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Abstract
Turfgrasses used on golf courses, sports fields and in urban landscapes have significant ecological and economic value. Various abiotic stresses

are crucial in limiting the growth and development of turfgrass. As an important amino acid metabolite, proline can act as a signal to trigger plant

responses  to  stress.  Proline accumulation is  not  only  a  stress  signal,  but  also  alleviates  plant  damage by maintaining photosynthesis  and the

activities of antioxidant enzymes and the levels of non-enzymatic antioxidant compounds, thus reducing reactive oxygen species content, and

regulating osmosis. A better understanding of mechanisms of proline response to abiotic stress in turfgrass is vital for the development of stress-

tolerant  germplasm.  This  review summarizes  research progress  into the role  of  proline in  regulating growth and physiological  and molecular

adaptations to abiotic stress, with emphasis on drought, salt and temperature tolerance.
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 Introduction

Turfgrass is an economically, environmentally, recreationally,
and  aesthetically  important  part  of  urban  landscapes[1].  With
the  demand  of  rapid  urbanization,  turfgrass  coverage  has
increased worldwide[2]. Grown in diverse climates and environ-
ments, turfgrass often suffers from various abiotic stresses such
as  heat,  cold,  drought,  and  salinity,  resulting  in  the  decline  of
grass  quality,  growth  and  development,  and  other  functional
attributes[3,4].  Therefore,  improvement  of  turfgrass  stress  tole-
rance has been a crucial concern, and a better understanding of
mechanisms of turfgrass stress tolerance is of great significance
for  developing  stress  tolerant  germplasm  through  breeding
and biotechnology.

Proline  is  a  multifunctional  amino  acid.  It  is  highly  accumu-
lated  in  plants  under  various  stress  conditions,  which  can
confer  stress  tolerance[5,6].  Proline often exists  widely  in  plants
in a free state. As a signal, it plays a key role in regulating gene
expression  and  some  metabolic  processes[7].  There  are  two
ways for proline biosynthesis to occur in plants: the glutamate
pathway  or  the  arginine  pathway[7].  As  shown  in Fig.  1,
glutamate (Glu) is reduced to glutamate semialdehyde (GSA) by
the  bifunctional  enzyme Δ1-pyrroline-carboxylate  synthetase
(P5CS), then GSA is converted to pyrroline-5-carboxylate (P5C),
and P5C is further reduced to proline by P5C reductase (P5CR).
Ornithine  (Orn)  produces  GSA  through  ornithine δ-
aminotransferase (OAT).

To  date,  proline  accumulation  and  expression  of  genes  for
proline  metabolism  have  been  documented  in  some  turfgrass
species in response to stress conditions[8−11].  However, there is
no review on the  current  research status  of  proline  associated
with turfgrass stress tolerance. This review summarizes proline
research  including  turfgrass  species,  types  of  abiotic  stresses,
and  proline  functions.  Information  provided  by  this  review

could  be  valuable  for  future  studies  into  the  role  of  proline  in
regulating turfgrass abiotic tolerance.

 Publication status

The  role  of  proline  in  regulating  stress  responses  has  been
studied in both cool-season turfgrasses such as Kentucky blue-
grass (Poa pratensis), tall fescue (Festuca arundinacea), perennial
ryegrass  (Lolium  perenne),  and  bentgrass  (Agrostis  spp.)  and
warm-season  turfgrasses  such  as  bermudagrass  (Cynodon
dactylon)  and  zoysiagrass  (Zoysia  spp.).  The  keywords  TS  =
(turfgrass*  OR  lawngrass*  OR  grass*)  AND  'abiotic  stress'  AND
'proline' was searched. The literature was from the past 10 years
from 2013−2022, and the selected language was English. After
initial  searching,  the  literature  were  obtained  relevant  to
proline  and  abiotic  stress  in  turfgrass.  Next,  by  checking  the
title  and  keywords.  Finally,  reading  the  full  text.  From  2013  to
2022,  there  were  close  to  100  publications  related  to  proline
under  abiotic  stresses  including  22  in  bentgrass  and  20  in
perennial ryegrass, followed by 15 in Kentucky bluegrass, 13 in
bermudagrass, 12 in tall fescue, and nine in zoysiagrass (Fig. 2).
There  were  a  few  publications  (ranging  from  one  to  five)  for
other  turfgrass  species  including  centipedegrass  (Eremochloa
ophiuroides),  seashore  paspalum  (Paspalum  vaginatum),  St.
Augustinegrass  (Stenotaphrum  secundatum)  and  buffalograss
(Bouteloua dactyloides).

Among the various  abiotic  stresses,  most  studies  on proline
in the past decade were found to deal  with drought,  salt,  cold
and  heat  stresses  (Fig.  3).  However,  there  was  only  one
literature report on effects of proline on photoinhibition stress
tolerance of turfgrass.

A  network  model  was  created  by  analyzing  keywords  in
literature  extracted  from  the  Web  of  Science  Database  in  the
past  10  years  (Fig.  4).  The  most  frequently  used  keyword  was
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'lipid  peroxidation',  and  the  others  were  'freezing  tolerance',
'abiotic stress', 'gene expression', 'plant', etc. The lines between
keywords in the model showed their correlations, which could
indicate  the  past  research  hotspots  of  proline  regulation  in
turfgrass  responses  to  abiotic  stresses.  It  showed  that  'lipid
peroxidation',  'various  abiotic  stresses'  and  'gene  expression'
were  the  most  popular  keywords  for  proline  related  research
reports in turfgrass species.

 Functions of proline in abiotic stresses

Proline  is  considered  to  have  many  unique  functions  in
regulating  homeostasis  in  plant  tolerance  to  harsh  environ-

ments,  for  example,  as  an  essential  amino  acid  is  also  a  vital
osmotic  compound  to  maintain  cellular  homeostasis  in
plants[12,13], and as the molecular chaperon it is able to maintain
the  protein  integrity  and  enhance  the  activities  of  different
enzymes  for  preventing  oxidative  burst  in  plants  by  bringing
concentrations of reactive oxygen species (ROS) within normal
ranges[14].  Numerous  studies  have  reported  proline  as  an
antioxidant  suggesting  its  roles  as  ROS  scavenger  and  singlet
oxygen quencher[15,16].  In  addition,  it  has  been confirmed that
proline  is  a  metal  chelator[17,18] and  a  signaling  molecule  in
plants  under  adverse  stresses[19−21].  Although  proline  metabo-
lism has been studied in turfgrass species[5], the functional roles
of  proline  in  regulating  turfgrass  tolerance  to  abiotic  stresses
are not well understood.

 Drought stress
Drought  is  a  limiting  factor  for  agricultural  production

worldwide.  Proline  is  the  most  well-known  osmotic  protective
substance.  A  large  amount  of  evidence  has  shown  that  the
accumulation  of  proline  is  positively  correlated  with  drought
tolerance  in  plants[4,22−25].  Mild  drought  stress  (60%  container
capacity)  induced  proline  accumulation  and  improved  antio-
xidant  metabolism  in  creeping  bentgrass[26].  The  proline,
hydrogen  peroxide  and  total  ascorbate  contents  of Agropyron
cristatum, A.  intermedium, Festuca  ovina, Festuca  arundinaceae,
Cynodon  dactylon, Bromus  inermis, and  B.  confinis,  sources  of
low-maintenance  turfgrasses  for  semi-arid  regions,  increased
under drought[27].  Drought stress decreased tall  fescue quality,
relative  water  content  (RWC),  leaf  indole-3-acetic  acid  and
cytokinin-zeatin  riboside  (ZR)  contents,  and  increased  proline
and  abscisic  acid  (ABA)  content,  but  the  tolerant  cultivar  'Van
Gogh'  had  greater  turfgrass  quality  rating,  RWC,  proline,  ABA,
and  ZR  content  compared  to  the  sensitive  'AST7002'  under
drought  stress  (26%  container  capacity)[28].  Lolium-Festuca
complex  genotype  'INT-40'  showed  a  higher  tolerance  to  field
water  deficit  and  had  more  denser  root  growth  and  more
osmotic active compounds accumulated in the shoots, such as
proline,  trehalose  and  oligosaccharide[29].  Activities  of  antioxi-
dant  enzymes  superoxide  dismutase  (SOD)  and  ascorbate
peroxidase  (APX)  increased  accompanied  with  increasing
accumulation of proline in tall fescue cultivars 'Pixie' and 'Mini-
mustang' under drought stress[30].

 
Fig.  1    Proline  metabolic  pathways  in  plants:  the  glutamate
pathway.  GSA,  glutamic-γ-semialdehyde;  P5C, Δ1-pyrroline-5-car-
boxylate;  P5CS, Δ1-pyrroline-5-carboxylate  synthetase;  OAT,  orni-
thine  aminotransferase;  P5CR, Δ1-pyrroline-5-carboxylate  reduc-
tase;  P5CDH.  pyrroline-5-carboxylate  dehydrogenase;  ProDH,
proline dehydrogenase.

 
Fig.  2    The  number  of  publications  in  relation  to  proline  in
different turfgrass species under stress conditions since 2013. BEN,
Bentgrass;  PR,  Perennial  ryegrass;  KB,  Kentucky  bluegrass;  BER,
Bermudagrass; TF, Tall fescue; ZO, Zoysiagrass; CE, Centipedegrass;
SP, Seashore paspalum; AU, St. Augustinegrass; BU, Buffalograss.

 
Fig. 3    The number of publications on turfgrasses under different
stresses  since  2013.  The  abbreviations  on  the  x-  axis  from  left  to
right  represent  drought  (DS),  salt  (SS),  cold  (CS),  heat  (HS),
waterlogging (WLS),  sulfur  dioxide (SDS),  heavy metal  (HMS),  and
photoinhibition (PS), respectively.

 
Fig.  4    The  analysis  of  keywords  on  the  research  of  proline  in
turfgrass  response  to  abiotic  stress  (created  by  authors  using
CiteSpace).  Each circle represents a keyword: the larger the circle,
the  higher  the  frequency  of  the  keyword.  The  lines  between  the
circles represent the relationship between keywords.
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Exogenous  application  of  proline  or  other  molecules  that
affect  proline  content  may  influence  turfgrass  stress
tolerance[31−43]. Exogenous application of the spermidine (Spd)
improved  drought  stress  tolerance  of  creeping  bentgrass  by
upregulating proline biosynthesis pathway related genes P5CS
and P5CR[44].  Foliar  spray  of γ-Aminobutyric  acid  (GABA)  and
proline  alone  or  in  combination  improved  creeping  bentgrass
dark green color index and stolon length, but proline treatment
alone  resulted  in  higher  RWC,  indicating  that  GABA  or  proline
plays  a  role  in  creeping  bentgrass  tolerance  to  drought
stress[31].  Also  in  creeping  bentgrass,  plants  treated  with
spermine  (Spm)  increased  nitrogen  and  proline  metabolism,
maintained  tricarboxylic  acid  cycle,  and  enhanced  chlorophyll
content,  photosynthesis,  water  use  efficiency,  and  cell  mem-
brane  stability[32].  Exogenous  application  of  plant  growth-
promoting  rhizobacteria  isolated  from  the  rhizosphere  of
Haloxylon  ammodendron increased  drought  tolerance  by
promoting accumulation of proline, activities of the antioxidant
enzymes  catalase  (CAT)  and  peroxidase  (POD),  photosynthetic
capacity  and  RWC  of  perennial  ryegrass[33].  Additionally,  the
application of exogenous substances such as hydrogen sulfide,
abscisic  acid,  nitrogenous nutrition,  silicon or  nitric  oxide (NO)
can  further  improve  the  accumulation  of  proline,  associated
with  high  content  of  chlorophyll,  total  soluble  phenols  and
glycine betaine in turfgrass species against drought stress[33−42].
However,  accumulation  of  proline  does  not  always  occur  in
grass  plants  under  drought  stress.  For  example,  exogenous
application  of  0.5  mM  salicylic  acid  improved  zoysiagrass
drought  tolerance  by  enhancing  the  net  photosynthetic  rate
and  antioxidant  enzyme  activities  but  decreasing  proline
content  and  lipid  peroxidation  compared  to  the  controls[43].
Application of myo-inositol (1 mM) promoted the accumulation
of water soluble carbohydrates but decreased drought-induced
free proline in leaves of creeping bentgrass, suggesting that the
contribution  of  water  soluble  carbohydrate  to  osmotic  adjust-
ment under drought stress was greater than that of proline[40].

SAGIPT41 transgenic  bentgrass  (IPT  encoding  isopentenyl
transferase)  showed  better  drought  tolerance,  with  higher
turfgrass  quality,  leaf  RWC,  and  OA  as  well  as  more  soluble
proline,  sugars,  betaine  and  spermine  found  in  transgenic
plants  than  the  control  plants[45].  Transgenic  tobacco  overex-
pressing  proline  biosynthesis  gene LpP5CS of  perennial  rye-
grass had higher proline content and survival rate after drought
treatment[6].  Transcriptome  analysis  of  Kentucky  bluegrass
showed that two proline dehydrogenase unigenes were down
regulated,  which  could  be  an  advantage  to  slow  the  rate  of
proline degradation after application of ethephon (200 mg·L−1)
under drought stress[41]. In brief, the results suggested a role of
proline in promoting drought tolerance in turfgrass species.

 Salt stress
Salt stress is one of the major abiotic stresses in many regions

of the world. High salt concentration inhibits plant growth and
reduces  chlorophyll  content,  photosystem  II  photochemical
efficiency  (Fv/Fm)  and  K+ content,  and  increases  Na+

accumulation[46−48].  The salt tolerant centipedegrass had lower
growth  inhibition  and  showed  increased  proline  content  and
antioxidant  enzyme  activities  than  the  salt  sensitive
centipedegrass[46].  When  eight  C3  turfgrass  species  were
exposed  to  increasing  salt  concentration,  proline  content  was
positively  correlated  with  salt  tolerance,  but  negatively

correlated with salt avoidance, suggesting that variations of salt
tolerance  among  species  was  caused  by  the  difference  in
proline  content[49].  The  proline  concentration  increased  signi-
ficantly  in  both  a  salt-sensitive  Kentucky  bluegrass  and  salt-
tolerant  tall  fescue  exposed  to  increasing  salt  concentration,
but tall fescue had less accumulation of Na+ and Cl− and higher
total  soluble  sugar  than  Kentucky  bluegrass[48].  The  results
indicated  that  accumulating  sugars  other  than  proline  mainly
contributed to salt  tolerance of  tall  fescue.  Proline and glycine
betaine  content  also  increased  with  increasing  salt  concen-
tration  in  four  warm-season  turfgrasses  including  St.
Augustinegrass,  manila  grasses  (Zoysia  matrella),  seashore
paspalum  and  bermudagrass,  suggesting  a  role  of  proline  in
cellular  protection[47].  A  comparative  study of  salt  tolerance of
creeping  bentgrass  (A.  stolonifera )  'Penncross'  and  rough
bentgrass (A. scabra) 'NTAS' showed that the salt tolerant 'NTAS'
maintained  higher  soluble  sugar,  proline,  and  glycine  betaine
accumulations, contributing to higher osmotic adjustment[50].

The  application  of  some  exogenous  substances  can  reduce
salt  stress  injury  by  increasing  proline  accumulation.
Application  of  Spd  alleviated  the  reduction  of  chlorophyll
content  and  K+/Na+ ratio,  increased  the  levels  of  proline,
endogenous  Spd,  Spm  and  the  activities  of  ornithine
decarboxylase  and  S-adenosylmethionine  decarboxylase  and
reduced  salt  injury  (200  mM)  in  Kentucky  bluegrass[51].
Exogenous  24-Epibrassinolide  (EBR)  treatment  enhanced  the
activities  of  antioxidant  enzymes,  decreased  the  content  of
electrolyte leakage (EL),  photosynthetic  rate,  malondialdehyde
(MDA) and hydrogen peroxide (H2O2),  and increased the RWC,
proline, soluble sugar and soluble protein in leaves of perennial
ryegrass under salt stress[52,53]. These results indicated that EBR
could  improve salt  tolerance of  perennial  ryegrass  by  enhanc-
ing  osmotic  regulation  and  antioxidant  defense  system[52,53].
Foliar spray of GABA alleviated the growth inhibition, increased
proline  concentration,  reduced  Na+/  K+ ratio,  and  significantly
increased  POD  and  SOD  activities  of  perennial  ryegrass[54].
Foliar  application  of  Si  maintained  leaf  chlorophyll  and  RWC
content,  increased  shoot  length  and  shoot  number,  reduced
Na+ concentration, but decreased proline content of tall fescue,
perennial  ryegrass  and  bermudagrass  at  all  salinity  levels,
suggesting  that  other  mechanisms  than  proline  accumulation
play a role in osmotic regulation[55].

Under  salt  stress  (255  mM  NaCl),  the  proline  biosynthesis
gene PrP5CS1 encoding pyrroline-5-carboxylate synthetase was
significantly  induced  in  perennial  ryegrass  leaves,  and  the  up-
regulated  level  of PrP5CS1 in  the  salt-tolerant  cultivar  'Over-
drive'  was higher than that in sensitive cultivar 'Pizzazz';  at  the
same time, PrP5CS2 was significantly induced in 'Overdrive' but
inhibited  in  'Pizzazz'[56].  Transgenic  tobacco  over-expressing
the  proline-biosynthesis  gene LpP5CS (encoding  pyrroline-5-
carboxylate  synthetase)  exhibited  higher  salt  tolerance  than
the  control[6].  The  results  indicate  that  salt  tolerance  of  pere-
nnial  ryegrass  may  be  directly  and  positively  correlated  with
proline  metabolism,  and  that LpP5CS could  be  a  candidate
gene  for  genetic  improvement  of  salt  tolerance.  The  proline
biosynthesis  gene LpP5CS were  up-regulated  after  treatment
with salt (200 mM NaCl) in roots, stems and leaves of perennial
ryegrass[6]. The drought and salt tolerance gene (DST) encoding
a C2H2 zinc finger transcription factor negatively regulated salt
tolerance  in  rice  (Oryza  sativa)[57].  Silencing  the OsDST gene
enhanced salt  tolerance of perennial  ryegrass,  with higher leaf
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RWC and lower EL, MDA and H2O2 and proline content found in
transgenic  plants[58].  Collectively,  proline  plays  a  role  in
molecular regulation salt tolerance of turfgrass species.

 Temperature stress
High  and  low  temperatures  are  among  the  main  environ-

mental  factors  that  influence  plant  growth,  production  and
distribution.  The  high  temperature  range  usually  refers  to  the
temperature  at  which  plant  growth  begins  to  be  inhibited,
usually 5−10 °C above the ambient level, however, low tempe-
rature  injury  includes  chilling  stress  (temperature  above  0  °C)
and  freezing  stress  (temperature  below  0  °C)[8].  High  tempe-
ratures  decreased chlorophyll  content,  Fv/Fm,  and RWC,  while
water-soluble  carbohydrates,  proline,  H2O2,  MDA,  and  EL  gra-
dually  increased  in  four  cultivars  of  creeping  bentgrass[59,60].
Foliar application of GABA, proline, or N significantly increased
creeping bentgrass quality, chlorophyll content and Fv/Fm, and
inhibited  the  activity  of  chlorophyll  degrading  enzymes  to
alleviate  leaf  senescence[60].  In  addition,  the  levels  of  plant
endogenous  proline,  GABA,  glutamic  acid  and  aspartate  were
significantly  higher  after  exogenous  proline  (10  mM)  appli-
cation than those of the control[61], suggesting that proline may
regulate  3-phosphoglycerate,  GABA  shunt,  oxaloacetate,
secondary  metabolism,  and  pyruvate  metabolic  pathways  to
enhance  heat  tolerance  of  creeping  bentgrass[61].  Significant
differences  in  proline  accumulation  were  found  among
different  ecotypes  of  Kentucky  bluegrass,  perennial  ryegrass
and  tall  fescue  under  heat  stress,  but  heat  resistant  varieties
had  higher  proline  content  than  that  less  resistant  varieties,
and  this  was  also  accompanied  by  higher  growth  rate,  tiller
number, and antioxidant activities[62−65]. Transcriptome analysis
showed  that  up-regulation  of  genes  involved  in  oxidative
protection,  proline  biosynthesis,  lipolysis,  hemicellulose,  and
lignin  biosynthesis  were  detected  in  heat-tolerant  rough
bentgrass  compared  to  heat-sensitive  creeping  bentgrass[66].
The results  indicate a  positive role of  proline in heat  tolerance
of  turfgrass  species,  although  proline  accumulation  was  not
always increased in plants with strong heat tolerance[67].

Freezing stress (−8 °C) increased proline content,  sugar,  and
antioxidants in tall fescue[68]. Cold acclimation (5 °C) resulted in
increased  proline  content  in  both  cold  tolerant  and  cold
sensitive  varieties  of  perennial  ryegrass,  compared  to  a  non-
acclimated  control,  while  there  were  significant  differences  in
proline  content  between  cold  tolerant  and  sensitive
varieties[69].  Proline  accumulated  in  creeping  bentgrass,
Kentucky  bluegrass,  and  perennial  ryegrass  during  cold  accli-
mation improved the content of soluble phenols by regulating
the  pentose  phosphate  pathway  related  to  proline,  thereby
enhancing  antioxidant  activity  and  the  cold  tolerance  of  the
three  plants[70].  However,  the  concentration  of  proline  was
generally  low  and  similar  between  annual  bluegrass  (Poa
annua)  and  creeping  bentgrasss  species  throughout  deaccli-
mation  (7  °C),  but  total  soluble  sugars,  mainly  high  molecular
weight (HMW) fructans, accumulated in each species/ecotypes
with  higher  levels  measured  in  creeping  bentgrasss[71].
Perennial  grasses  often  decrease  capacity  of  cold  tolerance
upon  deacclimation,  and  the  low  level  of  proline  during  de-
acclimation  indicated  less  cold  hardiness  plants.  Furthermore,
transgenic  zoysiagrass  plants,  expressing  oat  phytochrome  A
(PhyA)  or  a  hyperactive  mutant  phytochrome  A  (S599A),
showed a marked increase in proline content compared to non-

transgenic control lines. The PhyA lines had approximately 42%
increased  proline  accumulation,  expressing  S599A  showed
around  88%  increased  proline  levels  compared  to  the  non-
transgenic  control  lines  when  subjected  to  cold  stress  (10
°C)[72].  The results showed that increased proline accumulation
was  strongly  associated  with  cold  tolerance.  Transcriptomic
analyses reveal that proline synthesis pathways and photosyn-
thesis  pathways genes were involved in the regulation of  cold
response  in  bermudagrass  and  zoysiagrass[73].  In  Kentucky
bluegrass  and  manila  grass,  'proline  synthesis  process'  and
'proline  transport'  pathways  were  enriched  under  cold  stress,
with  many  genes  in  the  proline  synthesis  and  degradation
pathways  up-regulated,  such  as P5CS, P5CR and P5CD indi-
cating  that  both  the  biosynthesis  and  degradation  of  proline
were  activated  by  cold  stress[74−76].  DREB  (dehydration-
responsive  element  binding)  is  induced  by  cold  stress,  and
overexpression  of  zoysiagrass DREB gene  in Arabidopsis
thaliana moderately increased the levels of proline and soluble
sugar,  and  improved  plant  tolerance  to  high  and  low  tempe-
rature  stress[77].  Overexpression  of  the  DREB-binding  factor
PpCBF3 from  a  cold-tolerant  Kentucky  bluegrass  increased
plant  growth  and  survival  of Arabidopsis  thaliana at  extremely
low temperatures  (4  °C)  by  protecting photosynthetic  compo-
nents  and  cell  membrane  structure,  up-regulating  proline
synthesis and inhibiting ROS formation[78]. The results suggest a
connection  of  proline  with  the  expression  of  key  genes  in
protecting  leaf  damage  under  cold  stress.  The ICE1 gene  is  a
regulator  of  cold-induced  transcriptional  changes  in
Arabidopsis  thaliana,  and  Korean  lawngrass  (Zoysia  japonica)
overexpressing AtICE1 showed  increased  proline  level,  higher
activities  of  SOD  and  POD,  and  decreased  MDA  content  com-
pared  with  the  wild  type  under  cold  stress  (4  °C)[79].  The
associations of proline with improved cold tolerance were also
found in transgenic creeping bentgrass plants overexpressing a
Picea wilsonii dehydrin gene (PicW) and tobacco plants overex-
pressing the creeping bentgrass AstEXP1 gene[80,81].

 Other abiotic stresses
In addition to these stresses mentioned above, sulfur dioxide

(SO2),  light  and  heavy  metal  stresses  can  also  cause  serious
damage to turf plants. SO2 is the main air pollutant at present.
When nine varieties of bermudagrass were exposed to SO2, the
SO2 resistant  varieties  exhibited  higher  content  of  soluble
sugar, chlorophyll a and proline than that of sensitive varieties,
indicating  that  the  tolerance  of  bermudagrass  to  SO2 was
closely  related  to  proline[82].  Moreover,  lower  levels  of  ROS,
MDA  and  EL,  and  increased  antioxidant  enzyme  activity  and
proline  content  were  also  observed  in  SO2 tolerant  sheep
fescue (Festuca ovina) and perennial ryegrass[83].

Low-light can significantly reduce the quality of the turfgrass,
and  cause  a  serious  delay  in  the  growth  and  development  of
plants[84].  Proline  accumulated  in  tall  fescue  leaves  and  roots
under  low  light,  and  the  content  of  proline  was  further
enhanced by Ca2+ application, suggesting that exogenous Ca2+

promoted the ability of tall fescue to cope with low light stress
by  restoring  various  physiological  mechanisms  including
increases in proline content[84].

The  unreasonable  discharge  of  industrial  wastewater  and
waste  gas  lead  to  the  gradual  accumulation  of  heavy  metals
such  as  Cu  and  Cd  in  the  soil.  In  perennial  ryegrass,  Cd  stress
increased  the  level  of  lipid  peroxidation  and  triggered  the
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activity  of  antioxidant  enzymes,  and  the  input  of  exogenous
phosphorus  increased  the  levels  of  proline  and  cysteine,
partially  alleviating  the  effect  of  lipid  peroxidation,  while  the
absorption  of  Cd  was  decreased  by  increasing
phytochelatins[85].  Under  heavy  metal  stress,  transgenic zoysia
and bentgrass plants carrying S599A-PhyA (oat phytochrome A)
showed  increased  aboveground  and  underground  biomass,
antioxidant enzyme activities, chlorophyll and proline contents,
and  decreased  H2O2 levels  compared  with  the  control[86].  The
results  proved a connection between proline and heavy metal
tolerance.  Overall,  as  an  important  metabolite,  proline  plays
multifunctional  roles  in  facilitating  turfgrass  tolerance  to
various abiotic stresses.

 Conclusions

Research into turfgrass has shown that proline accumulation
plays  highly  beneficial  roles  in  promoting  turfgrass  stress
tolerance.  The  mechanisms  of  proline  for  enhancing  turfgrass
stress  tolerance mainly  involve osmotolerance for  maintaining
cellular homeostasis, preventing oxidative injury, and acting as
a signaling molecule in  gene expression.  Much research is  still
required  for  a  deeper  and  complete  understanding  of  the
functions of proline in response to abiotic stresses in both cool-
season  and  warm-season  turfgrasses.  The  complex  morph-
physiological  and  molecular  network  associated  with  proline
accumulation should  be  explored more  extensively  for  further
genetic engineering of proline metabolism in turfgrasses aimed
at improving abiotic stress tolerance.
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