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Cellular  functions  emerge  from  ensembles  of  PPIs  that  coordinate
signaling,  metabolism,  and  gene  regulation.  Over  the  past  two
decades,  large-scale  experimental  efforts  have  mapped  fragments  of
the  human  interactome  using  yeast  two-hybrid  (Y2H)[1],  and  affinity
purification-mass  spectrometry  (AP-MS)[2].  While  large-scale  experi-
mental  efforts  like  HuRI[3],  BioPlex[4] have  reported  hundreds  of
thousands  of  putative  PPIs.  These  datasets  remain  noisy  and  incom-
plete.  Computational  approaches  broaden  coverage  by  combining
homology transfer, interface modeling, and functional association. Yet,
they  still  face  a  trade-off  between  scalability  and  mechanistic
resolution.  Deep-learning-based  structure  prediction  has  begun  to
reshape  this  landscape,  as  AlphaFold2[5] is  often  used  to  generate
accurate models for monomeric proteins and many complexes.  Cong
et  al.  in  2019 achieved 50%–70% recall  via  deep prokaryotic  MSAs in
yeast[6].  Humphreys et al.  in 2021 leveraged fungal diversity for stable
complex  prediction[7].  In  these  microbial  studies,  concatenated
multiple sequence alignments (MSAs) of orthologs across thousands of
species  provide strong interfacial  coevolutionary signals,  which direct
coupling  analysis  or  deep  networks  can  decode  to  distinguish  true
PPIs  from  random  pairs.  However,  these  efforts  yielded  higher  recall
but struggled with precision for transient interactions due to a simpler
network.

A  recent  study  by  Zhang  and  colleagues[8] presents  a  significant
conceptual and methodological shift in this domain. They integrate
three forms of information that have not previously been combined
at  this  scale.  These  include  evolutionary  depth  extracted  from  raw
eukaryotic sequencing data, structural regularities obtained through
large-scale  distillation  of  domain  interactions  from  AlphaFold
monomer models,  and a learning architecture designed specifically
for  interaction  discrimination.  As  shown  in Fig.  1,  we  can  find  how
this system integrates evolutionary and structural cues into a unified
screening architecture. Figure 1a demonstrates how genomic-scale
multiple  sequence  alignments  strengthen  coevolutionary  signals,
while Fig.  1b shows  the  dual  pipeline  design  that  evaluates  candi-
date protein pairs.

One of  the most  substantial  advances  in  this  study concerns  the
construction  of  deeply  enriched  multiple  sequence  alignments.
Standard  MSAs  rely  on  curated  reference  proteomes,  but  many
human  proteins  have  limited  orthologs,  weakening  coevolutionary
signals.  Prior tools like DeepMSA2[9] incorporated iterative searches
through  genomic  and  metagenomic  databases  but  prioritized
prokaryotic  or  broad  metagenomic  data,  often  yielding  shallower
alignments for eukaryotic proteins. By contrast, the framework intro-
duced by Zhang and colleagues retrieves coding sequences directly
from  raw  genomic  and  transcriptomic  data  for  more  than  20,000
eukaryotic  species.  Using  custom  assembly  and  ortholog  search
procedures, the authors construct omicMSAs with far greater diver-
sity  than  conventional  methods.  Conventional  MSAs  rely  on  anno-
tated  sequences,  yielding  shallow  alignments  for  eukaryotes.  In
contrast,  omicMSAs  mine  30  PB  of  raw  data  from  21,415  species,

achieving  7-fold  depth  via  splicing-aware  pipelines.  This  boosts
coevolutionary  power,  essential  for  distinguishing  true  PPIs  amid
extreme imbalance. This deeper representation improves the resolu-
tion of covariance patterns, and allows human proteins with limited
evolutionary depth to be studied.

A second innovation involves structural distillation. Many interac-
tions  are  transient,  condition  specific,  or  mediated  by  flexible
domains.  Prior  methods,  such as  K-GIDDI[10] for  inferring DDIs  from
experimental  PPIs,  relied  on  known  interactions  or  limited  experi-
mental  datasets  for  training.  Zhang  and  colleagues  reasoned  that
AlphaFold monomer models encode structural features repurposed
for  interaction  inference.  By  segmenting  millions  of  predicted
monomer structures into domains based on structural features, such
as  inter-residue  distances  and  predicted  aligned  errors,  integrated
with InterPro annotations,  and identifying intra-chain domain pairs
with at least 25 inter-residue contacts at distances less than 6 Å and
high confidence, they identified domain pairs forming strong inter-
faces. These domain–domain interactions are then clustered at 30%
sequence identity to produce a large library of structural templates,
where positive examples are these high-confidence DDIs and nega-
tive  examples  are  random  or  non-interacting  pairs.  This  library
captures common spatial motifs across protein families. Importantly,
intra-chain  DDIs  transfer  to  inter-chain  PPI  discrimination  because
they  represent  conserved  evolutionary  units  that  generalize  across
chain boundaries,  allowing DL networks to learn transferable inter-
face patterns.

The  third  advance  lies  in  the  design  of  the  RF2-PPI  classifier.
Rather than predicting full atomic-level complex structures, RF2-PPI
focuses on detecting statistical regularities associated with interact-
ing proteins.  Monomer-oriented predictors like AlphaFold optimize
geometry,  but  can  bias  toward  predicting  contact  where  none
exists. By focusing on discrimination, RF2-PPI avoids overprediction.
Deployed in a multistage pipeline, it  filters unlikely pairs before full
modeling,  increasing  precision.  The  predicted  set  includes
membrane proteins, low-annotation proteins, and those in complex
signaling.  Quantitatively,  the  pipeline  screens  190  million  human
protein  pairs,  predicting  more  than  29,000  PPIs  at  an  estimated
precision  of  80%  with  10%–30%  recall.  Within  this,  a  high-confi-
dence subset of 17,849 PPIs is identified at 90% precision by stricter
thresholds,  forming  a  nested  set  prioritizing  robust  evidence.  Of
these, ~3,600 are novel, offering insights into biology and disease.

The  innovations  shift  computational  interactome  foundations.
First,  evolutionary  information  expands  dramatically  via  raw
sequencing  data  integration.  Second,  structural  information  is
extracted  from  predicted  monomer  structures.  Third,  they  intro-
duce architecture that emphasizes binary interaction prediction. The
dual  pipeline  incorporates  biological  knowledge  without  reducing
rigor,  with  de  novo  for  discovery,  and  evidence-guided  for  refine-
ment. Despite advances, challenges remain. Many interactions occur
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through  intrinsically  disordered  regions  or  short  linear  motifs,

involving  dynamic  changes  or  low-affinity  binding,  uncaptured  by

stable  geometry.  Rapidly  evolving  proteins  have  limited  signals  in

omicMSAs.  The  framework  focuses  on  binary  heteromeric  interac-

tions.  excluding  homomers,  oligomeric,  nucleic  acid  bindings,  and

metabolite  contacts.  The  interactome  is  dynamic,  shifting  across

tissues,  stages,  phases,  and  conditions,  requiring  single-cell  and

time-resolved data integration.

 

Fig. 1  Large-scale human PPI prediction analysis diagram based on deep learning. (a) Integration of sequence and structure information to train RF2-PPI.
Raw  genomic  and  transcriptomic  data  from  diverse  eukaryotes  are  processed  to  construct  omicMSAs.  In  parallel,  high-confidence  intra-chain  domain-
domain interactions are distilled from AlphaFold DB monomer models. These sequence-based omicMSAs and structure-derived distilled DDIs are jointly
used  to  train  RF2-PPI.  (b)  Schematic  overview  of  the  two  complementary  screening  pipelines  used  to  predict  human  PPIs.  For  the  de  novo  search,  all
heteromeric  protein  pairs  formed  by  screened  proteins  are  restricted  to  proteins  with  overlapping  or  unknown  subcellular  localization.  They  are  then
sequentially  filtered  by  UniProt  keyword-based  co-localization,  DCA,  RF2-PPI  scoring,  and  AlphaFold2  complex  modelling.  For  the  evidence-guided
search, protein pairs with prior evidence are evaluated by DCA, RF2-PPI and AlphaFold2 using more permissive score thresholds.

 

Fig.  2  A  roadmap  for  next-generation  interactome  prediction.  The  figure  illustrates  three  dimensions  for  extending  the  current  framework.  (a)  Data
Dimension, moving from short-read assemblies to long-read integration to resolve difficult eukaryotic genomes and maximize evolutionary signal depth.
(b)  Model  Dimension,  evolving  from  stable  interface  focus  to  dynamic/IDR-aware  modeling  to  capture  transient  signaling  interactions  and  disordered
regions  often  missed  by  rigid-body  docking.  (c)  System  Dimension,  scaling  up  from  binary  PPI  screening  to  higher-order  complex  reconstruction,
integrating binary predictions into graph-based assembly of large molecular machines.
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Improvement  directions  are  discussed  in Fig.  2.  First,  enhance
omicMSAs with advanced sequencing. Assembling complex eukary-
otic  genomes  is  challenging  with  short-reads.  Integrate  long-read
data  to  resolve  regions,  enrich  depth,  and  improve  signal-to-noise
for  subtle  signals.  Second,  improve  transient  and  IDR  predictions.
Removing  3D  features  improves  performance  due  to  bias  toward
stable complexes, but many interactions are weak and mediated by
IDRs/motifs. Extend to model flexibility and use specialized datasets.
Third, transition to higher-order assemblies. Screen binary pairs, but
functions  involve  large  machines.  Couple  with  multi-chain  docking
like AlphaFold-Multimer for reconstructing megadalton complexes.
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