  (72.3%)  were  polymorphic  for  'Norton'.  Further

improvements  included  the  reducing  percentage  of  missing

data allowed in the initial marker set to below 10%. The map

size  of 1,441.9 cM was  maintained within  the  range of  other

published  maps  (1,301.0−1,967.4 cM)  as  was  the  average

marker  spacing  of  0.75  cM  (0.41−2.5  cM)[34,40,51,52].

Segregation  distorted  loci  were  included  during  map

construction to minimize potential  marker gaps,  as  distorted

markers  are  often  clustered  which  was  also  observed  in  the

final map[53]. The longest gap of 8.4 cM was located on LG 15

(Table  1).  Linkage  group  15  contains  the  fewest  markers,  so

the increased marker spacing compared to other LGs should

be expected.
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Fig. 2    Phenotypes as BLUP values for (a) malic acid and (b) pH assorted by alleles from markers associated with stable QTLs on LG 8 and 6.
Statistical significance as determined by Tukey's HSD test (p < 0.05) has been designated with different letters.

Table 6.    Comparison between the previously published and current genetic map constructed for the 'Norton' × 'Cabernet Sauvignon' F1 population

Year Marker type Population size Number of markers Map size (cM) Average distance between loci (cM) Number of gaps >10 cM

2017 SSR 183 413 1,678.6 4.1 26
2019 SSR, SNP 159 2,072 2,203.5 1.1 4
2020 SSR, SNP 223 2,468 1,441.9 0.75 0
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Phenotyping
Variation  in  traits  among  years  indicated  the  influence  of

environment.  Substantial  defoliation,  which has been shown
to impact berry quality, did occur during all years because of
considerable  Japanese  beetle  (Popillia  japonica)  populations
during  and  after  veraison.  Increased  sun  exposure  and  leaf
removal  have  been  shown  to  decrease  malic  acid  in
'Norton'[9,28].  The  malic  acid  levels  from  Jogaiah  et  al.[28]

decreased  from  5.8  g/L  with  full  shading  to  3.2  g/L  with  full
sun exposure. Jogaiah et al.[9] similarly showed a reduction in
malic acid from 7.8 g/L to 3.9 g/L with leaf removal at fruit set.
If  similar  reductions  in  malic  acid  occurred  in  our  'Norton'  ×
'Cabernet  Sauvignon'  population  in  2017−2019  due  to  leaf
damage,  a  difference  of  approximately  3.0  g/L  malic  acid
would be enough to shift the population means (3.9, 3.4 and
2.5 g/L) from the low end of the expected value range to the
mid-upper  section  of  the  range.  In  2019,  slightly  warmer
temperatures  from  veraison  until  harvest  than  in  previous
years  (Supplemental  Table  1)  in  combination  with  the
defoliation,  likely  contributed  to  the  higher  tartaric  acid  and
lower  malic  acid  means  seen during that  year.  An additional
possible  factor  contributing  to  the  variability  of  tartaric  acid
and pH includes potassium bitartrate precipitation as sample
preparation  did  not  include  heating  which  would  dissolve
any precipitates which occurred from freezing and thawing of
the berries. A narrower range was observed for all trait values
in  2018  than  in  other  years.  This  attribute  may  be  generally
due  to  the  reduced  genotypes  available  in  2018  for  tartaric
acid, malic acid, and pH as this trend was also not seen in the
ranges  of  the  95%  confidence  intervals  for  the  means  (data
not shown).

The  broad-sense  heritability  value  of  malic  acid  (0.70)
(Table  2)  was  intermediate  to  the  ranges  reported  by  Liu  et
al.[19] of 0.79−0.91 and Bayo-Canha et al.[37] of 0.51−0.69. The
broad-sense heritability of tartaric acid (0.24) was lower than
previously seen by Liu et al.[19] (0.59−0.84) and Bayo-Canha et
al.[37] (0.49−0.56)  but  greater  than  the  reports  of  Houel  et
al.[35] (0.13). The heritability of pH was lower (0.32) than those
of  Duchêne  et  al.[24] (0.71−0.93).  Overall,  the  broad-sense
heritability  scores  indicated  the  traits  are  considerably
impacted  by  genetic  factors.  The  correlations  between  years
seen  for  malic  acid  (0.50−0.66)  and  pH  (0.52−0.67)
demonstrate  the  stability  of  these  traits  across  years.  For
malic  acid,  the  high  correlation  and  high  heritability  may  be
indicative  of  the  consistent  genetic  influence  as
demonstrated  by  the  QTL  results.  Inversely  for  tannin,  the
moderate  heritability  in  spite  of  insignificant  correlations
between  years  (0.13)  may  be  an  associated  effect  of  the
considerable PVE by the single-year QTL. Correlation between
malic  acid  and  pH,  on  a  [H+]  basis,  in  2018  (0.40)  and  2019
(0.20), but not for other years or traits, demonstrates that pH
is  only  weakly  influenced  by  concentration  of  organic  acid.
Significant  and  nonsignificant  correlations  between  pH  and
organic acids have also been seen elsewhere[54,55]. 

QTLs
QTLs have been reported on LGs 5, 6, 8, 15, and 18 related

to  malic  acid[34,36−38].  QTLs  for  malic  acid  on  LG  8  have  been
reported  in V.  vinifera populations,  but  not  previously  in  an
interspecific  hybrid  population[37,38].  Duchêne  et  al.[38]

investigated  the  region  from 8669988 to 13093399 on
chromosome  8  for  both  malic  and  tartaric  candidate  genes,
but  the malic  acid  QTL may be attributed to  a  more defined
region  based  on  their  SSR-based  map[56].  That  confidence
interval  was  flanked  by  markers  at  physical  positions  of
10702981 and  14039528.  Bayo-Canha  et  al.[37] presented  a
QTL  flanked  by  nearest  markers  at  positions  of 5145874-
14039528 bp.  The  confidence  interval  for  this  QTL  spans
approximately 8.9 Mbps making it difficult to validate against
the position of the QTL on LG 8 reported here. However,  the
cofactors associated with the QTL of Bayo-Canha et al.[37] may
indicate a more concise location of the responsible region as
they  are  all  located  within  the  interval  of 5145874−8533120
bp.  The  ambiguity  of  QTL  reported  on  low-density  maps  or
with relatively large confidence intervals can make it difficult
to validate the uniqueness of new findings. The QTL on LG 8
reported here (9992297−10385236 bp) appears to be unique
to 'Norton' as shown by the attributed alleles in Table 5. Two
single-year QTLs for malic acid in 2019 were also identified on
LGs 14 and 18. A QTL on LG 18 has previously been reported
in  an  interspecific  hybrid  population[34].  A  QTL  on  LG  14  has
been  found  for  pH  but  it  has  not  been  shown  to  be
connected to malic acid[38].

QTLs for pH have on LGs 10, 11, 13, and 14 been previously
demonstrated[38].  However,  a  stable  QTL  for  pH  on  LG  6
identified  here  has  not  previously  been  reported.  Additional
pH QTLs  were observed here on LGs 4  and 8  in  single  years.
On  LG  8,  the  pH  QTL  is  located  at  the  same  position  we
reported  for  malic  acid.  However,  differing  parental  alleles
were  shown  to  be  responsible  with  pH  allelic  effects
originating from 'Cabernet Sauvignon' rather than 'Norton' as
seen for malic acid. Tartaric acid QTLs on LGs 2, 4, 6, 7, 8, and
13  have  been  reported  previously[35,38].  Tartaric  acid  QTLs
reported here on LGs 6 and 7 coincide with those reported by
Houel  et  al.[35] and  Duchêne  et  al.[38],  both  of  which  used V.
vinifera-based  populations.  Allele  effects  by  the V.  vinifera
parent in this study further supports the QTLs being identical
to those previously reported. Duchêne et al.[38] also showed a
QTL  for  the  malic-tartaric  acid  ratio  located  on  LG  1  which
coincided with the location of the tartaric acid QTL from this
study.  QTLs  for  tartaric  acid  on  LGs  9  and  17  have  not
previously  been  reported.  The  QTL  for  tannin  on  LG  2  is
located  within  the  same  region  as  a  condensed-tannin  QTL
identified  by  Huang  et  al.[57].  Tannins  and  anthocyanins  are
both  synthesized  through  the  same  flavonoid  biosynthesis
pathway  so  similar  genetic  regions  may  play  roles  in  both
traits[58].  Significant  effect  sizes  for  alleles  from both 'Norton'
and  'Cabernet  Sauvignon'  indicate  the  presence  of  this  QTL
across  multiple Vitis species  and  may  explain  the  large  PVE
from the  QTL despite  failing  to  observe  the  QTL in  a  second
year.

The  study  presented  here  confirms  that  GBS-derived  SNP
and SSR markers can be combined to generate a high-density
genetic  map  for  study  of  an  interspecific  F1 population.
Significant  QTLs  for  berry  quality  traits  with  enological
importance  were  identified,  some  of  which  have  not
previously  been  seen.  QTL  variability  within  and  across
populations demonstrates the importance of data replication
across  environments  and  high-resolution  genetic  mapping
for  accurate  QTL  identification.  QTLs  for  malic  acid,  tartaric
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acid,  pH,  and  tannin  were  identified  for  the  first  time  in  a V.
aestivalis-based  population.  Stable  QTLs  across  at  least  two
years  for  malic  acid  and  pH  can  help  guide  the  selection  of
new hybrid cultivars for improved berry quality. 

MATERIALS AND METHODS
 

Plant materials
The  mapping  population  was  developed  from  a  crossing

between V.  aestivalis-based 'Norton'  and V.  vinifera 'Cabernet
Sauvignon'.  The  population  is  located  at  the  Missouri  State
Fruit  Experiment  Station  (MSFES)  in  Mountain  Grove,  MO,
USA. An initial planting in 2005 contained 74 progeny, and an
additional  310 genotypes were planted in 2011 as described
by  Adhikari  et  al.[46].  Vines  were  spaced  with  10-feet  (3.0  m)
between  rows  and  8-feet  (2.4  m)  within  rows.  A  bilateral
cordon system was used for vine training.

Genomic  DNA was  extracted from young leaves  using the
same procedure as Adhikari  et al.[46] and stored at −20 °C for
use in SSR genotyping. Additional leaf samples were collected
and packaged as previously described by Sapkota et al.[2] for
shipment  to  the VitisGen  (http://www.vitisgen.org)  geno-
typing center for the development of GBS-derived SNPs. 

Genotyping
Genotypes  for  413  polymorphic  SSR  markers  were

previously  identified in the mapping population[45].  A  subset
of the population (159 individuals) was previously genotyped
using  GBS[2].  An  additional  64  individuals  from  the  mapping
population  were  subsequently  genotyped  using  the
procedure  described  by  Sapkota  et  al.[2].  Briefly,  GBS  was
carried out according to the protocol of Elshire et al.[42] using
ApeKI  restriction  digestion  and  Illumina  Highseq  2000
platform for sequencing which was performed at the Cornell
University  Biotechnology  Resource  Center  (BRC,  Ithaca,  NY,
USA).  Individuals  in  the  F1 mapping  population  were  all
sequenced  once  and  aligned  to  the  12×  v2 V.  vinifera
'PN40024'.  Parental  DNA  was  sequenced  in  three  separate
replicates.  Burrows-Wheeler  alignment  tool  (BWA)  with
default  settings  was  used  for  alignment[40,59].  The  resulting
SNP data, contained within a VCF file, were filtered in TASSEL
(v.  5.2.04)[60].  Markers  possessing  both  parental  genotypes,
genotypes  for  at  least  90%  of  the  population,  a  minor  allele
frequency of  at  least  0.10,  and a  heterozygous proportion of
at  least  0.10  were  retained.  The  remaining  markers  were
evenly thinned based on physical positions (100 base pairs or
more  between  markers)  to  total  142  to  216  markers  per
chromosome. 

Linkage map construction
Genetic  map construction was accomplished in Lep-MAP3

(v. 0.2)[50]. SNP markers were encoded into the format used in
JoinMap  4[61] (lm  ×  ll,  nn  ×  np,  hk  ×  hk)  using  the  NGSEP[62].
SSR  markers  were  concatenated  with  the  SNP  markers.
Linkage  phases  for  all  markers  were  extracted  from  JoinMap
4.  The  marker  file  was  converted  using  an  awk  command
provided  by  Lep-MAP3  and  used,  with  the  pedigree,  in  the
ParentCall2 module.  Markers  were  separated  into  linkage
groups  using  distortion-aware  LOD  scores  using Separate-
Chromosomes2. LOD limits for grouping ranged from 6 to 10,

as  needed  to  achieve  19  LGs.  Remaining  single,  ungrouped
markers  were  iteratively  joined  to  existing  groups  via
JoinSingles2All.  Finally,  using  the OrderMarkers2 module,
markers were ordered into a sex-averaged map based on the
maximized  order  likelihood  of  100  mapping  iterations.
Mapping  distances  and  marker  orders  were  extracted  from
the  output  of OrderMarkers2 and  formatted  for  use  with
MapQTL6[63]. 

Phenotyping
Berries were sampled from the population at post-veraison

maturity  in  the  years  2017,  2018,  and  2019.  Harvest  dates
varied  from  year  to  year  in  accordance  with  a  physical
assessment  of  grape  maturity  (stage  38−40  on  modified  E-L
system)[64].  All  samples  were  collected  during  the  same
harvest period within each year. Samples contained 200−300
g of  berries  from each genotype.  Two sampling replicates of
each  genotype,  as  fruit  availability  allowed,  were  collected
and stored at −20 °C. One replicate was kept at Missouri State
University,  and  the  second  was  overnight  shipped  with  dry
ice  to  the VitisGen  Fruit  Quality  Phenotyping  Center  for
tannin analysis at Cornell University (Ithaca, NY, USA).

For  acid  and  pH  evaluation,  berries  (100  g)  were
destemmed  and  thawed  at  room  temperature  for
approximately  2  h  before  being  crushed  in  a  Stomacher  80
Biomaster  (Seward,  Worthing  West  Sussex,  UK)  for  1  min  at
'normal'  speed.  Samples  were  transferred  to  50  mL  plastic
centrifuge  tubes  and  centrifuged  in  a  Sorvall  Legend  Mach
1.6  R  model  (Thermo Fisher  Scientific,  Waltham,  MA,  USA)  at
12,000×  g  for  15  min,  and  the  supernatant  transferred  into
20 mL plastic centrifuge tubes.

The  concentrations  of  malic  and  tartaric  acids  were
evaluated using an Agilent 1100 Series HPLC system (Agilent
Technologies,  Santa Clara,  CA,  USA)  with a  Synergi  Hydro-RP
column  (Phenomenex,  Torrance,  CA,  USA)  and  an  Agilent
1100 Diode  Array  Detector.  The  column  was  held  at  22  °C.
Samples were eluted with a 20 mM KH2PO4 solution at a pH of
2.9, a flow rate of 0.40 mL per min, and at a UV absorbance of
220  nm.  The  injection  volume  was  5.0 µL  of  undiluted  juice.
Duplicate analysis was completed on each sample. Malic and
tartaric  acid  concentrations  were  calculated  using  standard
curves of (L-(-)-malic and L-(-)-tartaric acid (Sigma-Aldrich,  St.
Louis, MO, USA) and expressed in g/L. An Orion Star A211 pH
meter (Thermo Fisher Scientific, Waltham, MA, USA) was used
to evaluate the pH of extracted juice samples.

Tannin  concentrations  were  evaluated  using  a  methyl
cellulose  precipitable  tannin  assay  using  berry  samples  sent
to Cornell  University.  Following storage at −18 °C, the frozen
berry  samples  (50  g)  were  thawed  at  room  temperature  for
30  min.  Samples  were  macerated  using  a  250  mL  Waring
Blender  (Waring  Laboratory  Science,  Stamford,  CT,  USA).
Tannins  were  quantified  using  the  10  mL  assay  protocol
described  by  Mercurio  and  Smith[65],  and  absorbance
measurements  were taken using a  ThermoScientific  Genesys
10  s  UV-VIS  spectrophotometer.  For  the  assay,  ammonium
sulfate  (Alfa  Aesar,  Ward  Hill,  MA,  USA)  and  methylcellulose
(1,500 cp  at 20  °C;  VWR,  Solon,  OH,  USA)  were  purchased
commercially.  Concentrations  were  reported  based  on  a
point-calibration  curve  prepared  from  epicatechin  (HWI
pharma services, Ruelzheim, Germany). 
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Statistical calculations
Normality,  transformations,  heritability,  correlations,  and

best  linear  unbiased  predictor  (BLUP)  estimates  were
performed  in  the  statistical  software  R  (v.  3.6.3)[66].  The
normality  of  trait  distributions  was  evaluated  using  the
Shapiro-Wilk's test. All phenotypes were Box-Cox transformed
using MASS package (v. 7.3-51.6)[67] to improve the normality
of the traits for QTL analysis.

σ2
G/
(
σ2

G +σ
2
E

)
σ2

G σ2
E

The full model used for BLUPs and broad-sense heritability
estimates  was Pij = µ + Gi + Ej + rij,  where Pij was  the  trait
phenotype for genotype i in year j, µ the overall mean, Gi the
random  effect  of  genotype i, Ej the  random  effect  of  year j,
and rij the residual term. BLUPs were calculated for traits that
were  phenotyped  in  at  least  three  years  and  individuals  for
which  at  least  two  sets  of  data  were  available.  Broad-sense
heritability  was  estimated  for  each  trait  as  the  proportion  of
phenotypic  variance  which  is  explained  by  the  genotypic

variance using the following equation:  ,  where

 is the variance due to genotype and  is the variance due
to  environment.  The  linear  model  and  variances  were
calculated using the lme4 package (v. 1.1-21)[68].  Correlations
between  years  of  data  were  determined  using  the  Pearson
test  in  Hmisc  (v.  4.4-0)[69].  Partial  correlations  of  traits  were
evaluated using ppcor (v. 1.1)[70] with default methods. 

QTL analysis
QTL analysis  was performed in MapQTL6[63].  The restricted

multiple QTL model (rMQM) mapping method was used with
cofactor selection for final analysis of all phenotypes. Cofactor
selection  was  accomplished  using  the  'automatic  cofactor
selection'  tool.  The  PVE  by  the  QTL  and  QTL  position  was
extracted from the final rMQM result. Confidence intervals for
the  QTL  were  defined  by  a  1.5-LOD  support  interval  (the
region containing markers  with LOD scores  which fall  within
1.5  of  the  QTL's  maximum).  Significance  thresholds  were
estimated  using 1000 permutations  of  each  phenotype.  The
LOD  threshold  equivalent  to α =  0.05  at  the  GW  level  was
considered  significant.  QTLs  observed  in  at  least  two  years
were  considered  stable.  QTLs  detected  in  a  single  year  were
reported but considered unstable.

An  analysis  of  variance  (ANOVA)  evaluating  differences  in
trait means between genotypes at a given locus was used for
single-year  effect  sizes.  BLUP  values  were  used  in  place  of
single-year phenotypes for loci located at stable QTL. Default
settings for 'Anova' function from the car package (v. 3.0-6)[71]

were used. All markers within the QTL regions and the closest
flanking  markers  were  tested.  Alleles  of  the  greatest  effect
size  for  the  QTL  and  flanking  marker  alleles  and  effect  size
were reported for single-year QTL. Multi-year QTL effect sizes
were  reported  for  all  markers  within  the  support  interval.
Tukey's honest significant difference (HSD) test (p < 0.05) was
conducted  to  evaluate  the  differences  in  each  haplotype
combination's average effect for stable QTL flanking markers
and one interior maker. P-values were also extracted from the
analysis of variance model. All effect sizes are reported in units
corresponding  to  the  trait  values  and  are  not  standardized.
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