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Cellular functions emerge from ensembles of PPIs that coordinate
signaling, metabolism, and gene regulation. Over the past two
decades, large-scale experimental efforts have mapped fragments of
the human interactome using yeast two-hybrid (Y2H)'", and affinity
purification-mass spectrometry (AP-MS). While large-scale experi-
mental efforts like HuRI®!, BioPlex! have reported hundreds of
thousands of putative PPls. These datasets remain noisy and incom-
plete. Computational approaches broaden coverage by combining
homology transfer, interface modeling, and functional association. Yet,
they still face a trade-off between scalability and mechanistic
resolution. Deep-learning-based structure prediction has begun to
reshape this landscape, as AlphaFold2f! is often used to generate
accurate models for monomeric proteins and many complexes. Cong
et al. in 2019 achieved 50%-70% recall via deep prokaryotic MSAs in
yeast'®, Humphreys et al. in 2021 leveraged fungal diversity for stable
complex prediction”. In these microbial studies, concatenated
multiple sequence alignments (MSAs) of orthologs across thousands of
species provide strong interfacial coevolutionary signals, which direct
coupling analysis or deep networks can decode to distinguish true
PPIs from random pairs. However, these efforts yielded higher recall
but struggled with precision for transient interactions due to a simpler
network.

A recent study by Zhang and colleagues!® presents a significant
conceptual and methodological shift in this domain. They integrate
three forms of information that have not previously been combined
at this scale. These include evolutionary depth extracted from raw
eukaryotic sequencing data, structural regularities obtained through
large-scale distillation of domain interactions from AlphaFold
monomer models, and a learning architecture designed specifically
for interaction discrimination. As shown in Fig. 1, we can find how
this system integrates evolutionary and structural cues into a unified
screening architecture. Figure 1a demonstrates how genomic-scale
multiple sequence alignments strengthen coevolutionary signals,
while Fig. 1b shows the dual pipeline design that evaluates candi-
date protein pairs.

One of the most substantial advances in this study concerns the
construction of deeply enriched multiple sequence alignments.
Standard MSAs rely on curated reference proteomes, but many
human proteins have limited orthologs, weakening coevolutionary
signals. Prior tools like DeepMSA2[! incorporated iterative searches
through genomic and metagenomic databases but prioritized
prokaryotic or broad metagenomic data, often yielding shallower
alignments for eukaryotic proteins. By contrast, the framework intro-
duced by Zhang and colleagues retrieves coding sequences directly
from raw genomic and transcriptomic data for more than 20,000
eukaryotic species. Using custom assembly and ortholog search
procedures, the authors construct omicMSAs with far greater diver-
sity than conventional methods. Conventional MSAs rely on anno-
tated sequences, yielding shallow alignments for eukaryotes. In
contrast, omicMSAs mine 30 PB of raw data from 21,415 species,
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achieving 7-fold depth via splicing-aware pipelines. This boosts
coevolutionary power, essential for distinguishing true PPIs amid
extreme imbalance. This deeper representation improves the resolu-
tion of covariance patterns, and allows human proteins with limited
evolutionary depth to be studied.

A second innovation involves structural distillation. Many interac-
tions are transient, condition specific, or mediated by flexible
domains. Prior methods, such as K-GIDDI' for inferring DDIs from
experimental PPIs, relied on known interactions or limited experi-
mental datasets for training. Zhang and colleagues reasoned that
AlphaFold monomer models encode structural features repurposed
for interaction inference. By segmenting millions of predicted
monomer structures into domains based on structural features, such
as inter-residue distances and predicted aligned errors, integrated
with InterPro annotations, and identifying intra-chain domain pairs
with at least 25 inter-residue contacts at distances less than 6 A and
high confidence, they identified domain pairs forming strong inter-
faces. These domain-domain interactions are then clustered at 30%
sequence identity to produce a large library of structural templates,
where positive examples are these high-confidence DDIs and nega-
tive examples are random or non-interacting pairs. This library
captures common spatial motifs across protein families. Importantly,
intra-chain DDlIs transfer to inter-chain PPl discrimination because
they represent conserved evolutionary units that generalize across
chain boundaries, allowing DL networks to learn transferable inter-
face patterns.

The third advance lies in the design of the RF2-PPI classifier.
Rather than predicting full atomic-level complex structures, RF2-PPI
focuses on detecting statistical regularities associated with interact-
ing proteins. Monomer-oriented predictors like AlphaFold optimize
geometry, but can bias toward predicting contact where none
exists. By focusing on discrimination, RF2-PPI avoids overprediction.
Deployed in a multistage pipeline, it filters unlikely pairs before full
modeling, increasing precision. The predicted set includes
membrane proteins, low-annotation proteins, and those in complex
signaling. Quantitatively, the pipeline screens 190 million human
protein pairs, predicting more than 29,000 PPIs at an estimated
precision of 80% with 10%-30% recall. Within this, a high-confi-
dence subset of 17,849 PPIs is identified at 90% precision by stricter
thresholds, forming a nested set prioritizing robust evidence. Of
these, ~3,600 are novel, offering insights into biology and disease.

The innovations shift computational interactome foundations.
First, evolutionary information expands dramatically via raw
sequencing data integration. Second, structural information is
extracted from predicted monomer structures. Third, they intro-
duce architecture that emphasizes binary interaction prediction. The
dual pipeline incorporates biological knowledge without reducing
rigor, with de novo for discovery, and evidence-guided for refine-
ment. Despite advances, challenges remain. Many interactions occur
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through intrinsically disordered regions or short linear motifs,
involving dynamic changes or low-affinity binding, uncaptured by
stable geometry. Rapidly evolving proteins have limited signals in
omicMSAs. The framework focuses on binary heteromeric interac-
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tions. excluding homomers, oligomeric, nucleic acid bindings, and
metabolite contacts. The interactome is dynamic, shifting across
tissues, stages, phases, and conditions, requiring single-cell and
time-resolved data integration.
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Fig. 1 Large-scale human PPI prediction analysis diagram based on deep learning. (a) Integration of sequence and structure information to train RF2-PPI.
Raw genomic and transcriptomic data from diverse eukaryotes are processed to construct omicMSAs. In parallel, high-confidence intra-chain domain-
domain interactions are distilled from AlphaFold DB monomer models. These sequence-based omicMSAs and structure-derived distilled DDlIs are jointly
used to train RF2-PPI. (b) Schematic overview of the two complementary screening pipelines used to predict human PPIs. For the de novo search, all
heteromeric protein pairs formed by screened proteins are restricted to proteins with overlapping or unknown subcellular localization. They are then
sequentially filtered by UniProt keyword-based co-localization, DCA, RF2-PPI scoring, and AlphaFold2 complex modelling. For the evidence-guided
search, protein pairs with prior evidence are evaluated by DCA, RF2-PPI and AlphaFold2 using more permissive score thresholds.
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Fig. 2 A roadmap for next-generation interactome prediction. The figure illustrates three dimensions for extending the current framework. (a) Data
Dimension, moving from short-read assemblies to long-read integration to resolve difficult eukaryotic genomes and maximize evolutionary signal depth.
(b) Model Dimension, evolving from stable interface focus to dynamic/IDR-aware modeling to capture transient signaling interactions and disordered
regions often missed by rigid-body docking. (c) System Dimension, scaling up from binary PPl screening to higher-order complex reconstruction,
integrating binary predictions into graph-based assembly of large molecular machines.
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Improvement directions are discussed in Fig. 2. First, enhance
omicMSAs with advanced sequencing. Assembling complex eukary-
otic genomes is challenging with short-reads. Integrate long-read
data to resolve regions, enrich depth, and improve signal-to-noise
for subtle signals. Second, improve transient and IDR predictions.
Removing 3D features improves performance due to bias toward
stable complexes, but many interactions are weak and mediated by
IDRs/motifs. Extend to model flexibility and use specialized datasets.
Third, transition to higher-order assemblies. Screen binary pairs, but
functions involve large machines. Couple with multi-chain docking
like AlphaFold-Multimer for reconstructing megadalton complexes.
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