
 

https://doi.org/10.48130/FruRes-2022-0003

Fruit Research 2022, 2: 3

Deciphering the impact of glucose signaling on fruit quality
Chu-Kun Wang, Yu-Wen Zhao, Cui-Hui Sun*, and Da-Gang Hu*

National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture
Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
* Corresponding authors, E-mail: suncuihui@163.com; fap_296566@163.com

Abstract
Glucose is a preferred source of carbon and energy for plants. In addition to metabolic functions, glucose is a well-known signaling molecule that

regulates plant growth and development through multiple pathways. In this review, the mechanisms by which glucose signaling regulates the

accumulation of sugars and organic acids, as well as the ripening of fleshy fruit, are examined. An analysis of these complex molecular networks

demonstrates the impact of glucose signal perception on fruit quality.
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Introduction

Plant nutrient metabolism is generally achieved through the
source-sink  relationship,  in  which  some  organs  function  as
source tissues and others function as sink tissues. Leaves act as
source  tissues  and  generate  assimilation  products  through
photosynthesis for later transport to sink tissues, such as tubers,
fruits,  and  seeds[1].  As  the  main  form  of  carbon  storage,  sugar
functions as  both an energy source and structural  component
in  plants,  which  also  affects  gene  expression,  participates  in
various  processes  of  plant  growth,  development  and  metabo-
lism, and affects the response of plants to biological and abiotic
stresses[2−4].  Carbohydrates  produced  by  photosynthesis  are
transported to the cytoplasm in the form of triphosphate to be
converted into hexose phosphate or sucrose, which are stored
in vacuoles for later use[5]. Sucrose can be transported to other
tissues to be converted into hexose or starch under the action
of  sucrose  synthase  and  invertase[6],  while  excess  photosyn-
thates,  which  accumulate  in  chloroplasts  during  the  day,  are
temporarily  stored  in  the  form  of  starch  and  converted  to
maltose and glucose at night[7]. Therefore, a strict sugar sensing
and  signaling  system  is  essential  for  coordinating  photosyn-
thesis and carbon metabolism to maintain normal plant growth
and development[8−10].

Among those sugars, glucose which is the most well-studied
sugar  molecule  acting  as  a  form  of  carbon  metabolism  and
signaling  plays  a  role  in  specific  regulatory  pathways.  Glucose
metabolism is one of the most fundamental processes in living
organisms and exists throughout all kingdoms of life. Glucose is
metabolized through glycolysis, gluconeogenesis, and pentose
phosphate pathways. The glucose in Rosaceae plants is mainly
converted from sucrose, with secondary contribution from sor-
bitol and can be used as a respiratory substrate to participate in
glycolysis.  Hexokinase  (HXK),  which  can  catalyze  the  metabo-
lism of fructose and glucose, carries out one of the rate-limiting
steps  in  glycolysis[11].  HXK  can  be  divided  into  glucokinase
(GLK)  and  fructokinase  (FRK).  The  HXKs  that  prioritize  glucose
metabolism  are  known  as  GLKs,  and  have  been  found  in

germinating corn shield leaves[12], pea seeds (ATP: D-glucose 6-
phosphotransferase,  EC  2.7.1.2)[13,14],  rice  embryos[15],  tomato
fruits,  and  soybean  nodules  (EC.  2.7.1.1)[16,17].  Glucose  partici-
pates  in  many  complex  metabolic  processes  that  have  been
well-described  over  the  past  few  decades.  The  effects  of
glucose  signaling  on  fruit  quality  and  fruit  ripening,  especially
in Rosaceae plants, are discussed in this review. 

How does glucose initiate signal transduction
cascades?

Glucose not only plays a role in metabolic pathways, but also
regulates  plant  growth  through  signal  transduction.  There  are
three  main  glucose  signal  transduction  pathways  in  plants:
HXK1-dependent  glucose  signaling;  G-protein-coupled  signal-
ing  associated  with  the  AtRGS1  transduction  pathway;  and
glycolysis  dependent  on  SnRK1/TOR  signal  transduction
pathways.

Sugar  signaling  is  facilitated  by  HXKs,  which  play  an  impor-
tant  role  in  signal  transduction[18].  Studies  on  different  sugars,
sugar  analogues,  and  metabolic  intermediates  in  mesophyll
protoplast  transient  expression  systems  and  phenotypic
analysis of transgenic Arabidopsis have confirmed that HXK1 is
a  plant  glucose  sensor[19−21].  In  previous  studies,  the  decoup-
ling  of  glucose  metabolism  and  signal  transduction  was
achieved  by  the  construction  and  analysis  of  two  inactive
AtHXK1 alleles.  A mutant of AtHXK1, S177A,  has been shown to
lack  catalytic  activity  but  retain  glucose  receptor  activity,
suggesting  that  the  catalytic  function  of  HXK1  is  not  coupled
with  signaling  perception  and  transduction[22].  Glucose  binds
to AtHXK1, and the binding activity of AtHXK1 protein changes
to  initiate  glucose  signal  transduction[23].  The  localization  of
HXK  protein  may  also  play  an  important  role  in  its  function,
since  HXK1  is  mainly  located  in  the  mitochondrial  membrane,
cytoplasm,  and  nucleus[24−27].  HXK1  can  interact  with  vacuolar
H+-ATPase  B1  (VHA-B1)  and  the  19S  regulatory  particle  of  the
proteasome  subunit  (RPT5B)  in  the  nucleus  to  recruit
transcription factors that bind directly to the promoter regions
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of  the  light-harvesting  chlorophyll  a/b-binding  proteins  CAB2
and CAB3 to regulate gene expression[24]. A cascade of glucose
signaling  through  hormones  has  also  been  established  by
using  sugar-insensitive  mutants.  HXK  functions  upstream  of
glucose  insensitive  1  (GIN1)  and  abscisic  acid  (synthesis)  2
(ABA2)  in  the  glucose  signaling  pathway[28].  Glucose  insensiti-
vity  mutants  of ABA3 (gin5 and gin6)  inhibit  the  expression  of
AP2 transcription factor ABI4 in glucose signal transduction[29].
The  glucose-insensitive sis4/gin1 mutant  is  an ABA2 allele  that
regulates  the  short  chain  dehydrogenase/reductase  (SDR1)
required  for  ABA  synthesis[30].  Therefore,  HXK1-dependent
glucose  signals  regulate  ABA  synthesis  by  regulating  ABA
synthesis genes such as ABA1, ABA2,  and ABA3,  which regulate
ABA  signaling  genes  such  as ABI8 and ABI5 to  regulate  plant
growth  and  development[31].  Additionally, etr1-1 and  ethylene
insensitive  mutant ein2 exhibit  glucose  hypersensitivity[28].
Glucose and ethylene antagonistically regulate protein stability
of  EIN3  through  the  Skp1-Cullin-F-box  protein  (SCF)  ubiquiti-
nation pathway[32].

Typical  G  protein  signaling  transduction  pathways  include
heterotrimer  G  protein  GPCRs,  RGS  proteins,  downstream
effector proteins, and other regulatory proteins. However, thus
far  no  GPCRs  have  been  found  in  plants.  The  major  compo-
nents  of  RGS1-dependent  G  protein  signaling  transduction
pathways  in Arabidopsis are  Gα (AtGPA1),  Gβ (AtAGB1),  Gγ
(AtAGG1),  seven-times  transmembrane  protein  (AtRGS1),  and
with  no  lysine  (K)  kinase  (AtWNKs)[33].  In  the  absence  of
extracellular glucose stimulation, the Gα subunit and RGS1-Gβγ
are in equilibrium, but when glucose stimulation occurs,  more
Gβγ dimers  recruit  AtWNK8  to  phosphorylate  AtRGS1.  AtRGS1
then  leaves  the  cell  membrane  through  endocytosis  by
phosphorylation  and  releases  Gα (AtGPA1)  in  a  free  state,
leading  to  initiation  of  the  G  protein  signaling  pathway[34].  It
has  also  been  shown  that  AtWNK8  and  AtWNK10  are  active
under high glucose concentrations, while AtWNK1 phosphory-
lated AtRGS1 at low concentrations[35].

Sugar  signals  can  be  translated  by  protein  kinases,  among
which  the  target  of  rapamycin  (TOR)  is  an  important  energy
metabolism  sensor  that  acts  in  conjunction  with  sucrose  non-
ferment  related  kinase  1  (SnRK1)  to  regulate  cell  homeo-
stasis[36,37].  The  glycolysis-dependent  SnRK1/TOR  signal  trans-
duction  pathway  is  the  only  pathway  that  is  dependent  on
glucose  metabolism.  Glucose  can  activate  signaling  by  TOR,
which  is  interconnected  with  regulatory-associated  protein  of
TOR  (RAPTOR)  and  lethal  protein  SEC13  protein  8  (LST8)  to
comprise  the  TOR  complex  1  (TORC1).  RAPTOR  interacts  with
the  N-terminus  of  TOR  to  promote  recruitment  of  kinase
substrates[38],  while  LST8  binds  to  TOR's  C-terminal  kinase
domain to regulate substrate selectivity and adjust the activity
of TORC[39].  In Arabidopsis,  SnRK1 is encoded by three catalytic
subunits:  SnRK1.1,  SnRK1.2,  and SnRK1.3[40].  SnRK1s have been
shown  to  be  inactivated  by  sugar  and  play  a  central  role  in
energy signaling in a similar  manner to the homologous yeast
Snf1  and  mammalian  AMPK  proteins,  but  it  is  not  associated
with  HXK1-dependent  glucose  signaling[40].  Sucrose/glucose
signals affect the level of trehalose 6-phosphate (Tre6P), which
directly  binds  to  SnRK1.1  and  reduces  the  phosphorylation  of
geminivirus  Rep  interacting  kinase  1  (GRIK1)-SnRK1.1,  thereby
inhibiting  SnRK1.1[41].  SnRK1.1  interacts  with  RAPTOR1B  and
phosphorylates  it  to  inhibit  TOR's  activity[42].  The  SnRK1/TOR
signaling transduction pathway indirectly  responds to glucose

signaling by sensing energy levels in plants, of which glucose is
a  critical  indicator[43].  SnRK1  responds  to  low  energy  states,
while  TOR  positively  regulates  key  biosynthesis  processes  and
responds to high energy states[40,43,44]. 

Glucose signaling affects fruit color

Sugar  signals,  especially  glucose,  not  only  play  important
roles in the normal function of cells but also affect the quality of
ornamental crops and fleshy fruits. Fruit color has an impact on
the  perception  of  fruit  quality,  and  mostly  depends  on  antho-
cyanin content.  Studies have shown that sugar can induce the
synthesis  of  anthocyanin  in  plants[45−48].  Anthocyanin  is
produced in the cytoplasm by the flavonoid pathway and then
transported  into  vacuoles  for  storage.  Phenylalanine  can  be
catalyzed to form anthocyanin by phenylalanine ammonialyase
(PAL),  chalcone  synthase  (CHS),  chalcone  isomerase  (CHI),  fla-
vanone  3-hydroxylase  (F3H),  dihydroflavonol  reductase  (DFR),
anthocyanin  synthase  (ANS),  and  flavonoid  3-glucosyltrans-
ferase  (UFGT)[49].  The  glucose  signal  transduction  pathway  is
dependent  on  HXK1  and  can  increase  the  accumulation  of
anthocyanin in grapes by inducing the expression of regulatory
and  structural  genes,  including VvUFGT and VvF3H[50,51].
Anthocyanin  biosynthesis  is  also  synergistically  regulated  by
the MYB-bHLH-WD40 (MBW) complex[52,53]. MYB can be divided
into  R1/2-MYB,  R2R3-MYB,  and  R3-MYB,  among  which  R2R3-
MYB  is  the  largest  MYB  family  in  plants,  which  regulates
anthocyanin  synthesis  and  interacts  with  bHLH[54,55].  bHLH  is
the  second  largest  transcription  factor  family  in  plants  and  is
involved  in  plant  growth  and  development  processes,  includ-
ing  hormone  signaling  and  anthocyanin  accumulation[54,56].
WD40  protein  is  a  family  of  proteins  containing  4−10  random
WD  repeat  domains,  and  the  core  region  is  composed  of  40
amino  acid  disabilities.  Under  the  induction  of  glucose
signaling,  MdHXK1  stabilizes  the  members  of  MBW  complex
MdbHLH3  protein  through  phosphorylation,  and  MdbHLH3
could bind to G-box cis-acting element of MdMYB1 promoter to
enhance  the  transcriptional  activation  of  MdMYB1  and
promote  the  accumulation  of  anthocyanin[26,57].  Furthermore,
MdMYB1  binds  to  the  promoter  of GSTs  to  regulate  antho-
cyanin  accumulation,  and GST can  be  induced  by  glucose
signaling[58,59]. 

Glucose signaling affects fruit acidity

The  content  of  soluble  sugar  and  organic  acid  has  a  strong
effect on the quality of  fleshy fruit[60,61].  Approximately 85% of
the  organic  acids  in  apples  is  malate[62,63],  which  is  a  key
intermediate  in  the  tricarboxylic  acid  (TCA)  cycle  that  enters
mitochondria  as  a  substrate  for  respiration[64−66].  Malate  also
regulates  the  pH  of  vacuoles  to  alter  fruit  acidity[67,68].  On  the
vacuole membrane, two different proton pumps, H+-ATPase (V-
ATPase)  and  H+-pyrophosphatase  (V-PPase),  drive  vacuole
acidification  by  passing  protons  through  the  vacuole  mem-
brane  and  into  the  vacuole.  In  addition,  a  large  number  of
secondary  transporters  and  channels  on  the  vacuole  mem-
brane  are  responsible  for  transporting  malate  from  the  cyto-
plasm to the vacuole[69−72].  The MBW complex is  also involved
in  the  determination  of  acidity  and  vacuolar  pH[73].  Glucose
signaling  contributes  to  the  stabilization  of  MdbHLH3  protein
and  transcriptional  activation  of MdMYB1[26,57].  MdMYB1
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directly  binds  to  the promoter  of  malate  transporter  V-ATPase
subunit  genes  (MdVHA-B1, MdVHA-B2),  a  malate  transporter
(MdtDT)  and  a  V-PPase  gene  (MdVHP1)  to  regulate  fruit
acidity[67].  Meanwhile,  the  interaction  between  MdbHLH3  and
MdMYB1  could  enhance  the  transcriptional  activation  of
MdVHA-B1 and MdVHA-B2 by  MdMYB1,  which  affects  the
expression of acid transporters Ma1 and MdtDT to regulate fruit
acidity.  In  citrus, Noemi also  encodes  a  bHLH  transcription
factor  that  is  a  major  determinant  of  fruit  acidity[74].  Many
enzymes  involved  in  malate  synthesis  and  metabolism  have
also  been  identified,  such  as  cytosolic  NAD-dependent  malate
dehydrogenase  (cyMDH)  and  phosphoenolpyruvate  carboxy-
lase (PEPC), which are key enzymes involved in malate synthe-
sis, while cytosolic NADP-dependent malic enzyme (cyME) is an
important  enzyme  in  malate  degradation[75−81].  During  the
early  stages  of  fruit  development,  MdbHLH3  specifically
regulates  malate  accumulation  by  directly  binding  the  E-box
cis-acting  element  of  the MdcyMDH promoter  independent  of
MYB transcription factors, which promotes the translocation of
sugar signaling from source to sink[82]. 

Glucose signaling affects fruit ripening

Ethylene  plays  an  important  role  in  fruit  ripening  and
senescence[83,84].  The  accumulation  of  bright  pigments  in  fruit
is  a  result  of  the  ethylene  biosynthesis  process,  and  many
different  components,  such  as  sugar,  are  involved  in  the
ripening  process  through  interaction  with  ethylene  biosyn-
thesis  in  fleshy  fruits[85−87].  The  activated  form  of  methionine,
adenosine  methionine  (SAM),  is  converted  by  ACC  synthase
(ACS) to 1-aminocyclopropane-1-carboxylic acid (ACC), which is
then  oxidized  by  ACC  oxidase  (ACO)  to  form  ethylene[88].  E3
ubiquitin  ligase  regulates  ethylene  levels  through  ubiquitina-
tion  of  multiple  synthesis  and  degradation  components[89,90].
The glucose-responsive E3 ligase MdPUB29 regulates fruit traits

through  ubiquitination  of  downstream  genes[91].  In  the  pre-
sence of  glucose signaling,  the ubiquitination of  MdbHLH3 by
MdPUB29  is  inhibited,  which  increases  its  stability.  MdbHLH3
then  binds  to  the  promoters  of  ethylene  synthesis  related
genes  (MdACO1, MdACS1,  and MdACS5A)  to  increase  their
transcription rate and promote fruit ripening[92]. MdbHLH3 also
regulates  ethylene  synthesis  by  activating  the  ethylene  pre-
cursor  MdDEP1[93].  Interestingly,  MdbHLH3  impacts  anthocy-
anin  accumulation,  malate  content,  and  ripening  in  fruits,
which  are  all  related  to  glucose  signaling.  This  suggests  that
MdbHLH3  plays  an  important  role  in  the  regulation  of  sugar
signaling during the growth and development of apple fruits. 

Conclusions and perspectives

Glucose  signaling  can  be  transmitted  through  HXK,  G-pro-
tein-coupled  signaling  associated  with  the  AtRGS1  transduc-
tion  pathway,  and  glycolysis-dependent  SnRK/TOR  pathways.
Glucose  participates  in  the  regulation  of  fruit  quality  through
signal  transduction and metabolism under  low glucose condi-
tion.  Under high glucose conditions (e.g.  6% glucose),  glucose
is  primarily  used  as  a  signaling  molecule  to  initiate  biological
processes[26].  In  this  review,  we  summarized  a  regulatory  net-
work in  which glucose signaling regulates  fruit  quality  (Fig.  1).
We  found  that  the  regulation  of  fruit  quality  and  ripening  by
glucose  signaling  is  mostly  dependent  on  the  HXK1  pathway
and  the  glucose  metabolism  pathway,  with  several  other
pathways  directly  or  indirectly  related  to  HXK1.  Therefore,
whether the regulation of glucose signaling on fruit quality and
ripening  depends  on  G  protein  signaling  pathway  remains  to
be  explored.  MdPUB29  responds  to  glucose  signals  and  is
independent  of  HXK1,  while  MdbHLH3  is  stabilized  in  HXK1-
dependent  glucose  signaling  pathways.  In  the  glucose  signal
transduction process  involving MdPUB29,  MdbHLH3 is  ubiqui-
tinated  and  degraded,  which  indicates  that  the  glucose  signal

 
Fig.  1    Glucose  signaling  stabilizes  MdbHLH3  by  promoting  the  phosphorylation  of  MdbHLH3  by  MdHXK1  and  inhibiting  MdPUB29
ubiquitination of MdbHLH3. This process can enhance the transcriptional activation of MdbHLH3 on ethylene synthesis-related genes, such as
MdACO1, to regulate fruit ripening and enhance the transcriptional activation of MdbHLH3 on MdcyMDH to regulate fruit acidity through the
TCA  cycle.  Additionally,  the  interaction  between  MdbHLH3  and  MdMYB1  could  enhance  the  transcriptional  activation  of MdVHA-B1 and
MdVHA-B2 by MdMYB1, which affects the expression of acid transporters Ma1 and MdtDT to regulate fruit acidity. MdMYB1 can also affect fruit
color through the transcriptional regulation of genes related to anthocyanin synthesis.
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transduction  by  MdPUB29  is  distinct.  MdPUB29  can  trigger
reactive oxidant species (ROS) responses and ROS can activate
TOR[94,95].  Therefore,  MdPUB29  might  respond  to  glucose
signals  through  the  TOR/SnRK1  pathway.  On  the  other  hand,
recent  studies  have  shown  that  MdHXK1  can  regulate  the
disease  resistance  of  apples  and  MdPUB29  also  regulates  the
disease  resistance  of  plants[96].  Therefore,  glucose  signaling  is
involved in the regulation of plant disease resistance. Whether
glucose  signaling  could  coordinate  and  regulate  the  synthesis
of salicylic acid through MdHXK1 and MdPUB29, thus affecting
the disease resistance of plants, remains to be studied.

EIN3 is  expressed  in  fruit  and  can  respond  to  sugar  signals.
Glucose  inhibits EIN3 expression  and  thus  inhibits  ethylene
response  genes  that  in  turn  inhibit  ethylene  signal  transduc-
tion[97],  slowing  the  release  of  ethylene  and  the  ripening  of
fruit.  Therefore,  glucose  can  inhibit  the  ubiquitination  of
MdbHLH3 by inhibiting the activity of MdPUB29, which induces
the expression of  ethylene synthesis  related genes,  promoting
ethylene release and fruit ripening. On the other hand, glucose
signaling  can  inhibit  the  expression  of EIN3 to  reduce  the
expression  of  ethylene  responsive  genes  to  inhibit  fruit
ripening.  These  two  pathways  work  together  to  maintain  the
stability  of  ethylene  in  the  later  stages  of  fruit  development,
highlighting  the  critical  role  that  glucose  signaling  plays  in
ethylene  synthesis  and  transduction.  This  complex  interaction
may be the reason why ethylene release does not significantly
change from the late stage of fruit development to ripening.

MdbHLH3 impacts fruit color, acidity, and ripening pathways
and is regulated by glucose signaling, suggesting that it plays a
pivotal role in glucose signaling transmission and responses. A
total  of  13  single  nucleotide  polymorphisms  (SNPs)  related  to
fruit  taste  are  located  in  the MdbHLH3 gene  in  the  apple
GDDH13 V1.0 genome database (www.rosaceae.org)[98], indica-
ting  that MdbHLH3 may  be  responsible  for  much  of  the
different  tastes  present  among  apple  varieties.  Markers  near
MdbHLH3 could  therefore  potentially  be  utilized  for  breeding
different fruit qualities.

The taste of  fruit  depends on the ratio of  sugar  to acid,  and
glucose  signaling  affects  fruit  acidity.  Ma1  and  tDT  are  acid
transporters  found  on  the  vacuolar  membrane  that  play  a
significant  role  in  the  regulation  of  fruit  acidity.  Thus  far,  the
impact  of  glucose  signaling  on  Ma1  has  not  been  reported,
although it  may play a yet undiscovered role.  More research is
needed  to  better  understand  the  impact  of  glucose  signaling
on  Ma1,  as  well  as  many  other  genes,  in  order  to  better
understand its role in the regulation of fruit acidity.
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