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Abstract
Together with other polyphenols and flavonoids, anthocyanins have the capacity to serve as free radical scavengers against detrimental oxidants

including reactive oxygen and nitrogen species. Moreover, the role of anthocyanin pigments as natural fruit colorings is quite common. In this

study,  the  anthocyanin  profile  of  purple  and  yellow  passion  fruit  was  determined  at  five  developmental  phases  i.e.,  fruitlet,  green,  veraison,

maturity, and ripening stage. Total flavonoids were abundantly found among other metabolites including anthocyanins and proanthocyanins.

Purple passion fruits contained more than 2-times higher flavonoid content than yellow passion fruits at ripening stage. The findings showed that

fruit  maturation  increased  the  amount  of  total  flavonoids,  anthocyanins,  and  procyanidins  in  the  pulp  of  both  varieties  of  passion  fruit.

Correlation analysis revealed that the passion fruit anthocyanin metabolism may be regulated by the enzymes C4H, 4CL, CHS, UFGT, and GST. The

metabolism of anthocyanins in passion fruit may be significantly influenced by the genes PePAL4, PeCHS1, and PeGST7. New information from this

work will help future research into the fundamental processes controlling the production of anthocyanins in passion fruit.
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 Introduction

Passion  fruit  (Passiflora  edulis Sims.)  originates  from  tropical
America  and  is  grown  in  many  countries  including  China,
Australia,  New  Zealand,  Ecuador,  Kenya,  South  Africa,  and
India[1].  It  belongs  to  family  Passifloraceae  and  has  more  than
500 species[2,3] of which about 50 are edible[4]. Presently, yellow
(Passiflora  edulis f. edulis)  and  purple  (Passiflora  edulis f. flavi-
carpa)  are  two  main  cultivars  of  passion  fruit  being  grown
worldwide  and  appreciated  due  to  their  unique  flavor  and
taste[5].  In  Chinese  culture,  it  is  also  called  'fruit  of  100
fragrances'  because  it  contains  the  fruit  aroma  of  more  than
100  fruits  including  pineapple,  banana,  guava,  strawberry,
mango,  etc.[2,6].  Passion  fruit  is  also  famous  due  to  its  great
medicinal  value[7],  such  as  controlling  blood  sugar[8],  anti-
hypertension[9,10],  anti-inflammation  and  reducing  fat[11],
protecting  liver  and  kidney[12],  and  regulating  cardiac  auto-
nomic nerve functions[13].

Anthocyanins,  a  class  of  flavonoids  that  serve  as  secondary
antioxidants and have a variety of biological functions[14],  such
as  growth  prevention  of  tumors[15],  anti-inflammation  and
oxidation[16].  Moreover,  anthocyanins  serve  as  plant  coloring
agents, are essential components of defense mechanisms, and
shield  plants  from  UV  deterioration[16].  The  primary  variables

that affect the ultimate anthocyanin concentration in ripe fruits
are  the  rate  of  anthocyanin  production  in  plants,  membrane
transit,  and  utilization  or  degradation[17−22].  There  are  several
enzymes which play vital role in biogenesis of anthocyanins in
fruits  i.e.,  L-phenylalanine  ammonia-lyase  (PAL),  cinnamate  4-
hydrogenase  (C4H),  4-coumarate:  coenzyme  A  Ligase  (4CL),
chalcone synthase (CHS),  UPD-3-O-  glycosyltransferase (UFGT),
and  glutathione  S-transferase  (GST)  (Fig.  1a)[3,23−25].  In  the
anthocyanin biosynthesis pathway, the specific role of PAL is to
convert  the  phenylalanine  into  cinnamic  acid[26,27].  Naringin
chalcone  is  produced  by  the  polyketone  synthase  (PKS)
enzymes[28],  which also produce the 4CL and CHS enzymes[29].
UFGT  stabilizes  anthocyanin  production  by  joining  the  sugar
component to anthocyanin glycogens[30].  Since the absence of
these  proteins  may  result  in  significant  alterations  in  plant
color, the GST enzyme is crucial for the transportation of antho-
cyanins in plants[31].

The  amount  of  phenolic  compounds  in  plant  tissues  is
mostly  determined  by  the  genetic  makeup  of  the  plant,
although extrinsic stimuli may produce qualitative or quantita-
tive  alterations  in  the  composition  of  these  compounds[32,33].
Flavanols  and  proanthocyanins  are  the  primary  flavonoids  in
many fruits during the start of fruit growth, and the buildup of
anthocyanin pigments is  often a sign of  ripening[34,35].  Being a
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climacteric fruit, passion fruit, ethylene's burst seems to have a
regulatory  function  in  both  ripening  and  the  start  of  antho-
cyanin  production[36−38].  Many  studies  have  shown  that,  in
addition  to  hormonal  control,  environmental  factors  such  as
temperature, light levels, nutritional status, and biotic stressors
have a substantial influence in the formation of anthocyanins in
fruits[39,40].

There haven't been many thorough studies stating the regu-
lation  of  anthocyanin  production  in  fruits.  By  integrating
molecular  and biochemical  data,  one investigation focused on
the impact of genetic, developmental, and environmental vari-
ables  on  the  production  of  flavonoids  in  strawberry  fruits[41].
The findings demonstrated a distinct developmental pattern in

the fluctuation of flavonoid levels, associated gene expression,
and  enzyme  activity.  Anthocyanin  and  flavan-3-ol  levels  were
significantly  influenced  by  environmental  factors,  but  flavanol
levels and proanthocyanidin-related features were significantly
influenced  by  developmental  stage  and  genotype.  Antho-
cyanin production in bilberries also seems to be strongly regu-
lated genetically[42]. Passion fruit is the richest sources of antho-
cyanins,  containing  high  quantities  of  anthocyanin  mostly  in
the fruit peel[43].  Without intense direct sunlight, its biosynthe-
sis mechanism can produce large amounts of anthocyanins[44].

Although  several  studies  have  been  reported  on  antho-
cyanin  and  flavonoid  metabolism  of  plants  such  as  apples[45],
grapes[46,47],  and mulberry[48],  the in-depth mechanism of their
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Fig.  1    (a)  Anthocyanins'  biosynthesis  pathway in  plants.  PAL:  L-phenylalanine ammonia-lyase;  4CL:  4-coumarate:  coenzyme A Ligase;  CHS:
chalcone  synthase;  C4H:  cinnamate  4-hydrogenase;  GST:  glutathione  S-transferase;  UFGT:  UPD-3-O-  glycosyltransferase;  CHI:  chalcone
isomerase; F3H: flavanone-3-hydroxylase; FLS: flavonol synthase; DFR: dihydroflavonol 4-reductase; ANS: leucoanthocyanidin dioxygenase. (b)
Cross-sectional images of fruits at various phases of development of both purple and yellow passion fruits.
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accumulation  in  passion  fruits  is  yet  to  be  studied.  In  current
study,  we  investigated  the  changes  in  anthocyanins  and  their
derivatives during passion fruit development. Furthermore, the
activities  of  anthocyanin  metabolism-related enzymes and RT-
qPCR expressions of core genes responsible for the biosynthe-
sis  or  degradation  of  those  enzymes  were  studied.  This  study
provided ample information regarding anthocyanin metabolism
in  passion  fruit  and  laid  the  foundation  for  further  functional
analysis of studied enzymes and genes.

 Materials and methods

 Plant material
A  passion  fruit  orchard  in  Shaowu  county,  Nanping  city,

Fujian  province,  China  (27°22'51.9"N  117°32'18.4"E)  was  the
source  of  the  plant  material  for  two  passion  fruit  cultivars:
yellow passion fruit (Golden) and purple passion fruit (Tainong
No.1). The 15 passion fruits were tested from each cultivar while
they were at each of the following developmental stages: fruit-
let, green, veraison, maturity, and ripening (Fig. 1b). They were
then transported to the laboratory,  where the pulp (separated
seeds)  of  five  passion  fruits  were  combined  to  create  one
biological  replicate,  with  three  biological  replicates  for  each
sample.  All  of  the  samples  were  quickly  frozen  in  liquid  nitro-
gen and were stored in an ultra-low temperature refrigerator at
−80 °C for subsequent use.

 Determination of total flavonoids, anthocyanins, and
procyanidins

An earlier optimized technique was used to extract the total
flavonoids from passion fruit pulp[49].  Eight mL of 60% ethanol
were combined with precisely weighed 1 g of frozen fruit pulp
(−80  °C).  The  solution  underwent  40  min  of  ultrasonic  extrac-
tion,  followed  by  20  min  of  cooling  and  10  min  of  centrifuga-
tion  (12,000 g,  20  °C).  The  final  volume  of  10  mL  was  then
obtained  by  drawing  5  mL  of  the  supernatant  and  diluting  it
with distilled water.  In addition,  a 2 mL aliquot was separated,
followed by the addition of 3 mL of 60% ethanol and 0.3 mL of
5% NaNO2. The mixture was then violently shaken for a total of
6  min  to  ensure  that  all  of  the  components  were  fully
combined.  After  that,  0.3  mL  of  10%  Al(NO3)3 was  added,  and
the mixture  was  shaken for  a  total  of  6  min.  Next,  4  mL of  4%
NaOH was added, and the mixture was shaken for a total of 12
min.  After that,  the absorbance was determined by measuring
it at 510 nm. In order to determine the total flavonoid content,
a calibration curve of rutin standard (HPLC grade, more than 98
percent purity,  Solarbio Life  Sciences,  Beijing,  China)  was used
(Y = 10.859X−0.0617, R2 = 0.999).

Anthocyanins in their whole form were isolated by following
the  procedure  outlined  previously[50].  After  adding  a  10  mL

solution of 1% hydrochloric acid: methanol that included 0.2 g
of  plant  material,  the  mixture  was  left  to  stand  for  5  h  before
being centrifuged for 20 min at a speed of 1000 revolutions per
minute.  Ten  mL  of  the  sample's  supernatant  was  utilized  in
order to get an OD reading at 530 and 560 nm. The Eqn 1 was
used  to  determine  the  total  amount  of  anthocyanins  in  the
sample.

Total anthocyanins (mg ·g−1) =
(OD530−0.25×OD650)×volume of extraction liquid (mL)

4.62×104× fresh weight of passion fruit
(
g
) (1)

Procyanidin  content  was  determined  using  a  slightly  modi-
fied method of Jaakola[34]. After carefully measuring out 0.5 g of
the sample and adding 6 mL of methanol to a centrifuge tube
of  10  mL  capacity,  the  mixture  was  subjected  to  an  ultrasonic
treatment at a power of 250 and a rate of 50 kHz for a period of
20 min. The absorbance at 546 nm was determined by measur-
ing  the  concentration  of  the  supernatant  that  was  left  over
after  the  solution  had  been  centrifuged  and  allowed  to  reach
room temperature. For the purpose of determining the amount
of procyanidin present, a calibration curve of procyanidin stan-
dard (HPLC grade, ≥ 95% purity, Solarbio Life Sciences, Beijing,
China) was used (Y = 0.0038X+0.0202, R2 = 0.999).

 Determination of flavonoids and anthocyanin
metabolites

Five  types  of  flavonoids  (rutin,  quercetin,  luteolin,  apigenin,
and  kaempferol)  and  three  types  of  anthocyanin  metabolites
(cyanidin-3-O-glucoside  chloride,  peonidin-3-O-glucoside,  and
pelargonidin-3-O-glucoside)  were  quantified  using  slightly
modified  techniques  as  earlier  described  by  Hellström  &
Mattila[51] and  Henry-Kirk  et  al.[52].  The  concentrations  of  vari-
ous anthocyanin metabolites were calculated by using the cali-
bration  curve  of  the  respective  standard.  Each  measurement
was  based  on  the  average  of  three  replicates.  The  linearity
range,  limits  of  detection,  and  quantification  were  the  valida-
tion parameters[53]. The retention times, and comparison of UV-
Visible  spectra  and  standardization  correctly  identified  the
peaks.  Quantification  has  been  done  using  an  external  stan-
dard curve with five points (Table 1).

 Enzyme extraction and activity assay
Enzymes  involved  in  flavonoids  metabolism  were  extracted

and measured by utilizing the enzyme activity kits (Solarbio Life
Sciences,  Beijing,  China)[54,55].  The  determination  of  PAL, 4CL,
CHS,  C4H,  GST  and  UFGT  was  based  on  earlier  described
methods[3,56−59].

 RNA extraction and quantitative real-time PCR
Based  on  the  transcriptome  data  of  passion  fruit  at  various

stages  of  development,  the  KEGG  metabolic  pathway  analysis
of  phenylalanine,  flavonoids,  and isoflavones  found in  passion

Table 1.    Parameters for the validation of the ultra-performance liquid chromatography (UPLC) technique.

Flavonoid/anthocyanin component Linearity (r2) Slope (y) Response (Sy) Sy/y LOD* (µg·mL−1) LOQ** (µg·mL−1)

Rutin 0.999303 0.2737 5.2262 19.0921 63.00 190.92
Luteolin 0.999692 0.2745 4.9727 18.1111 59.76 181.11
Quercetin 0.999667 0.2756 4.6358 16.8164 55.49 168.16
Cyanidin-3-O-glucoside chloride 0.998590 0.2767 4.3319 15.6526 51.65 156.52
Peonidin-3-O-glucoside 0.999506 0.2757 4.6096 16.7147 55.15 167.14
Pelargonidin-3-O-glucoside 0.998351 0.2754 4.7720 17.3254 57.17 173.25

* Limit of detection; ** Limit of quantification.
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fruit  was  used  to  identify  differential  candidate  sequences  of
PAL, C4H, 4CL, CHS, and GST. These sequences were found to be
significantly  different  from  one  another.  The  local  BLAST
screening  of  homologous  genes  was  carried  out  using  the
BioEdit  program  (version  7.2).  The  genes  that  had  been
retrieved  in  a  preliminary  manner  were  then  sent  to  NCBI  for
BLAST  comparison  and  SMART  (http://smart.embl-heidelberg.
de/) conserved domain analysis in order to exclude the prelimi-
nary  candidate  genes.  The  genes  were  compared  with  those
that  were  found  in  the  previously  published  genome  of  the
passion  fruit  (http://ftp.cngb.org/pub/CNSA/data3/CNP00012
87/CNS0275691/CNA0017758/).  The  RT-qPCR  specific  primers
were  built  with  the  help  of  the  online  program  Primer  5  by
utilizing  the  sequence  information  from  the  unigenes  in  the
transcriptome[60] (Supplemental  Table  S1).  The  RNA  extraction
from  yellow  and  purple  passion  fruit  was  carried  out  in  accor-
dance  with  the  kit's  instructions  (Tiangen  Biotech  Co.,  Ltd.,
Beijing,  China).  Using  TaKaRa's  quantitative  reverse  transcrip-
tion  kit,  the  first  strand  of  cDNA  was  generated.  Fluorescence
quantitative PCR was carried out with the assistance of a Light-
Cycler® 96  quantitative  equipment  (Roche  Applied  Science,
Penzberg, Germany).

In the reaction mixture, there was 0.25 µM of each primer, 1
µL  of  cDNA,  and  10 µL  of  2  ×  RealStar  Green  Fast  Mixture
(GenStar,  Beijing,  China).  The  total  volume  of  the  reaction
mixture  was  20 µL,  and  water  was  added  to  make  it  to  that
amount.  The  following  describes  the  criteria  for  cycling:  a
temperature of 95 °C maintained for two minutes, followed by
40 cycles at 95 °C maintained for 5 seconds and a temperature
of  60  °C  maintained  for  30  seconds.  As  an  internal  reference,
the  60  S  ribosomal  protein  was  analyzed,  and  relative  gene
expression  was  determined  by  using  the  2−ΔΔCᴛ technique[61].
For each sample,  three independent biological  replicates were
analyzed.

 Statistical data analysis
The  data  regarding  total  flavonoids,  total  anthocyanins,

proanthocyanins,  enzymes  assay,  and  gene  expressions  were
compared  using  Student's t-test  between  'yellow'  and  'purple'
passion  fruit  for  each  developmental  stage.  While,  the  data
regarding  flavonoids  and  anthocyanin  components  were
compared using Fisher's LSD technique through SPSS statistics
21.0  (IBM  Inc.,  New  York,  USA).  OriginPro2021  software
(www.originlab.com/2021)  was  utilized  to  create  heat  maps,
and the 2−ΔΔCᴛ method was employed to calculate and analyze
quantitative data.

 Results

 Total flavonoids, anthocyanins, and procyanidins
At  every  maturation  stage  that  was  evaluated,  the  total

flavonoids found in purple passion fruit were considerably (p ≤
0.05)  higher  than those found in yellow passion fruit,  with the
exception  of  the  fruitlet  stage.  The  ripening  stage  of  purple
passion  fruit  was  found  to  have  the  highest  concentration  of
flavonoids  (1.44  mg·g−1 FW)  (Fig.  2a).  While,  the  anthocyanin
content in the pulp of purple passion fruit experienced a sharp
increase  after  the  veraison  stage  and  reached  its  maximum
level  (0.03  mg·g−1 FW)  at  the  ripening  stage.  The  anthocyanin
content  in  the  pulp  of  yellow  passion  fruit  experienced  an
increase  until  the  maturation  stage  and  then  a  decrease  after

that  stage  (Fig.  2b).  The  amount  of  procyanidin  in  the  fruit

steadily  rose  as  it  matured,  and  this  trend  was  seen  in  both

cultivars.  The  largest  amount  of  procyanidin  (0.51  mg·g−1 FW)

was found in purple passion fruit after it had reached the ripen-

ing  stage,  although  it  was  not  statistically  different  from  the

amount found in yellow passion fruit (Fig. 2c).

 Anthocyanin and flavonoid metabolites
Five  types  of  flavonoids  (rutin,  quercetin,  luteolin,  apigenin,

and  kaempferol)  and  three  types  of  anthocyanin  metabolites
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Fig.  2    Alterations  in  the  levels  of  (a)  total  flavonoids,  (b)
anthocyanin, and (c) procyanidins found in the pulp of yellow and
purple  passion  fruit  as  the  fruit  matures.  Vertical  bars  indicate
means ± SD (n = 3, 5 fruits per replicate). According to Student's t-
test,  the  significance  is  indicated  by  the  symbols  *,  **,  and  ***
when the corresponding values for p are less than 0.05,  0.01,  and
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(cyanidin-3-O-glucoside  chloride,  peonidin-3-O-glucoside,  and
pelargonidin-3-O-glucoside)  were found in  the fruits  of  purple
and  yellow  passion  fruits.  Apigenin  and  kaempferol,  on  the
other  hand,  were  not  found  in  every  single  sample  of  fruit;
nonetheless, the other three flavonoids were found in the fruit
pulp of both varieties.

The quantity of flavonoid and anthocyanin components that
were  measured in  purple  passion fruit  was  much greater  than
that  of  yellow  passion  fruit,  with  the  exception  of  rutin  and
luteolin. The contents of six components in fruit pulp of purple
passion fruit steadily rose with the growth of the fruit, with the
exception of luteolin and quercetin, both of which had a minor
reduction  in  concentration  during  the  green  fruit  stage.  In
purple  passion  fruit,  the  quantity  of  rutin  reached  its  highest
level during the ripening stage, which was 77.33 ng·g−1. On the
other  hand,  the  highest  amounts  of  luteolin  (7.43  ng·g−1)  and
quercetin  (32.47  ng·g−1)  were  found  at  maturation  stage.  At
ripening  stage,  it  was  found  that  purple  passion  fruit  had  the
highest levels of cyanidin-3-O-glucoside chloride (16.79 ng·g−1)
and  pelargonidin-3-O-glucoside  (3.36  ng·g−1).  On  the  other
hand,  the  level  of  rutin  and  quercetin  grew  in  the  yellow
passion  fruit  at  the  veraison  stage  after  having  decreased
during  the  green  stage,  but  the  content  of  luteolin  continued
to  drop  throughout  the  growth  of  the  fruit.  There  were  no
anthocyanin  components  found  in  yellow  passion  fruit,  with
the  exception  of  cyanidin-3-O-glucoside  chloride  during  the
fruitlet  stage,  and pelargonidin-3-O-glucoside during both the
fruitlet stage and the ripening stage (Table 2).

 Enzyme assay
The PAL activity in the pulp of both cultivars peaked during

green  stage  (41.59  and  45.41  U·Kg−1 FW  in  purple  and  yellow
passion  fruit,  respectively),  and  then  decreased  at  veraison
stage, and again surged with fruit maturity. At every stage, with
the  exception  of  the  fruitlet,  the  PAL  activity  was  significantly
higher in yellow passion fruit than it was in purple passion fruit
(Fig. 3a).  Both cultivars had significantly different levels of C4H
enzyme  activity  at  each  stage,  as  shown  by  a p value  of  less
than  0.001.  The  C4H  enzyme  activity  in  purple  passion  fruit
reached its highest during the maturation stage (230.18 U·Kg−1

FW), whereas yellow passion fruit reached its peak at the verai-
son stage (235.96 U·Kg−1 FW) (Fig. 3b). There was no noticeable
change  in  4CL  activity  between  the  fruitlet  and  maturation
stage in yellow passion fruit. During fruit growth, there was an
increase in 4CL activity initially, followed by a drop; this pattern
continued  throughout  fruit  development.  At  the  veraison

stage, the activity of 4CL in purple passion fruit  dropped to its
lowest  level  (58.69  U·Kg−1 FW).  This  activity  then  rose  at  the
ripening  stage.  Purple  passion  fruit  had  4CL  activity  that  was
substantially (p ≤ 0.001) greater than that of yellow passion fruit
(Fig. 3c). The CHS activity of the pulp of both passion fruit culti-
vars varied from 69.83 to 90.80 U·Kg−1 FW. At fruitlet stage, the
purple passion fruit showed the highest level of activity. Signifi-
cant variation was observed in the CHS activity of both purple
and  yellow  passion  fruits  (Fig.  3d).  Although  there  was  signifi-
cant difference between both cultivars at fruitlet, veraison, and
ripening stage (p ≤ 0.05, 0.01, and 0.001, respectively) (Fig. 3e),
the  shifting  pattern  of  UFGT  activity  in  the  pulp  of  both  culti-
vars  was  the  same  throughout  fruit  maturity.  The  GST  activity
between  purple  and  yellow  passion  fruit  pulp  also  showed
substantial  variations at green,  maturation,  and ripening stage
(Fig. 3f).

 Expression profiling of genes regulating enzyme
activities for anthocyanin metabolism

The PePAL expression  patterns  in  the  pulp  of  purple  and
yellow  passion  fruits  were  different,  and  the  difference  of
expression  levels  was  also  large.  The PePAL1,  PePAL2, and
PePAL4 genes  were  significantly  differentially  expressed  at
different  fruit  maturity  stages  (Fig.  4).  The  expression  level  of
PeC4H in  purple  passion  fruit  decreased  at  green  stage  and
then increased at ripening. With exception of the fruitlet stage,
the expression level of this gene in yellow passion fruit was sub-
stantially  higher  than  that  in  purple  passion  fruit  pulp  (Fig.  5).

The Pe4CL1 and Pe4CL5 in purple and yellow fruits increased
at green stage and then decreased, and their expressions were
significantly different (p ≤ 0.05). The Pe4CL2 and Pe4CL3 showed
an  'L'  type  change  trend  and  were  significantly  differentially
expressed  only  at  the  first  two  examined  maturity  stages.  At
ripening stage, yellow passion fruits'  expression of Pe4CL4 was
significantly  higher  than  that  of  purple  fruit.  The  change
pattern  and expression of Pe4CL4 in  other  stages  were  consis-
tent  (increased with fruit  ripening).  The expression patterns of
Pe4CL6 and Pe4CL7 in  purple  and  yellow  passion  fruits  were
also  significantly  different.  At  maturation  stage,  yellow  and
purple  passion  fruit  exhibited  overexpression  of Pe4CL6 and
Pe4CL7, respectively (Fig. 6).

In  purple  passion  fruit,  the  expression  of PeCHS1 surged  at
green  stage  and  then  declined  with  fruit  maturity,  while  it
continuously  decreased  after  fruitlet  stage  in  yellow  passion
fruit.  The  expression  patterns  of PeCHS2 and PeCHS3 in  fruit
pulp  were  similar  to  those  in  fruit  peel[3].  Compared  to  yellow

Table 2.    Changes in the concentration of flavonoid and anthocyanin metabolites in developing purple and yellow passion fruits.

Cultivar Fruiting stage
Cyanidin-3-O-

glucoside chloride
(ng·g−1)

Peonidin-3-O-
glucoside
(ng·g−1)

Pelargonidin-3-O-
glucoside (ng·g−1)

Rutin (ng·g−1) Luteolin (ng·g−1) Quercetin
(ng·g−1)

Purple Fruitlet 3.24 ± 1.89 b 1.14 ± 0.21 a 2.63 ± 0.19 c 48.56 ± 2.12 c 9.85 ± 0.35 a 2.66 ± 0.15 c
Green 0 0 0 47.43 ± 5.77 c 0 0.47 ± 0.41 c

Veraison 0.84 ± 0.21 b 0 2.84 ± 0.00 bc 61.69 ± 5.42 b 4.97 ± 0.00 c 1.14 ± 0.08 c
Maturation 4.95 ± 1.50 b 0 2.96 ± 0.20 b 72.57 ± 1.28 a 7.43 ± 2.03 ab 32.47 ± 1.00 a

Ripening 16.79 ± 8.21 a 1.04 ± 1.05 a 3.36 ± 0.23 a 77.33 ± 9.52 a 6.23 ± 2.18 c 25.67 ± 3.06 b
Yellow Fruitlet 1.60 ± 0.68 a 0 2.54 ± 0.09 b 71.14 ± 11.71 a 134.39 ± 61.28 a 2.13 ± 1.48 b

Green 0 0 0 33.97 ± 3.65 b 6.54 ± 0.19 b 0
Veraison 0 0 0 41.84 ± 10.74 b 5.56 ± 0.36 b 6.61 ± 3.60 a

Maturation 0 0 0 41.66 ± 5.27 b 5.12 ± 0.19 b 1.43 ± 0.12 b
Ripening 0 0 2.84 ± 0.12 a 45.82 ± 9.38 b 5.25 ± 0.41 b 2.54 ± 0.12 b

According to Fisher’s LSD, Same lowercase letters indicate non-significant difference (p ≤ 0.05) between different growth stages.
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passion  fruit,  the  expression  level  of  these  genes  in  purple
passion fruit pulp was significantly higher (Fig. 7).

The  expression  patterns  of PeUFGT1 and PeUFGT2 were
significantly  different  in  both  cultivars.  Purple  passion  fruit
showed  overexpression  of PeUFGT1 as  compared  to  yellow
passion  fruit.  Compared  to  the  yellow  passion  fruit, PeUFGT2
expression also remained high in purple passion fruit at matu-
ration  stage.  However,  during  ripening  stage,  its  expression
reduced 3.5-times in purple passion fruit (Fig. 8).

The PeGST1, PeGST4, PeGST6 and PeGST7 genes  expression
increased  at  earlier  growth  stages  and  then  decreased  during
fruit  development.  The  yellow  passion  fruit  exhibits  higher
PeGST1-3 expression  than  the  purple  passion  fruit,  while
PeGST4,  5, and 7 showed  a  higher  expression  level  in  purple
passion fruits (Fig. 9).

 Correlation between anthocyanin components and key
enzymes involved in its metabolism

'Total  flavonoids,  anthocyanins  and  procyanidins'  and
'flavonoid  and anthocyanin  metabolites'  of  the  purple  passion
fruit  pulp  had  a  positive  correlation  with  each  other.  The
contents  of  metabolites  and  components  were  negatively
correlated  with  CHS,  4CL,  and  UFGT,  and  positively  correlated
with  GST,  but  not  strongly  correlated  with  PAL.  There  was  a
significant positive correlation between anthocyanin, rutin, and
cyanidin-3-O-glucoside chloride (p ≤ 0.05), and a highly signifi-
cant positive correlation between proanthocyanin and rutin (p
≤ 0.01). There was a negative association of CHS enzyme activ-
ity  with  anthocyanin  metabolites.  There  was  also  a  significant
correlation  between  PAL  and  4CL,  C4H,  and  UFGT  (p ≤ 0.05)
(Fig. 10a). In yellow passion fruit, there was a highly significant
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positive  correlation  (p ≤ 0.01)  between  procyanidin  and  rutin
content, while highly significant negative correlation (p ≤ 0.01)
between flavone content and CHS enzyme activity (Fig. 10b).

 Correlation between 'anthocyanin components and
key enzymes involved in its metabolism' and 'relative
expressions of related genes'

In  purple  passion  fruit,  most  genes  were  negatively  corre-
lated with anthocyanin components, except Pe4CL4, which was
positively correlated with most components (Fig.  11a). PeCHS1
gene in yellow passion fruit pulp (Fig. 11b) was positively asso-
ciated  with  anthocyanin  components,  which  was  contrary  to
the correlation analysis of purple passion fruit pulp. PeGST7 was
negatively  correlated  with  metabolite  content  in  the  pulp  of
both cultivars.  The correlation between enzymes activities and
the expression levels of corresponding structural genes was not
obvious,  and  activities  of  some  enzymes  were  significantly

correlated  with  the  corresponding  genes  of  other  enzymes  in
the  metabolic  pathway.  The  activity  of  CHS  was  negatively
correlated with the expressions of Pe4CL1, PE4Cl2, PeCHS2, and
PeCHS3, but positively correlated with PeGST4 in purple passion
fruit.  The  negative  correlation  between  4CL  enzyme  activity
and expressions of 4CL genes was obvious. Similarly, the activi-
ties  of  UFGT  and  4CL  enzymes,  and  expressions  of  their
metabolic genes in both passion fruit cultivars showed a strong
connection with each other (Fig. 11).

 Discussion

Flavonoids  are  the  widely  distributed  phenolic  compounds
that  are  present  in  almost  all  plant  parts  and  the  primary
pigment  in  flowers  and  fruits[62−65].  In  addition  to  this,  they
provide a significant contribution to the secondary antioxidant
defense system, which protects the organism from a variety of
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biotic  and  abiotic  challenges[66].  Flavonoids  are  located  in  the
nucleus  of  the  mesophyll  cells  as  well  as  the  core  of  the  ROS
generating  process[67].  There  have  been  reports  of  flavonoid
components  in  leaves[68],  fruit  peel[69],  and  pulp[70] of  passion
fruit.  In  a  recent  study,  there  were  evident  differences  in  the
amounts of flavonoids,  anthocyanins,  and procyanidins in fruit

peel between purple and yellow passion fruit[3].  In the present
study,  purple  passion  fruit  had  a  more  markedly  higher
flavonoid  content  than  yellow  passion  fruit,  and  the  maximal
difference  was  observed  at  ripening  stage  (Fig.  2).  Total
flavonoid  content  in  peel  was  significantly  higher  than  that  in
pulp of passion fruit[3] (Fig. 2a) during the whole development
process, which was in line with the results in jujube[71,72].

In the pulp of purple and yellow passion fruits, UPLC-MS was
utilized to identify three anthocyanin components (cyanidin-3-
O-glucoside,  peonidin-3-O-glucoside,  and  pelargonidin-3-O-
glucoside) and three flavonoid components (rutin, luteolin, and
quercetin)  (Table  2).  While  apigenin  and  kaempferol  were
found  in  abundance  in  passion  fruit  leaves,  they  were  nearly
undetectable  in  fruits  (unpublished  data).  When  researching
the antioxidant activity of passion fruit leaves, Shi et al.[3] found
several types of apigenin compounds. The amount of flavonoid
and anthocyanin chemicals found in the pulp of purple passion
fruit throughout fruit development was much greater than that
of yellow passion fruit. According to some earlier research, rutin
had  the  greatest  content  of  all  the  flavonoids  that  could  be
discovered[73,74].  The  content  of  cyanidin-3-O-glucoside  chlo-
ride  has  been  thought  to  be  the  criteria  to  quantitate  the
anthocyanins  in  many crops[68,75,76],  however,  in  current  study,
we  found  that  peonidin-3-glucoside  was  the  most  abundant
anthocyanin  component  in  pulp  of  purple  and  yellow  passion
fruit  at  ripening  stage  (Table  2).  The  pulp  of  the  fruits  of  both
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cultivars  was  found  to  have  the  maximum  concentration  of
luteolin  during  the  earliest  phases  of  fruit  ripening.  Argentieri
et al.[77] have found rich luteolin in the rare passion fruit variety
(Passiflora loefgrenii Vitta.), making it a good choice for biophar-
maceuticals.  Compared  to  other  growth  stages,  the  luteolin
content at fruitlet stage in the pulp of yellow passion fruit was
much higher, which can be further studied or used as an impor-
tant period for the extraction of luteolin.

It  is  known  that  different  enzymes  can  catalyze  the  conver-
sion  of  flavonoids  into  anthocyanins  and  other  flavonoid
compounds[78].  Phenylalanine  is  the  direct  precursor  for  the
synthesis  of  flavonoid,  and  this  process  begins  with  the  trans-

formation  of  phenylalanine  to  4-coumaryl  CoA.  PAL,  C4H,  and
4CL  are  the  main  regulatory  enzymes  involved  in  this
process[79].  Subsequently,  4-coumaryl  CoA  and  3  malonyl  CoA
are converted to dihydroxyflavone, which is the pivotal step in
the  metabolism  of  flavonoids.  The  activities  of  enzymes  i.e.,
CHS,  CHI  and F3H regulate this  reaction[80].  Then,  the unmodi-
fied  anthocyanins  were  synthesized[81].  Finally,  flavonoids
would  be  transported  into  vacuole  by  GST  after  modified  by
glycosyltransferase  (GT)[82].  During  the  process  of  passion  fruit
growth  and  development,  the  enzyme  activity  changed  in  a
complicated  manner.  Although  there  were  similarities  in  the
variable  patterns  of  PAL  activity  in  purple  and  yellow  passion
fruit, there were significant differences in the degree of the vari-
ations  (Fig.  3).  It  has  been  shown  that  the  PAL  activity  of  two
different cultivars of the rapeseed (Brassica napus) plant differs.
As  a  result  of  these  differences  in  PAL  activity,  the  biological
activities  that  govern  separate  metabolic  pathways  are  also
distinct[83]. Additionally, both of the evaluated enzymes' trends
and levels of activity varied in the pulp of the both varieties of
passion  fruit  (Fig.  3).  The PAL, CHS, C4H,  and 4CL genes  were
responsible  for  the  plant's  stringent  flavonoid  biosynthesis
regulation[84].  The  RT-qPCR  analysis  of  the  structural  genes  of
the  relevant  enzymes  responsible  for  the  anthocyanin
metabolism reveald that they were differently expressed in the
flesh  of  both  cultivars  (Figs  4−9).  The  maximally  expressed
genes  in  fruit  pulp  of  both  passion  fruit  cultivars  were
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PePAL1,2,4,6,7, PeC4H1, PeCHS1, Pe4CL6,7, and PeGST1-5,7. Over-

all,  the differences in the activities  of  these enzymes and tran-

script  levels  of  corresponding  structural  genes  at  different

developmental  stages  resulted  in  the  differences  of  antho-

cyanin metabolites in passion fruit,  and more experiments will

be  required  to  verify  the  specific  action  mechanism  in  the

future.

In  each  of  the  examined  cultivars  of  passion  fruit,  the  aver-

age levels of gene transcripts, enzyme activity, and metabolites

showed  distinct  developmental  patterns,  showing  a  coordi-

nated  developmental  control  of  the  whole  system  to  create

distinct pools of end products at each stage. Correlation analy-

sis  showed  that  this  developmental  influence  predominated

over  the  genetic  in  terms  of  gene  expression  and  metabolite
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Fig.  10    Correlation  between  'total  flavonoids,  anthocyanins  and  procyanidins',  'flavonoid  and  anthocyanin  metabolites'  and  'key  enzymes
involved  in  flavonoids  metabolism'  in  the  pulp  of  (a)  purple  and  (b)  yellow  passion  fruit.  Following  Pearson  (n)  method,  the  significance  is
indicated by the symbols *, **, and *** when the corresponding values for p are less than 0.05, 0.01, and 0.001, respectively.

 
Anthocyanin metabolism in passion fruit

Page 10 of 14   Shi et al. Fruit Research 2023, 3:17



levels  (Figs  10, 11).  The  two  most  prevalent  types  of  passion
fruit  flavonoids,  flavan-3-ols  (such  as  rutin,  luteolin,  and
quercetin),  and  anthocyanins,  showed  the  most  obvious
distinction (i.e.,  cyanidin-3-O-glucoside chloride,  peonidin-3-O-
glucoside,  and  pelargonidin-3-O-glucoside).  Later  stages
showed  a  substantial  accumulation  of  flavan-3-ols,  perhaps  to
shield ripe fruits from biotic and abiotic influences[41,85]. On the
other  hand,  anthocyanin  synthesis  began  early  and  peaked  at
the full ripening stage, acting as a visual lure for animals to eat
fruit.  This pattern of growth is in line with what has been seen
in  strawberry  fruits[86,87].  The  consistency  between  average
gene and enzyme expression patterns,  as  well  as  the synchro-
nized  expression  of  structural  genes  with  transcript  peaks  at
early  (PAL, C4H,  and 4CL)  and  late  (CHS, UFGT,  and GST),  all
demonstrate  the  observed  coordination  (Figs  3−9).  As  in
Arabidopsis,  where  such  complexes  have  been  shown  to
comprise  at  least  the  PAL,  CHS,  4CL,  and  UFGT  proteins,  the
encoded  enzymes  are  hypothesized  to  form  multi-enzyme
complexes that may channel the biosynthetic precursors in an
energy-efficient manner to create flavonoid end products[88,89].

According  to  the  findings  of  a  correlation  study,  the  antho-
cyanin metabolites found in purple passion fruit had a positive
correlation  with  GST  enzyme  activities  and  a  negative  correla-
tion with C4H,  4CL,  and UFGT enzyme activities.  There existed
positive correlation between PAL, C4H and flavonoid content in
tobacco[90],  while  there  was  a  substantial  and  positive  correla-
tion between the CHS expression and the anthocyanin levels in
pomegranate[91].  The  expression  peaks  of  genes  involved  in
flavonoid  synthesis  were  obtained  at  early  and  late  phases  in
grape[92], Vaccinium myrtillus[82] and wild apple (Malus Sylvestris
L.)[93].  The  correlation  between  expressions  of  anthocyanin
metabolism-related genes  and enzyme activities  revealed that
PePAL4,  PeCHS1, and PeGST7 played a vital  role in anthocyanin
metabolism  in  fruit  pulp  (Fig.  11).  Two  passion  fruit  cultivars
varied in the accumulation of anthocyanin-associated metabo-
lites,  and  the  difference  was  attributed  not  only  to  enzyme

activity  but  also  to  the  transcript  levels  of  structural  genes.
According  to  previous  studies,  some  versatile  transcription
factor  such  as MYB[94], BHLH[95],  and WD40[96] were  also
involved.  In  addition,  regulation via microRNA,  ubiquitination
and  phosphorylation  on  protein  expression  and  modification
also exert important function in this process[97].

 Conclusions

The amount of variation in the anthocyanin content that was
assessed  in  this  research  was  synergistically  controlled  by  the
activities of a number of different enzymes, including PAL, C4H,
4CL,  CHS,  UFGT,  and  GST.  The  enzymes  i.e.,  C4H,  4CL,  CHS,
UFGT,  and  GST  contributed  significantly  to  the  buildup  of
anthocyanin  in  passion  fruit  pulp.  A  significant  contribution
was made to the anthocyanin metabolism of  fruit  pulp by the
genes PePAL4, PeCHS1,  and PeGST7.  These  findings  not  only
provide  fresh  perspective  on  the  aspects  of  anthocyanin
metabolism,  but  they  also  constitute  a  great  resource  for  the
study that will inevitably be conducted on molecular breeding
in passion fruit.
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Fig. 11    The correlation analysis between 'anthocyanins components and key enzymes involved in its metabolism' and 'relative expressions of
related genes' in fruit pulp of (a) purple and (b) yellow passion fruit. Following Pearson (n) method, the significance is indicated by the symbols
*, **, and *** when the corresponding values for p are less than 0.05, 0.01, and 0.001, respectively.
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