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Dear Editor,

The heritable component of gene expression in plants is dynami-
cally shaped by the complex interplay of tissue type, developmental
stage,  environment,  and  genetic  background.  Mapping  expression
quantitative trait loci (eQTL), which are genomic loci associated with
variation in expression, provides a powerful framework to decipher
this  regulation.  Specifically, cis-eQTL  (local  to  the  gene)  enable  the
identification of trait-associated genes that bridge genetic variation
to phenotypic variation, whereas trans-eQTL (distant from the gene)
reveal the architecture of system-wide gene regulatory networks. To
construct  a  comprehensive  map  of  this  regulatory  landscape  in
bread wheat (Triticum aestivum L., genome AABBDD), we integrated
RNA-seq data of 1,373 samples from four independent panels, each
capturing a distinct tissue and developmental stage at the seedling
phase (Fig.  1a, b):  The second or  third seedling leaf[1],  leaves at  the
three-leaf stage[2], ground tissue of 2-week-old plants[3], and roots at
14  days  after  germination[4].  These  panels  are  named  the  leaf,
seedling, plant, and root panels.

Single  nucleotide  polymorphisms  (SNPs)  were  called  separately
for  each  panel  against  the  Chinese  Spring  bread  wheat  reference
genome  RefSeq  v2.1[5],  yielding  260,329–431,441  SNPs  per  panel
(Supplementary Table S1). Analysis of their genetic diversity, includ-
ing  the  population  structure  (Fig.  1c),  nucleotide  diversity  (Supple-
mentary  Fig.  S1),  and  population  differentiation  (Supplementary
Fig. S2), revealed a gradient of diversity from (highest to lowest) the
root, seedling, and leaf to plant panels. Furthermore, these analyses
indicated  a  closer  genetic  relationship  between  the  root  and
seedling  panels,  and  a  separate,  distinct  relationship  between  the
leaf  and  plant  panels.  This  genetic  clustering  contrasts  with  the
sample  sources:  The  seedling  and  leaf  panels  both  represent  leaf
tissues,  whereas  the  plant  and  root  panels  are  derived  from  the
same developmental stages. Collectively, these results demonstrate
that  despite  substantial  differences  in  the  sample  sources  (Supple-
mentary Table S1), including tissue, developmental stage, and envi-
ronment,  as  well  as  in genetic  background and panel  size,  the four
panels nevertheless exhibited discernible pairwise relationships.

The  eQTL  were  identified  by  genome-wide  association  studies
(GWAS)  on  each  expressed  gene  across  the  four  panels  using  the
FarmCPU  model.  This  method  designates  a  single  representative
quantitative trait  nucleotide (QTN) for each associated locus,  rather
than reporting all significantly associated SNPs. In total, we detected
778,242  eQTL  associated  with  99,728  genes.  Among  these  genes,

31,039  were  low-confidence  (LC)  genes.  Notably,  the  number  of
eQTL  detected  in  each  panel  was  positively  correlated  with  both
panel size and the observed levels of genetic diversity (Supplemen-
tary Fig. S1, Supplementary Table S1), following the same descend-
ing  order:  Root  (271,749),  seedling  (201,431),  leaf  (179,657),  and
plant  (125,405).  The  influence  of  diversity  on  eQTL  counts  was
stronger in panels with larger sample sizes. Furthermore, consistent
with its distinct tissue origin and highest genetic diversity,  the root
panel  also  contained  the  highest  number  of  unique  genes  associ-
ated with eQTL (Fig. 1d, e).  As expected, genes and SNPs showed a
distinct chromosomal distribution bias, concentrated near the chro-
mosome  ends  and  depleted  around  the  centromeres  (Fig.  1f).  This
bias  was  absent  in  the  normalized  distributions  of  both  the  eQTL
and the genes associated with them. In contrast, the distribution of
cis-eQTL  (defined  as  QTNs  within  10  Mb  of  their  regulated  gene)
recapitulated  the  bias  of  the  underlying  genomic  elements.  At  the
subgenome level, the B subgenome exhibited the highest polymor-
phism (Supplementary Table S2) and contributed the most cis- and
trans- eQTL  both  collectively  and  in  individual  tissues  (Fig.  1g).
Conversely,  the  D  subgenome  showed  the  lowest  polymorphism
and  the  fewest  eQTL  (Fig.  1g and Supplementary  Fig.  S3).  Despite
this pronounced disparity in eQTL numbers across subgenomes, the
number  of  genes  regulated  by  these  eQTL  did  not  exhibit  a  corre-
sponding imbalance. This indicates that although polymorphism is a
key driver of eQTL variation, the gene regulatory network, involving
all  genome-wide  genes,  functions  as  an  interconnected  system-
wide  landscape.  We  note  that  environmental  variation  between
panels,  while  present,  could  not  be  quantified  to  evaluate  their
effect on eQTL because of limited metadata.

Among  the  311,179  QTNs  identified  across  all  four  panels,  2,032
were  high-effect  SNPs  (e.g.,  stop-gained  or  splice  variants)  that
substantially  alter  protein  function.  These  high-effect  SNPs  were
detected as the QTNs in 700 cis-eQTL and 4,960 trans-eQTL associa-
tions, collectively regulating 5,341 unique genes. For cis-regulation,
these  SNPs  directly  influence  the  expression  of  their  host  genes,
whereas for trans-regulation, they may mediate regulatory relation-
ships  between  their  host  genes  and  distantly  located  regulated
target genes. For cis-eQTL, gene expression variation can arise from
protein-altering  mutations  (e.g.,  high-impact  or  nonsynonymous
SNPs) or from sequence variations in regulatory regions. Consistent
with  this  model,  78.4%  of  the  65,413 cis-QTNs  are  located  within
2 Mb of their regulated gene, with clear enrichment in the proximal
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5-kb  flanking  regions  (20.8%)  and  within  the  gene  bodies  (14.3%)
(Fig. 1h).

To  investigate  the  regulatory  basis  of  functionally  characterized
genes, we analyzed cis-eQTL for a compiled set of 524 known genes
and  their  homologs  associated  with  key  agronomic  traits[6].  These
genes were categorized into abiotic stress, biotic stress, plant archi-
tecture,  development,  quality,  and yield  (Fig.  1i).  The proportion of
these genes possessing cis-eQTL was similar to the background rate
observed  among  all  expressed  genes.  Interestingly,  we  found  that
genes  induced  by  environmental  factors,  specifically  those  in  the
abiotic  and  biotic  stress  categories,  did  not  show  a  significantly

lower  proportion  of cis-eQTL  than  the  other  categories.  In  fact,
genes  associated  with  biotic  stress  exhibited  a  significantly  higher
proportion  of cis-eQTL  than  all  genes  (Fisher's  exact  test, p =  1  ×
10−4).  Our  genome-wide  findings  are  consistent  with  a  previous
study[7] that effectively leveraged transcriptome data from seedlings
of  an untreated diversity  panel  to  identify  four  functionally  charac-
terized genes conferring resistance to soybean cyst nematode.

Among the 44,206 unique genes with cis-eQTL, 54.5% were iden-
tified  in  at  least  two  different  panels,  indicating  a  considerable
degree  of  conservation  across  diverse  tissue  sources  and  genetic
backgrounds. In contrast,  shared trans-eQTL were far less common.
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Fig. 1  Atlas of expression quantitative trait loci (eQTL) across diverse tissues and genetic backgrounds in wheat (a) Schematic of the four profiled tissue
sources. Sampled tissues are highlighted in color, whereas the other plant parts are shown in grey. (b) Uniform manifold approximation and projection
(UMAP) of 1,373 RNA-seq samples from the four panels, colored by tissue source. (c) Unrooted phylogenetic tree of the four diversity panels, colored by
tissue.  (d)  Number  of  genes  with cis- and/or trans-eQTL  identified  in  each  panel.  (e)  Number  of  unique  genes  with cis-eQTL  in  each  panel.  (f)  Union
summary of  genomic features across all  panels  (from outer  to inner rings):  Total  number of  genes,  number of  single nucleotide polymorphisms (SNPs)
(log10 transformed), ratio of eQTL to SNPs, number of genes with eQTL, and number of genes with cis-eQTL. (g) Distribution of cis-eQTL counts across the
A,  B,  and  D  sub-genomes  of  hexaploid  wheat  (AABBDD).  (h)  Genomic  distribution  of cis-eQTL  relative  to  gene  positions.  Black  bins  represent  100-kb
intervals;  the  red  bin  represents  a  3-kb  genic  region  of  regulated  gene  itself.  (i)  Summary  of cis-eQTL  for  functionally  characterized  genes  and  their
homologs, categorized by trait. (j) Number of shared trans-eQTL-gene associations between panel pairs. The color scale and dot size indicate the count of
shared associations.
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Only  12.5%  (12,362  of  98,973)  of  the  genes  with trans-eQTL  were
associated  with  the  same trans-eQTL  across  multiple  panels.  This
lack of conservation was even more pronounced at the level of indi-
vidual  regulatory  relationships:  Only  5.1%  of  all trans-eQTL–gene
associations were replicated in two or more panels. For this small set
of conserved trans-associations, their abundance within each panel
remained  correlated  with  the  panel's  genetic  diversity  (Fig.  1j).
Furthermore,  the  number  of  shared  associations  between  any  two
panels  correlated  more  strongly  with  their  genetic  differentiation
than with the similarity of their tissue sources.

A classical strategy for prioritizing candidate genes within a trait-
associated locus involves integrating cis-eQTL data with GWAS hits,
termed  co-localization.  The  underlying  premise  is  that cis-eQTL  co-
localizing  with  a  trait-associated  GWAS  locus  provides  a  direct
mechanistic link,  making the cis-regulated gene a strong candidate
for phenotypic variation. Given that expression data from nontarget
tissues  has  successfully  enabled  trait-related  genetic  dissection  in
species  like Arabidopsis[8],  maize[8],  and  soybean[7],  we  applied  this
co-localization  strategy  to  integrate  our  seedling-stage  eQTL
datasets  with  a  genetic  dissection  of  plant  height  as  a  model  trait
(Fig.  2a).  We  conducted  a  GWAS  for  plant  height  using  the  root
panel[9],  for  which both the genotypes and phenotypes were avail-
able,  using a compressed mixed linear  model  (Fig.  2b)  and a Farm-
CPU  model  (Supplementary  Fig.  S4).  Both  analyses  identified  two
significant  loci  corresponding to the known dwarfing genes Rht-B1
and Rht-D1[10].

For  the Rht-B1 locus,  the  association  region  spanned  approxi-
mately  6.8  Mb  and  contained  67  annotated  high-confidence  (HC)
and  76  LC  genes  (Fig.  2c).  Among  these  genes,  40  were  found  to

harbor cis-eQTL in at least one of the four panels (Fig. 2d). We then
applied a stringent co-localization criterion, requiring that the signif-
icantly  associated  SNPs  from  the  plant  height  GWAS  were  either
identical  to  the cis-eQTL's  QTN  or  in  high  linkage  disequilibrium
(LD r2 > 0.7) with it. This rigorous filtering identified a single cis-eQTL
QTN (Chr4B-33614738, C/T), a functional stop-gained variant in Rht-
B1,  which was shared across two panels and is also associated with
plant height (Fig.  2e).  This identified the known Rht-B1 gene as the
only candidate, demonstrating the power to prioritize causal genes
from  a  large  set  of  positional  candidates.  The  candidate  gene  was
identified by both the root panel (the same panel used for the plant
height GWAS) and the independent seedling panel. This cross-panel
validation  indicates  that  our  seedling-stage  eQTL  atlas  is  a  robust,
generalizable resource that could benefit  independent GWAS stud-
ies  for  diverse traits,  including those not  directly  linked to seedling
tissues. This broad utility is further evidenced by our identification of
cis-eQTL  for  known  genes  regulating  abiotic  stress,  biotic  stress,
plant architecture, development, quality, and yield. This co-localiza-
tion  strategy  is  particularly  valuable  in  wheat,  where  slow  linkage
disequilibrium  decay  often  results  in  extensive  candidate  intervals.
However,  the  expression  of Rht-D1 was  too  low  to  be  defined  as
expressed in our transcriptomic data,  highlighting the potential  for
false negatives when causal genes are expressed at low levels or in
specific cell types not captured by our sampling.

To  enhance  the  accessibility  and  usability  of  our  seedling  eQTL
atlas,  we  have  integrated  the  eQTL  data  directly  into  WheatOmics
(http://wheatomics.sdau.edu.cn/eqtl). This integration enables users
to query any gene and instantly retrieve its associated eQTL, which
are  displayed through interactive  multi-panel  Manhattan plots  and
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Fig.  2  Re-identification  of  the  known Rht-B1 gene  through  co-localization  of cis-eQTL  and  plant  height  GWAS.  (a)  Schematic  illustrating  the  co-
localization  strategy,  which  integrates  independent  eQTL  results  and  GWAS  by  identifying  shared  SNPs  or  SNPs  in  high  linkage  disequilibrium  (LD)  to
bridge candidate genes with traits. (b) Plant height (PH) GWAS. The significantly associated locus containing Rht-B1 is indicated by a red arrow. (c) Linkage
disequilibrium  heatmap  of  SNPs  within  the  genomic  region  surrounding  the  GWAS  peak.  The  high-LD  block  is  highlighted  by  a  blue  triangle.  (d)  The
cis-eQTL signals for all genes annotated within the high-LD region. Points are colored according to the LD (r2) between each cis-eQTL's lead SNP and the
lead  GWAS  SNP  from  the  PH  GWAS.  (e)  Variation  in  PH  (left)  and Rht-B1 expression  levels  in  the  seedling  and  root  tissues  (middle,  right)  stratified  by
genotype at the co-localized SNPs. The p-values were derived from a Student's t-test comparing the two genotypes. (f) Representative output from the
user–self-hostable  web  resource,  showing  the  search  results  for Rht-B1 (TraesCS4B03G0093100),  including  its  eQTL  profile  across  the  four  panels,  as
Manhattan plots and a summary table.
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accompanying  summary  tables.  As  an  example,  querying Rht-B1
(gene  ID TraesCS4B03G0093100)  returns  its  strong cis-eQTL  and
simultaneously  uncovers  the  associated trans-eQTL  genome-
wide (Fig. 2f). For detailed Materials and Methods, see Supplementary
File 1.
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