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Abstract
Fruits  are  considered as  healthy  foods  because  they  provide  a  rich  source  of  vitamins,  antioxidants  and other  nutrients,  including a  range of

essential bioactive flavonoid compounds. Flavonols, with diverse chemical properties and biological activities, are the most ubiquitous flavonoids

that  occur  naturally  in  fruits  and  they  are  nutritionally  important  to  animals  and  humans.  Numerous  investigations  have  emphasized  that

significant  intake  of  dietary  flavonols  is  associated  with  lower  incidences  of  degenerative  diseases.  Here,  we  review  current  knowledge

concerning  the  molecular  structures,  composition  and  distribution,  regulation,  and  structural  modification  of  fruit  flavonols.  In  addition,  we

consider  biotechnological  approaches  to  enhance  the  levels  of  flavonols  in  plants  or  microorganism.  An  understanding  of  the  factors

determining production of flavonols in fruit crops will  improve breeding programs and facilitate the production of fruits or bio-products with

desirable contents of bioactive flavonols of benefit to humans.
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Introduction

With  the  improved  awareness  of  nutrition  and  health
worldwide,  the  demand  for  healthy  dietary  components  has
received  increasing  attention,  and  the  consumption  of
nutrient supplements has been increasing. Numerous studies
have emphasized that fruits confer a protective effect against
human  degenerative  diseases  such  as  diabetes,  obesity,
cardiovascular  disease,  and  other  chronic  diseases,  due  to
inherent  richness  in  flavonoid  compounds[1,2].  Fruits  have
been  noted  to  play  significant  roles  in  nutrition  and  human
health,  especially  as  sources  of  vitamins,  minerals,  dietary
fiber, and bioactive compounds[3−5].

Flavonols  are  by  far  the  most  widespread  flavonoids,  and
naturally exist in plant vacuoles in the form of their glycoside
derivatives.  Currently,  at  least  15  flavonol  aglycones  have
been identified  in  fruits,  of  which  quercetin,  kaempferol  and
myricetin  are  the  most  common  ones.  Glycosylation,  hydro-
xylation,  methylation  and  acylation  enriches  the  types  of
flavonol derivatives present. It has been shown that flavonols
play an important role in plant growth and development and
resistance  to  stress,  including  regulating  auxin  transport,
affecting  pollen  development,  promoting  lateral  root  forma-
tion,  and  responding  to,  and  protecting  against,  ultraviolet
(UV) light[6−10].  As bioactive compounds, flavonols are known
to  exhibit  antioxidative,  anti-inflammatory,  anticancer  and
other  pharmacological  activities,  and  help  prevention  of
cardiovascular  disease  and  diabetes[11−13].  With  the  develop-
ment  of  new  chromatographic  techniques  and  molecular
biology  methods,  more  flavonols  have  been  identified  in

different  fruits,  and  the  metabolic  mechanisms  affecting
flavonol  accumulation  have  been  analyzed.  However,  most
reviews  of  flavonols  in  recent  years  have  focused  on  health
benefits  and  bioavailability[14,15] and  information  about
metabolic  mechanisms  that  determine  the  accumulation  of
specific flavonols in dietary fruits is often overlooked.

Here,  we  review  current  knowledge  concerning  molecular
structures,  distribution,  biosynthetic  mechanisms,  transcrip-
tional  regulation,  and  metabolic  engineering  of  fruit  flavo-
nols.  Particular attention is  paid to the roles of key structural
enzymes,  other  proteins  that  add  specific  chemical  modifi-
cations that affect structure and properties, and transcription
factors  important  in  regulating  the  biosynthesis  pathway.
Plant  responses  to  environmental  factors  that  influence
accumulation  of  flavonols  are  also  highlighted.  Understan-
ding  the  knowledge  of  molecular  mechanisms  controlling
flavonol  biosynthesis  will  facilitate  future  bioengineering
programs to produce desirable levels of targeted bioactivities
in our dietary fruits. 

Chemistry and distribution
 

Structure of identified flavonols
Flavonols  are  constructed  from  15-carbon  skeletons  and

are composed of two aromatic rings (A and B ring) connected
via  a  three-carbon  chain  (C  ring)  to  form  a  basic  diphenyl-
propane  backbone  (C6-C3-C6)  with  hydroxyl  groups  at  the
carbon 3 position (Fig. 1a). The A ring is normally formed from
three  malonyl-CoA  molecules  generated  via  the  acetate
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pathway and exhibits a characteristic hydroxylation pattern at
the carbon 5 and 7 sites. The B ring carbon originates from p-
coumaroyl-CoA  produced  from  phenylalanine  via  the  shiki-
mate pathway, and is often hydroxylated at carbon 4’, 3’4’, or
3’4’5’  positions  (Table  1).  Among  the  flavonol  aglycones
identified  in  fruits,  kaempferol  is  the  predominant  structure
and most other types including quercetin, myricetin, isorham-
netin, morin, laricitrin, gossypetin, kaempferide, natsudaidain,
quercetagetin,  syringetin,  sexangularetin,  rhamnetin  are
considered to be kaempferol derivatives carrying substituted

hydroxyl groups or methyl groups at the different positions of
the flavonol skeletons (Table 1).  For example, quercetin, a 3’-
hydroxykaempferol,  is  widespread  in  fruits[16].  Morin  is
hydroxylated at the 2’ carbon of kaempferol and accumulates
mainly in mulberry[17]. Kaempferide, a 4’-O-methylkaempferol,
occurs in grape (Vitis vinifera)[18].  Galangin and fisetin are not
regarded  as  kaempferol  derivatives,  however.  Galangin  has
no OH group on the B ring and has been reported in grape[19]

and blueberry (Vaccinium L.)[20]. Fisetin is not hydroxylated at
the 5-carbon position of the A ring and occurs in mulberry[17].
Hydroxylated  flavonol  aglycones  are  highly  unstable in  vivo,
and  methylation  modifications  help  to  enhance  stability.
Isorhamnetin,  with  methylation  at  the  3’  site,  is  the  most
common methylated flavonol aglycone and occurs mainly in
pear (Pyrus communis L.)[21] and peach (Prunus persica L.)[22].

Flavonols  are  most  frequently  found in  nature  in  the form
of glycosides due to the unstable physicochemical properties
of  their  aglycones.  Most  of  the  sugar  ligands  attached  to
flavonol  aglycones  are  glucoside,  galactoside,  rhamnoside,
xyloside,  and  arabinoside,  and  these  sugar  moieties  usually
accumulate in the form of mono-, or diglycosides in fruits (Fig.
1b).  The  glycosidic  linkage  can  be  divided  into O-glycosidic
bonds  and  C-glycosidic  bonds.  Sugar  ligands  are  generally
attached  to  an  oxygen  atom  at  carbon  3,  5,  7,  8,  3’,  4’,  or  5’
positions  to  form  flavonol O-glycosides,  of  which  3-
oxyglycosides  are  the  most  common  ones,  while  flavonol C-
glycosides are attached to the carbon atom at position 6 or 8.
In  addition,  hydroxyl  or  acyl  groups  can  also  be  attached  to
the parent ring of flavonols, which contribute to the structural
diversity  of  flavonols  and  play  an  important  role  in  their
diverse biological functions. 

Flavonol compounds in fruits
Different types of flavonol metabolites are found in specific

fruit,  and sugar  moieties  are  most  commonly  attached to  an
oxygen  atom  at  carbon  3  (Table  2).  With  the  development
and  application  of  high-resolution  mass  spectrometry,  more
and more flavonol  compounds have been identified,  among
which  kaempferol  and  quercetin  glycosides  are  the  most
common  dietary  flavonols  and  can  be  detected  in  most  of
fruits,  while  the  distribution  of  other  flavonol  glycosides  is
relatively  limited  (Table  2).  Apple  (Malus  domestica)  is  well-

a

b

 
Fig. 1    General structure of (a) flavonol aglycones and (b) main
glycosides.

Table 1.    Summary of flavonol aglycones identified in fruits.

Aglycones 5 6 7 8 2’ 3’ 4’ 5’ 6’ Reference

Kaempferol OH H OH H H H OH H H [16]
Quercetin OH H OH H H OH OH H H [16]
Myricetin OH H OH H H OH OH OH H [16]
Galangin OH H OH H H H H H H [19,20]
Gossypetin OH H OH OH H OH OH H H [30]
Kaempferide OH H OH H H H OCH3 H H [25]
quercetagetin OH OH OH H H OH OH H H [31]
Laricitrin OH H OH H H OCH3 OH OH H [25]
Morin OH H OH H OH H OH H H [17]
Isorhamnetin OH H OH H H OCH3 OH H H [16]
Natsudaidain OCH3 OCH3 OCH3 OCH3 H H OCH3 OCH3 H [32]
Syringetin OH H OH H H OCH3 OH OCH3 H [33]
Sexangularetin OH H OH OCH3 H H OH H H [34]
Rhamnetin OH H OCH3 H H OH OH H H [17]
Fisetin H H OH H H H OH OH H [17]
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Table 2.    Distribution of divergent flavonols in fruits. The first three listed compounds are the major flavonols in each fruit.

Fruit species Divergent flavonols Reference

Apple Quercetin 3-O-rhamnoside; Quercetin 3-O-galactoside; Quercetin 3-O-arabinoside; Quercetin 3-O-
glucoside;  Quercetin  3-O-xyloside;  Quercetin  3-O-robinobioside;  Quercetin  3-O-rutinoside;
Quercetin 3-O-neohesperidoside;  Kaempferol  3-O-galactoside;  Kaempferol  3-O-arabinoside;
Isorhamnetin 3-O-galactoside; Isorhamnetin 3-O-glucoside; Rhamnetin 3-O-rutinoside

[10,35]

Pear Quercetin  3-O-glucoside;  Isorhamnetin  3-O-galactoside;  Isorhamnetin  3-O-rutinoside;
Isorhamnetin  3-O-malonylglucoside;  Isorhamnetin  hexoside;  Isorhamnetin  3-O-
malonylgalactoside;  Isorhamnetin  3-O-glucoside;  Isorhamnetin;  Quercetin  3-O-galactoside;
Quercetin  3-O-galactosyl-glucoside;  Quercetin  3-O-rutinoside;  Quercetin  3-O-arabinoside;
Quercetin  O-acetylhexoside;  Quercetin  5-O-malonylhexosyl-hexoside;  Quercetin  7-O-
malonylhexosyl-hexoside; Quercetin 4’-O-glucoside; Kaempferol 3-O-galactoside; Kaempferol 3-
O-rutinoside; Kaempferol 3-O-acetylglucoside; Kaempferol 3-O-rhamnoside; Rhamnetin hexoside;

[21,36,37,38]

Peach Quercetin 3-O-glucoside; Isorhamnetin 3-O-rutinoside; Isorhamnetin 3-O-glucoside; Quercetin 3-
O-rhamnoside; Quercetin 3-O-galactoside; Quercetin 3-O-rutinoside; Kaempferol 3-O-rutinoside;
Kaempferol 3-O-glucoside

[22,28]

Loquat Quercetin 3-O-glucoside; Quercetin 3-O-galactoside; Kaempferol 3-O-sophoroside; Quercetin 3-O-
rhamnoside;  Quercetin  3-O-rutinoside;  Quercetin  3-O-neohesperidoside;  Quercetin  3-O-
sophoroside; Quercetin-3-O-galactosyl-glucoside; Quercetin 3-O-sambubioside; Kaempferol 3-O-
neohesperidoside; Kaempferol 3-O-sambubioside; Kaempferol 3-O-rhamnoside; Kaempferol 3-O-
glucoside; Kaempferol 3-O-rutinoside

[39,40]

Hawthorn Quercetin 3-O-galactoside; Quercetin 3-O-glucoside; Quercetin 3-O-rutinoside;
Kaempferol 3-O-glucoside; Kaempferol 3-O-neohesperidoside; Sexangularetin; Sexangularetin 3-
O-neohesperidoside; Sexangularetin 3-O-glucoside

[27,34]

Grape Quercetin 3-O-glucoside; Quercetin 3-O-glucuronide; Myricetin 3-O-glucoside; Quercetin 3-O-
galactoside;  Quercetin 3-O-rutinoside;  Quercetin;  Kaempferol  3-O-galactoside;  Kaempferide
coumaroylhexoside; Kaempferol 3-O-glucoside; Myricetin 3-O-glucuronide; Myricetin dihexoside;
Myricetin  glucoside-glucuronide;  Isorhamnetin  3-O-glucoside;  Isorhamnetin  3-O-glucoside;
Isorhamnetin  glucuronide;  Isorhamnetin  coumaroylglucoside;  Isorhamnetin;  Laricitrin  3-O-
glucoside; Syringetin-dihexoside; Syringetin 3-O-glucoside; Syringetin 3-O-galactoside

[18,23,41]

Blueberry Quercetin 3-O-galactoside; Quercetin 3-O-rhamnoside; Quercetin 3-O-rutinoside; Quercetin 3-O-
glucoside; Quercetin 3-O-pentoside; Quercetin 3-O-glucoside acetate; Quercetin 3-O-arabinoside;
Myricetin 3-O-galactoside;  Myricetin 3-O-glucoside;  Myricetin 3-O-pentoside;  Myricetin 3-O-
rhamnoside; Kaempferol 3-O-rutinoside; Kaempferol 3-O-glucoside; Laricitrin 3-O-galactoside;
Laricitrin 3-O-glucoside; Laricitrin 3-O-rhamnoside; Laricitrin 3-O-pentoside; Isorhamnetin 3-O-
galactoside;  Isorhamnetin  3-O-rhamnoside;  Isorhamnetin  3-O-glucoside;  Syringetin  3-O-
glucoside; Syringetin 3-O-rhamnoside; Syringetin 3-O-pentoside; Syringetin 3-O-galactoside

[20,25,42]

Bayberry Myricetin 3-O-rhamnoside; Quercetin 3-O-galactoside; Quercetin 3-O-rhamnoside; Myricetin 3-O-
glucoside;  Myricetin  deoxyhexoside-gallate;  Quercetin  3-O-glucuronide;  Quercetin  3-O-
arabinoside;  Kaempferol  3-O-rhamnoside;  Kaempferol  3-O-galactoside;  Kaempferol  3-O-
glucoside; Isorhamnetin 3-O-rhamnoside; Isorhamnetin 3-O-glucoside

[11,43]

Mulberry Quercetin 3-O-rutinoside; Kaempferol 3-O-glucoside; Quercetin 3-O-glucoside; Quercetin 3-O-
rhamnoside; Quercetin 3-O-galactoside; Quercetin 3-O-glucuronide; Quercetin; Myricetin 3-O-
rhamnoside; Isorhamnetin 3-O-glucoside; Myricetin; Kaempferol; Isorhamnetin; Fisetin; Morin;
Rhamnetin; Galangin; Kaempferide

[17]

Strawberry Quercetin glucuronide; Quercetin pentoside; Kaempferol coumaroylhexoside; Quercetin 3-O-
glucoside;  Quercetin  7-O-glucoside;  Quercetin  4’-O-glucoside;  Kaempferol  3-O-glucoside;
Kaempferol 7-O-glucoside; Kaempferol 4’-O-glucoside; Kaempferol glucuronide; Isorhamnetin 3-
O-glucoside; Isorhamnetin 7-O-glucoside; Isorhamnetin 4’-O-glucoside; Isorhamnetin glucuronide

[24,44]

Cherry Quercetin  3-O-rutinoside;  Kaempferol  3-O-rutinoside;  Quercetin  3-O-glucosil-rutinoside;
Quercetin 3-O-rhamnoside; Quercetin 3-O-galactoside; Quercetin 3-O-glucoside; Quercetin 3-O-
diglucoside;  Kaempferol  3-O-glucoside;  Kaempferol  3-O-rhamnoside;  Isorhamnetin  3-O-
rutinoside

[45]

Tomato Quercetin 3-O-rutinoside; Kaempferol 3-O-rutinoside; Quercetin glucosyl-glucoside rhamnoside;
Quercetin 3-O-rutinoside-7-O-glucoside; Quercetin 3-O-glucoside; Quercetin 3,7-O-glucoside;
Kaempferol  glucosyl-glucoside  rhamnoside;  Kaempferol  3-O-glucoside;  Kaempferol  3,7-O-
glucoside; Kaempferol 3-O-rutinoside-7-O-glucoside

[46,47,48]

Mango Quercetin  3-O-galactoside;  Quercetin  3-O-glucoside;  Quercetin  3-O-xyloside;  Quercetin
diglycoside; Quercetin 3-O-arabinopyranoside; Quercetin 3-O-arabinofuranoside; Quercetin 3-O-
rhamnoside;  Rhamnetin  3-O-galactoside;  Rhamnetin  3-O-glucoside;  Rhamnetin  3-O-
galactopyranoside;  Rhamnetin  3-O-glucopyranoside;  Kaempferol  3-O-glucoside;  Quercetin;
Isorhamnetin 3-O-glucoside

[26]

Litchi Quercetin rhamnosyl-rutinoside; Quercetin 3-O-rutinoside; Isorhamnetin rhamnosyl-rutinoside;
Quercetin  rhamnosyl-glucoside;  Isomer  of  Quercetin  rhamnosyl-glucoside;  Quercetin  3-O-
rutinoside-O-rhamnoside;  Quercetin  glucosyl-rutinoside;  Quercetin  rhamnosyl-glucosyl-
rutinoside;  Kaempferol  rhamnosyl-rutinoside;  Kaempferol  3-O-rutinoside-O-rhamnoside;
Kaempferol  3-O-rutinoside;  Keampferol  rhamnosyl-glucosyl-rutinoside;  Isorhamnetin  3-O-
rutinoside;  Isorhamnetin  3-O-rutinoside-O-rhamnoside;  Isorhamnetin  glucosyl-rutinoside;
Myricetin rutinoside

[49,50]
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known  for  accumulating  quercetin  glycosides  and  estimates
obtained  by  comparing  HPLC  peak  areas  with  standard
curves indicate a content of about 150 mg kg−1 fresh weight
(FW)  quercetin  3-O-rhamnoside  and  100  mg  kg−1 FW  quer-
cetin 3-O-galactoside respectively[10].  Isorhamnetin and myri-
cetin  derivatives  are  less  widespread  flavonols  compared  to
kaempferol  and  quercetin  glycosides.  It  has  been  demon-
strated that isorhamnetin metabolites are the major flavonols
in  pear  with  content  of  isorhamnetin  3-O-galactoside  up  to
65.15  mg  kg−1 FW,  quantified  by  comparing  peak  area  with
the standard curves  using UPLC[21],  and they  have also  been
detected  in  peach[22],  grape[23],  strawberry  (Fragaria ×
ananassa)[24] and  blueberry[25].  Myricetin  compounds  are
mainly distributed in berry fruits, especially Chinese bayberry
(Morella  rubra)[11],  blueberry[25] and  grape[18].  So  far,  little
research  has  been  carried  out  on  less  common  flavonols  in
fruits.  Rhamnetins  have  been  detected  mainly  in  mango
(Mangifera  indica L.)[26],  and  laricitrins  and  syringetins  have
been identified mainly in blueberry[25],  while sexangularetins
has  been  found  only  in  hawthorn  (Crataegus  laevigata)[27].
However,  the  distribution  pattern  of  flavonols  in  fruits
depends  on  the  degree  of  accessibility  to  previous
illumination due to the fact that their formation is accelerated
by  light.  For  example,  the  content  of  flavonols  is  usually
higher  in  the  peel  of  peach  and  persimmon  (Diospyros  kaki
Thunb.)  than  in  the  pulp[28,29].  Generally,  flavonol  glycosides
are located mainly in the outer parts of fruits such as the peel
and they decrease in concentration toward the central core. 

Advances in the biochemistry of the flavonol
pathways
 

Biosynthesis of flavonol aglycones
The mechanisms of flavonol biosynthesis have been widely

elucidated  and  a  simplified  flavonol  metabolic  pathway  is
shown  in Fig.  2.  Chalcone  synthase  (CHS)  catalyzes  the  first
step  in  flavonol  biosynthesis  by  converting  substrates p-
coumaroyl-CoA  and  malonyl-CoA  to  product  naringenin
chalcone[53].  The  following  second  catalytic  reaction  perfor-
med  by  chalcone  isomerase  (CHI)  and  chalcone  reductase
(CHR)  is  very  important  for  the  corresponding  formation  of
5,7-oxo and 5-deoxy flavonols. CHI was confirmed to catalyze
the  stereospecific  cyclization  of  naringenin  chalcone  to
naringenin[54],  which is  a  general  precursor  for  5,7-oxo flavo-
nols.  This  step  can  also  proceed  spontaneously.  CHR,  which
catalyzes  the  production  of  6’-deoxy  chalcone  (isoliquiriti-
genin)  through  its  effects  on  CHS  catalyzed  reaction[55],  is  a
key  enzyme  mediating  5-deoxy  flavonol  biosynthesis.
Flavanone  3-hydroxylase  (F3H),  flavonoid  3’-hydroxylase  (F3’

H),  flavonoid 3’5’-hydroxylase  (F3’5’H),  and flavonol  synthase
(FLS)  cover  the  core  metabolic  grid  of  flavonol  biosynthesis
and the production of different flavonols (Fig. 2). F3H and FLS
belong  to  the  2-oxoglutarate-dependent  dioxygenases
protein family  and catalyze 3-hydroxylation and oxidation of
carbon 2 and carbon 3 of flavonols on the C ring. F3’H and F3’
5’H are members of the cytochrome P450 protein family and
catalyze  3’4’-hydroxylation  and  3’4’5’-hydroxylation  on  the  B
ring.  Thus,  the  CHI-catalyzed  compounds  naringenin  and
liquiritigenin  can  be  converted  to  the  corresponding  dihy-
drokaempferol  and  garbanzol  by  F3H[56,57],  and  then  the
dihydroflavonols  dihydrokaempferol  and  garbanzol  are
converted  to  5,7-oxo  flavonol  kaempferol  and  5-deoxy
flavonol  resokaempferol  by  FLS[57,58].  The  5,7-oxo  flavonols
quercetin and myricetin are produced directly by FLS consu-
ming  the  intermediates  dihydroquercetin  and  dihydromyri-
cetin[58,59],  which  are  produced  by  two  hydroxylases:
flavonoid  3’-hydroxylase  (F3’H)  and  flavonoid  3’5’-
hydroxylase (F3’5’H) respectively[60,61]. Recently, a F3’5’H gene
isolated  from  Chinese  bayberry  was  postulated  to  be  the
important  factor  determining the accumulation of  myricetin,
because  it  drives  pathway  flux  towards  the  trihydroxylated
flavonol by hydroxylating kaempferol without the need for a
dihydromyricetin  specific  FLS[62].  Isorhamnetin,  a  5,7-oxo
methylated flavonol, is produced by the addition of a methyl
group to quercetin by O-methyltransferases (OMT)[63].  The 5-
deoxy  flavonol  fisetin  is  produced  by  conversion  from
resokaempferol by F3’H[57]. 

Modification of flavonol aglycones
Glycosylation, hydroxylation, methylation and acylation are

the major modification reactions resulting in the formation of
a  wide  range  of  flavonol  products.  These  modifications  tend
to alter  the stability,  solubility and cellular  localization of  the
corresponding  flavonol  aglycones.  In  fruit  species,  a  few
genes  have  now  been  identified  that  are  involved  in  cata-
lyzing such decorations of flavonol derivatives.

Flavonols  are  largely  glycosylated  by  uridine  diphosphate
glycosyltransferases (UGTs), which use uridine 5-diphosphate-
sugars  (UDP)  such  as  UDP-glucoside,  UDP-galactoside,  UDP-
rhamnoside  as  the  donor  molecule.  Most  fruit  UGTs  are
reported  to  participate  in  the  generation  of  3-oxoglycosy-
lated flavonols.  For  instance,  the enzymes AY519364[64] from
citrus  (Citrus  sinensis),  AcF3GT2  from  kiwifruit  (Actinidia
chinensis)[65],  and MdUGT71B1 from apple[10] have been con-
firmed to  catalyze  the  glucosylation of  the  3-hydroxyl  group
of quercetin efficiently,  while DkFGT from persimmon[66] and
MdUGT75B1  from  apple[10] preferentially  galactosylated  the
3-hydroxyl group of quercetin. In grapevine, VvGT5 was iden-
tified as a flavonol-3-O-glucuronosyltransferase that exhibited

Table 2 (continued)
 

Fruit species Divergent flavonols Reference

Citrus Quercetin 3-O-glucoside; Quercetin 3-O-rutinoside; Quercetin 7-O-glucoside; Quercetin 7-O-
rutinoside;  Quercetin  3-O-glucofuranoside;  Kaempferol  3-O-glucoside;  Kaempferol  3-O-
rutinoside; Kaempferol 7-O-glucoside; Kaempferol 7-O-rutinoside

[51,52]

Kiwi fruit Quercetin 3-O-rutinoside; Quercetin 3-O-glucoside; Kaempferol 3-O-rutinoside;
Quercetin  3-O-arabinofuranoside;  Quercetin  3-O-rhamnoside;  Quercetin  4’-O-glucoside;
Kaempferol  3-O-galactoside;  Kaempferol  3-O-rhamnoside;  Kaempferol  3-O-robinobioside;
Kaempferol 3,7-O-diglucoside 8-prenyl derivative; Myricetin 3-O-galactoside; Syringetin

[33]
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a  strong  glucuronosyl  transfer  activity  from  UDP-glucuronic
acid  to  kaempferol,  quercetin  and  isorhamnetin.  VvGT6  was
demonstrated to be a bifunctional glycosyltransferase, which
was  capable  of  adding  a  UDP-glucose  or  UDP-galactose
group  to  kaempferol,  quercetin  and  isorhamnetin
separately[67].  Strawberry  UGTs  have  been  reported  to  be
capable  of  glycosylating  at  different  hydroxyl  positions[24].
Using  recombinant  enzymes,  it  was  shown  that  both  FaGT6
and  FaGT7  were  able  to  convert  quercetin,  kaempferol  and
isorhamnetin to the corresponding 3-O-glucosides, 7-O-gluco-
sides, and 4’-O-glucosides, respectively. FaGT6 was capable of
forming  a  3’-O-monoglucoside  and  one  diglucoside  with
quercetin  as  a  substrate,  while  FaGT7  only  formed  3’-O-
monoglycoside but no diglucoside[24]. CsUGT76F1 from sweet
orange  has  been  shown  to  carry  out  glycosylation  at  the
carbon  3  or  7  position  of  flavonoids,  converting  kaempferol
and  quercetin  to  the  corresponding  3-O-glucosides,  7-O-
glucosides,  and  7-O-rhamnosides.  However,  the  enzyme

CsUGT76F1  was  found  to  be  capable  of  converting
kaempferol  to  its  3,7-O-diglucoside  but  no  quercetin  3,7-O-
diglucoside  product  was  formed  with  quercetin  as  a
substrate[51].  In addition to showing preferences for different
glycosylation positions, several fruit UGTs have been found to
possess  selectivity  to receptor  flavonol  molecules.  For  exam-
ple, citrus AY519364 glucosylated only the flavonol aglycones
quercetin,  kaempferol  and  myricetin[64],  and  strawberry
UGT75T1  exhibited  very  strict  substrate  specificity  and
glucosylated only the flavonol galangin out of 33 compounds
tested[68]. Thus, different fruit UGTs have obvious preferences
for different flavonol aglycones and glycosylation sites.

Hydroxylation at carbon 3, 3’ and 3’5’ positions of flavonols
is largely catalyzed by F3H, F3’H and F3’5’H discussed above,
and hydroxylation at the carbon 6 and 8 positions is generally
performed  by  flavonol  6-hydroxylase[69] and  flavonoid  8-
hydroxylase[70] separately.  Methylation  of  flavonols  is  almost
exclusively  catalyzed  by  OMTs,  and  several  fruit  OMT  genes

 
Fig. 2    Representative flavonol biosynthetic pathways. The pathways utilize naringenin chalcone, produced from phenylalanine and malonyl-
CoA, highlighted in grey. The metabolic pathway of 5,7-oxo flavonols is highlighted in yellow, and biosynthetic pathways for 5-deoxy flavonols
are highlighted in green. CHR: chalcone reductase; CHI: chalcone isomerase; F3H: flavanone 3-hydroxylase; F3’H: flavonoid 3’-hydroxylase; F3’5’
H: flavonoid 3’5’-hydroxylase; OMT: O-methyltransferases; FLS: flavonol synthase.
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have  been  identified  that  methylate  flavonols,  for  example
from apple[71], tomato (Solanum lycopersicon)[72] and citrus[63].
However, no genes encoding enzymes functional in acylation
have  been  verified  in  fruits  so  far.  Future  studies  could
address  this  issue  and  may  reveal  other  target  flavonol
substrates and new decoration enzymes. 

Regulation of flavonols biosynthesis
 

Regulatory genes in flavonol biosynthesis
The transcriptional control of flavonol biosynthesis genes is

often regulated by myeloblastosis (MYB) transcription factors
and has been extensively studied in fruits.

MYB genes belong to one of the largest transcription factor
(TF)  families  in  plants  and  modulate  a  number  of  different
biological  processes.  In  Arabidopsis,  MYBs  are  divided  into
subgroups  (SGs),  according  to  sequence  similarity  and  SG7
group members,  including MYB12, MYB11 and MYB111,  have
been confirmed as flavonol-specific  factors[73,74].  In fruits,  the
SG7  MYBs,  which  have  been  identified  as  activators,  have
been  comprehensively  researched  in  grape,  apple,  pear,
peach and other plants (Table 3).  Generally,  members of  this
subclade  of  MYBs,  participate  in  flavonol  accumulation  by
activating  expression  of  structural  genes  encoding  enzymes
in  the  biosynthetic  pathway.  For  example,  apple  MdMYB22
binds  to  the  promoter  of FLS directly  to  induce  flavonol
accumulation[75].  Overexpression  of  peach PpMYB15 or
PpMYBF1[22] or Morella MrMYB12[76] significantly  induced  the
accumulation  of  flavonols  in  tobacco  flowers.  MYBs
belonging  to  other  subclasses,  including  SG4  (flavonoid
repressors  clade),  SG5  (proanthocyanidin-related  subclade),
SG6  (anthocyanidin-related  subclade)  are  also  related  to
flavonol  accumulation  (Table  3).  Different  members  of  the
SG4  subclass  have  been  identified  as  both  inhibitors  and
activators.  For instance, strawberry FaMYB1 was identified as
an  inhibitor  and  heterologous  expression  of FaMYB1 in
tobacco resulted in a clear reduction in the levels of quercetin
glycosides[77],  while  apple  MdMYB3  was  identified  as  an
activator and higher levels of kaempferol and quercetin were

observed  in  transgenic  tobacco  flowers  overexpressing  this
gene than in wild type plants[78]. MYBs belong to the SG5 and
SG6  subclasses  have  been  shown  to  be  activators,  such  as
pear PbMYB9 (SG5)[8] and crabapple McMYB10 (SG6)[80].

In  addition,  several  other  transcription  factors  have  been
reported  to  be  involved  in  the  regulation  of  flavonol
biosynthesis.  The  basic  region/leucine  zipper  (bZIP)  family
transcription  factors  VvibZIPC22  and  VvMYB114  from  grape
were  identified  as  activators  and  shown  to  be  involved  in
transcriptional  regulation  of  flavonol  metabolic  pathway
related  genes[81,82].  Similarly,  MdMYB8  from  crabapple  was
confirmed as an active regulator of flavonol biosynthesis that
activates  the MdFLS promoter[83].  In  apple,  the  promoter  of
FLS was activated by ELONGATED HYPOCOTYL 5 (HY5), which
is involved in response to light and could be enhanced by the
presence  of  MYB22[9].  Although  studies  on  transcriptional
regulation  of  flavonols  have  mostly  been  focused  on  MYBs,
new  regulatory  mechanisms  affecting  the  flavonol  biosyn-
thetic pathways should be given more attention. 

Factors affecting the biosynthesis of flavonols
The biosynthesis of flavonols is determined by an intricate

system  of  genetically  controlled  enzymes  and  influenced  by
extrinsic  factors  such  as  light  in  fruit  species.  Most  research
has shown that  formation of  flavonols  is  significantly  accele-
rated by light. In grape, flavonols were shown to be the most
drastically  reduced  flavonoid  compounds  following  shading
and  leaf  removal  treatments,  and  this  was  related  to
VvMYB12-mediated reduction in  expression of VvFLS.  In  con-
trast, exposure to sunlight substantially induced the accumu-
lation  of  grape  flavonols  compared  to  shading[85].  Similarly,
the content of flavonols in peels of apple exposed to sunlight
were higher than shaded peels[90].  Further,  flavonol  accumu-
lation  in  Cabernet  Sauvignon  grape  was  dramatically
enhanced  by  increasing  sunlight  irradiance  and  exposure
time[91].  However,  the  level  of  flavonols  can  be  significantly
changed  in  response  to  different  shade  treatments.  In
crabapple,  for  example,  shading  decreased  the  content  of
flavonols at 15 days after shading while it increased the level

Table 3.    Summary of MYB and bZIP transcription factors characterized in a wide range of fruit species regulating flavonol accumulation.

Species Genes Metabolites Subgroup Reference

Fragaria ananasa FaMYB1 Flavonol, Anthocyanin SG4 [76]
Vitis vinifera VvMYB5a Flavonol, Anthocyanin SG6 [84,85]

VvMYBF1 Flavonol SG7 [86]
VvMYB12 Flavonol SG7 [85]
VvibZIPC22 Flavonol, Anthocyanin bZIPC [81]
VvMYBA2 Flavonol, Anthocyanin SG6 [87]
VvMYB114 Flavonol, Anthocyanin Unknown [82]

Malus domestica MdMYB3 Flavonol, Anthocyanin SG4 [78]
MdMYB22 Flavonol SG7 [75]

Malus crabapple McMYB10 Flavonol, Anthocyanin SG6 [80]
MdMYB8 Flavonol Unknown [83]

Pyrus bretschneideri PbMYB9 Flavonol, Anthocyanin SG5 [79]
PbMYB12b Flavonol SG7 [37]
PbMYB17 Flavonol SG7 [36]

Prunus persica PpMYB15, PpMYBF1 Flavonol SG7 [22]
Morella rubra MrMYB12 Flavonol SG7 [77]
Solanum lycopersicum SlMYB12 Flavonol SG7 [88]
Citrus sinensis CsMYBF1 Flavonol SG7 [89]

 
Current knowledge of fruit flavonols

Page 6 of 11   Xing et al. Fruit Research 2021, 1: 11



of flavonols at 35 and 50 days after shading[92].
Flavonols  are  considered as  effective  UV-absorbing comp-

ounds,  and  are  generally  induced  by  UV  light,  particularly
damaging  UVB  radiation.  In  grape,  supplementing  UV  with
white  light  treatment  drastically  increased  the  accumulation
of  flavonols  by  inducing  the  expression  of VvCHS2, VvCHS3,
VvCHI1, VvF3H2, VvF3’5’H, VvFLS4, VvMYB12,  and VvHY5
genes[93,94].  Conversely,  the  concentration  of  grape  flavonols
was  greatly  reduced  in  response  to  exclusion  of  UVB[95].
Similarly,  lower  levels  of  flavonols  occurred  in  UVB-excluded
apples  compared  to  solar  UVB-exposed  fruits[9].  In  several
berry fruits such as blueberry[96], grape[97]and strawberry[98], it
has been reported that UVC treatment significantly enhanced
the content of flavonols.

The accumulation of flavonols in fruits is affected by other
abiotic  factors.  Blackberries  treated  with  methyl  jasmonate
(0.01  and  0.1  mM)  had  higher  quercetin  3-O-glucoside  and
quercetin  3-O-rhamnoside  content[99].  High  medium  pH
values  induced  the  content  of  flavonols  in  crabapple  leaves,
and  this  was  related  to  up-regulation  of McFLS transcript
levels[100].  The plant growth regulator 24-epibrassinolide and
5-aminolevulinic  acid  up-regulated  the  expression  of  the
structural  gene MdFLS,  which  was  decreased  by
brassinazole[101]. High nitrogen treatment reduced the overall
content  of  total  flavonoids  in  apple  by  19.01%,  although
kaempferol-3-O-arabinoside  increased  while  quercetin  and
rhamnetin  derivatives  decreased[35].  Temperature  had  little
effect on the flavonol content of  grape berry skins,  although
lower  temperature  (15  °C)  increased  the  content  with  white
and supplementary UV light conditions[93]. In apple, however,
lower  temperatures  (10  °C)  inhibited  the  accumulation  of
quercetin  glycosides  compared  with  20  °C  under  both  UVB
and visible light irradiation[102]. 

Metabolic engineering of flavonol compounds

To our knowledge, dietary flavonols with potent bioactivity
and  good  biosafety  are  regarded  as  natural  health  metabo-
lites and are derived primarily from fruit sources. Engineering
of fruits to enrich for desirable flavonols has recently become
the focus of scientific attention. The directed manipulation of
target gene expression is regarded as a useful tool to induce
the accumulation of flavonol constituents especially in model
fruit, such as tomatoes, which are consumed in large volumes.
Overexpression  of  petunia CHI in  tomato  variety  FM6203
produced  16.52  mg  g−1 dry  weight  (DW)  quercetin  and  2.05
mg  g−1 DW  kaempferol,  indicating  increases  of  66-  and  57-
fold over control peel extracts, respectively[103]. Subsequently,
Luo  et  al.[46] introduced AtMYB12 into  the  tomato  MicroTom
and Money Maker background separately and the contents of
flavonols in transgenic fruits were increased to 72 mg g−1 DW
and  48  mg  g−1 DW  on  a  whole-fruit  basis,  representing
increases  of  up  to  65-fold  compared  to  control  fruits.  Based
on  the AtMYB12 mediated  genetic  background,  a  crossed
phenotype  termed  Indigo  (anthocyanin-enrich Del/Ros1
parent  ×  flavonol-enrich AtMYB12 parent)  tomato  had  even
greater  content  of  flavonols  in  fruits,  approximately  3-fold
more  than  parental  AtMYB12  tomatoes[104].  In  addition,
introducing AtMYB11 into  tomato  resulted  in  increased
flavonol  levels  in  fruit  peels  but  showed  a  smaller  effect  on

flavonols  compared  to AtMYB12[48].  With  the  continuous
development and improvement of experimental technology,
the prospects  of  enhancing the accumulation of  flavonols  in
non-model fruits by altering transcript levels of genes related
to  flavonol  metabolic  pathway  looks  promising.  Overexpre-
ssion  of  either MdMYB22 or MdMYB8 in  'Orin'  apple  callus
significantly  promoted  flavonol  accumulation[75,83].  The  con-
centrations  of  most  flavonol  metabolites  were  up-regulated
by  overexpressing PbMYB12b in  pear  fruits,  except  for
quercetin 3-O-arabinoside[37].

Biotechnological  production of  flavonol  compounds using
microorganisms  could  possibly  meet  the  increasing  market
demand  for  fruit  flavonols.  For  instance,  vectors  containing
citrus F3H and FLS genes were introduced into E. coli resulting
in production of 15.1 mg L−1 kaempferol with tyrosine supp-
lement  and  1.1  mg  L−1 galangin  with  phenylalanine
supplement[105].  Fisetin has also been produced at a concen-
tration of 0.3 mg L−1 by overexpressing flavonol biosynthesis-
related genes in E. coli with 0.5 mM L-tyrosine supplement[57].
In recent years, de novo production of kaempferol,  myricetin,
quercetin using the actinomycete Streptomyces coelicolor, and
fisetin in the host yeast Saccharomyces cerevisiae grown on a
cheap carbon source has been described[106]. 

Conclusions and perspective

Flavonols with their extensive double bonds and polyphe-
nolic  nature  are  important  secondary  metabolites  and  have
diverse  functions  in  animals,  plants,  and  microorganisms.  In
this article, we have attempted to summarize recent advances
in  the  understanding  of  the  structure,  distribution,  biosyn-
thesis,  regulation  and  metabolic  engineering  of  fruit  flavo-
nols.  Recent  development  in  metabolomics,  particularly  the
widespread  adoption  of  high-resolution  mass  spectrometry,
have  considerably  improved  detection  and  identification  of
flavonol  metabolites.  The  increasing  development  of  func-
tional  genomics  and  transcriptomics  and  improvement  of
experimental  systems  for  modifying  gene  expression  have
given  a  significant  boost  to  studies  on  the  biosynthesis,
regulatory mechanisms and modification of flavonol content.
Whilst most research on regulation of flavonol production to
date has focused on MYB transcription factors, there is a need
to  better  understand  how  environmental  and  stress
responses  affect  the  production  of  flavonols  and  identify
other  participating  transcription  factors.  Furthering  our
understanding  of  the  factors  affecting  the  structure,
accumulation and distribution of  fruit  flavonols  will  facilitate
production  of  metabolically  engineered  plants  containing
desirable bioactive compounds and promote consumption of
healthier fruit.
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