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Abstract
Metabolic engineering improvement of plants will play an essential role in future agriculture, but this largely depends on the establishment of

genetic  transformation. Stephania  tetrandra S.  Moore  is  a  traditional  Chinese  medicine  used  for  rheumatalgia  that  accumulates

benzylisoquinoline alkaloids as its main active ingredients. Wild or farmed plants have remained the main source of these essential medicines,

resulting  in  supply  pressure  due  to  the  scarcity  of  wild  plant  resources  and  the  slow  growth  rate  in  cultivation.  Here,  we  constructed

Agrobacterium  rhizogenes (C58C1)-mediated  hairy  root  culture  and  a  co-transformation  system  in S.  tetrandra to  obtain  a  new  source  of

bisbenzylisoquinoline  alkaloids  production.  We  show  that  the  biomass  of  the  hairy  roots  increased  10-fold,  and  the  content  of  tetrandrine

reached 8.382 ± 0.160 mg/g DW after 50 d of cultivation. In addition, overexpression of (R,S)-norcoclaurine 6-O-methyltransferase (6OMT) gene or

treatment of hairy roots with methyl jasmonate (MJ) increased protoberberine alkaloid content. This work provides a method of obtaining hairy

roots and a genetic transformation system for S. tetrandra, not only broadening the access to S. tetrandra resources, but also laying a foundation

for further elucidation of the biosynthesis of tetrandrine and related alkaloids.
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 Introduction

Fangji, the succulent taproot of Stephania tetrandra S. Moore,
has  been  in  widespread  use  for  thousands  of  years  in  tradi-
tional  Chinese  medicine,  to  treat  rheumatalgia,  arthrodynia,
dropsy,  dysuria,  and  eczema[1].  There  are  abundant  benzyliso-
quinoline  alkaloids,  including  aporphines,  proberberines,
monobenzylisoquinolines  and  bisbenzylisoquinolines,  in S.
tetrandra[2],  among  which  tetrandrine  and  fangchinoline  are
mainly  responsible  for  antimicrobial,  anticancer/antiprolifera-
tive,  immunomodulatory,  antidiabetic  and  neuroprotective
activities[1,3].  Pharmacological  studies  have  indicated  that
tetrandrine  shows  anticancer  activity  by  inhibiting  fibroblast
proliferation  resulting  from  the  modulation  of  tumor  necrosis
factor  and  collagen  gene  expression[4−6].  In  addition,  tetran-
drine is the most potent small molecule against Ebola virus and
performs well in the treatment of silicosis in China.

Tetrandrine  is  currently  extracted  from  wild S.  tetrandra, in
part  because  chemical  synthesis  of  such  a  complex  molecule
(e.g.,  the coupling of two 1-benzylisoquinoline monomers and
strict configuration requirements) is not commercially competi-
tive. However, the root growth of S. tetrandra is very slow, and it
takes  at  least  five  years  to  harvest.  A  slow  growth  rate  and
excessive  exploitation have led to  a  shortage of  wild S.  tetran-
dra materials. Cell culture or hairy roots provide alternatives for
the  extraction  of  tetrandrine  and  other  BIAs  in S.  tetrandra.  In
particular,  hairy roots with a rapid growth rate,  high biological

activity,  high  biochemical  stability,  and  the  advantages  of
genetic  transformation  and  so  on  have  been  constructed  for
many  medicinal  plants.  In  addition,  hairy  roots  could  be  engi-
neered to increase the content of active ingredients by overex-
pressing key enzyme genes or silencing competitive pathways.
For  example,  the  accumulation  of  benzophenanthridine  alka-
loids  in  the  hairy  roots  of E.  californica could  be  accelerated
more  than  5-fold  by  overexpressing  BBE  compared  to  control
roots[7], and the contents of thebaine, codeine and morphine in
the hairy roots of P. bracteatum were also increased by overex-
pressing  SalAT[8].  Moreover,  with  the  application  of  scale-up
bioreactor  cultures,  hairy  roots  such  as  ginseng[9] and Poly-
gonum  multiflorum[10] are  being  increasingly  used  to  provide
materials  for  the  pharmaceutical  and  cosmetic  industries.
However,  this  relies  on  biosynthetic  analysis  of  the  active
compounds in medicinal plants.

The  biosynthetic  pathways  of  bisbenzylisoquinoline  alka-
loids  have  been  extensively  explored.  The  upstream  biosyn-
thesis  pathway  of  benzylisoquinoline  alkaloids  has  been
clarified in different species[11]. Dopamine and 4-HPAA are con-
densed  by  (S)-norcoclaurine  synthase  (NCS[12])  to  produce
norcoclaurine.  (R,S)-norcoclaurine  6-O-methyltransferase
(6OMT[13,14])  catalyzes  norcoclaurine  to  produce  coclaurine,
which is subsequently converted to N-methylcoclaurine by (S)-
coclaurine  N-methyltransferase  (CNMT[15]).  N-methylcoclaurine
is the precursor of benzylisoquinoline, protoberberine, morphi-
nan,  and  aporphine  alkaloids[16].  N-Methylcoclaurine  yields
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protoberberine  and  aporphine  alkaloids  through  a  reticuline
intermediate,  or  the  benzyl  moieties  of  two  N-methylcoclau-
rine  units  are  oxidatively  coupled  by  cytochrome  P450  berba-
munine  synthase  (BsCYP80A1[17])  to  form  bisbenzylisoquino-
line  alkaloids  (Fig.  1).  Functionally  characterized  genes  enable
metabolic engineering of plants and hairy roots.

Since  the  first  transgenic  crop  (the  Flavr-savr  tomato)
emerged in 1994[18], genome sequencing, bioinformatics analy-
sis and genetic engineering technology have developed rapidly
and  been  widely  used  in  the  fields  of  crop  breeding  and
improvement[18] and  plant  chassis  production  of  PNPs[19,20].
Genetic  editing  of  plants  has  been  receiving  increasing  atten-
tion.  At  present,  these  biotechnology  strategies  are  gradually
being applied to medicinal  plants[21,22],  suspension cell  culture
and hairy root culture[23]. However, the transformation of plants
is often a technical bottleneck that restricts their development,
which makes progress in plant genetic transformation systems
crucial.

To  the  best  of  our  knowledge,  as  an  important  medicinal
plant for BIA production, there are no studies on the hairy root
culture  system and genetic  transformation system in S.  tetran-
dra.  Here,  we constructed the hairy root system of S.  tetrandra
by  cocultivating  leaf  explants  with Agrobacterium  rhizogenes
C58C1.  The  quantitative  results  showed  that  the  content  of
tetrandrine  in  hairy  roots  reached  8.382  ±  0.160  mg/g  DW.  In
addition,  we  successfully  established  a  genetic  transformation
system of hairy roots through the transfer of eGFP and CyOMT-
7 (6OMT in C. yanhusuo),  which has been reported to be a key
enzyme  involved  in  the  biosynthesis  of  BIAs[24].  The  results
showed  that  exogenous  genes  could  be  successfully  inte-
grated  into  the  tetrandrine  genome  and  expressed.  In
summary,  we  established  a  hairy  root  culture  system  and  a
genetic  transformation  system  of S.  tetrandra,  which  will
provide material and methods for the production of BIAs.

 Materials and methods

 Materials

 Plant materials
Seeds of S. tetrandra (local name: Fangji) were obtained from

Yichun (28°11'33.53" N, 114°51'16.128" E), China, and grown in a
greenhouse  at  the  National  Resource  Center  for  Chinese

Materia  Medica,  China  Academy  of  Chinese  Medical  Sciences,
Beijing, China.

 Agrobacterium strain and binary vectors
Agrobacterium  rhizogenes strain  C58C1,  which  was  used  to

induce  hairy  roots  in S.  tetrandra,  was  frozen  and  stored  at
−80 °C with 50% glycerin.

The  binary  vector  pCAMBIA1300  with  eGFP  was  from  ph.
Tang  Jinfu.  Screening  resistance  of  the  vector  utilized
kanamycin  for  bacterial  culture  and  hygromycin  for  plant
culture.  The  coding  sequence  of  CyOMT7  was  controlled  by  a
super  promoter  in  the  binary  vector  pCAMBIA1300.  Binary
vectors  pCAMBIA1300-eGFP  and  pCAMBIA1300-Cy6OMT-3-
eGFP  were  introduced  into  the A.  rhizogenes strain  by  the
freeze‒thaw method.

 A. rhizogenes-mediated transformation

 Preparation of infection solution
The  wild-type A.  rhizogenes strain  was  cultured  in  LB  liquid

medium  supplemented  with  50  mg/l  rifampicin  with  shaking
(200 rpm) at  28 °C under dark conditions.  The cell  density was
adjusted to an OD600 of approximately 0.6−1.0 with LB medium.
Before  infection,  acetosyringone  (AS)  was  added  at  a  final
concentration of  100 µM to increase the efficiency of  transfor-
mation.  Then,  the bacterial  solution was centrifuged for  7  min
at  4000×  g  to  collect  the  incubated  cells,  which  were
suspended  at  a  final  cell  density  of  OD600 =  0.6  in  MS  +  AS
(100 µM) liquid medium for plant inoculation.or plant inocula-
tion.

 Induction of hairy roots
After disinfecting with 75% ethanol for 45 s and 2.5% NaClO

for  7  min  and  cleaning  with  sterile  water  three  times,  the S.
tetrandra leaves  were  cut  into  small  slices  of  approximately  1
cm2 using  sterile  scissors.  The  injured  leaves  were  submerged
in infection solution, shaking (100 rpm) for 10 min at 28 °C. The
explants  were  dried  with  sterile  tissue  paper  and  then  placed
on MS + AS (100 µM) medium with 0.8% (w/v) agar for coculti-
vation under dark conditions for 2 d at 25 °C. After 2 d of cocul-
tivation,  the  explants  were  cleaned  3−5  times  with  MS  liquid
medium containing 500 mg/L cefotaxime and dipped for 5 min
in  MS  liquid  medium  to  remove  excess  cefotaxime.  The
explants  were  dried  with  sterile  tissue  paper  and  then  trans-
ferred  to  selection  medium  (hormone-free  half-strength  MS
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Fig. 1    BIAs in S. tetrandra and their biosynthetic pathways.
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medium  containing  400  mg/L  cefotaxime)  for  hairy  root
induction.  The  cefotaxime  concentration  was  halved  every  15
d. Many hairy roots emerged within 3−4 weeks from the wound
sites.  In  addition,  the  induction  of  transgenic  hairy  roots
requires the addition of 2.5 mg/L hygromycin to the screening
medium.

The sterilized and vigorous hairy roots in solid medium were
selected and transferred to half-strength MS liquid medium for
expansion. The culture was incubated at 25 °C in the dark with
shaking  at  a  speed  of  120  rpm  and  subcultured  once  every
21 d.

 Hairy root growth curves
A total of 0.5 g (fresh weight) of S.  tetrandra hairy roots that

grew  vigorously  in  half-strength  MS  liquid  medium  was  trans-
ferred  to  50  ml  of  new  half-strength  MS  liquid  medium  and
incubated  at  25  °C  in  the  dark  with  shaking  at  a  speed  of  120
rpm for 50 d. The hairy roots were harvested at 0, 5, 10, 15, 20,
25, 30, 40, and 50 d post inoculation. After recording the fresh
weight,  a  small  amount  of  the  material  was  frozen  in  liquid
nitrogen and stored at 80 °C for further use, and the remaining
material  was  freeze-dried  to  detect  the  compound  contents
after  recording  the  dry  weight.  Biomass  is  expressed  as  fresh
and dry weight (DW) per 50 ml.  The growth curve of  the hairy
roots was drawn from 0 to 50 d. The experiment was repeated
three times.

 Identification of transgenic hairy roots
The  fluorescence  of  the  transgenic  hairy  roots  was  prelimi-

narily detected using a portable excitation light source (LUYOR-
3415RG, Shanghai, China) with filter sets for eGFP (485/500 nm)
or scanning confocal microscopy with filter sets for eGFP.

The  hairy  root  genome  was  analyzed  by  PCR  (polymerase
chain  reaction)  for  the  presence  of  Ri  plasmid  fragments.
Genomic  DNA  from  the  nontransformed  roots  of  field-grown
plants  (negative  control  group)  and  four  transgenic  hairy  root
lines was extracted using a DNA extraction kit (Mai5bio, China).
Agrobacterium rhizogenes C58C1 bacterial solution was used as a
positive  control  for  the  bacterial  DNA  fragments  Rol  B,  Rol  C,
and  Vir  D,  and  the  vector  pCAMBIA1300-Cy6OMT-3-eGFP  was
used  as  a  positive  control  for  the  eGFP  and  Cy6OMT-3  genes.
PCR with 2×EasyTaq® DNA SuperMix (TransGen, Beijing, China)
was  run  in  a  VeritiTM 96-well  gradient  PCR  apparatus  (Applied
Biosystems,  USA).  The primers and fragment lengths are listed
in Table  1.  The  reaction  products  and  a  standard  DNA  marker
were  visualized  after  electrophoresis  in  1.5%  agarose  gels  and
photographed using the gel documentation system (Shanghai,
China).

 Hairy root treatment with elicitors

 Elicitor preparation
Two  elicitors,  methyl  jasmonate  (MJ)  and  yeast  extract  (YE),

were used in the elicitation process. The MJ solution (200 mM)
was  prepared  in  ethanol  and  filter-sterilized  through  a

membrane  filter  (pore  size:  0.22 µm).  The  YE  stock  solution
(100  g/L)  was  prepared  by  dissolving  YE  in  ddH2O  at  121  °C
over 15 min.

 Elicitor treatment
One gram of 21-day-old hairy roots was cultured in 100 ml of

half-strength MS liquid medium and incubated at  25 °C in  the
dark with shaking at a speed of 120 rpm for 14 d. MJ (50 µl; 0.1
mM final concentration) and YE (200 µl; 0.2 g/l final concentra-
tion) were separately applied to 14-day-old hairy root cultures.
Equal  amounts  of  ethanol  and  sterile  water  were  added  as
controls.  The hairy  roots  were harvested at  0,  1,  2,  3,  4,  5,  6,  8,
and  10  post  treatment  and  washed  with  distilled  water.  The
materials were frozen in liquid nitrogen and stored at 80 °C for
further  use.  An  aliquot  of  the  material  was  freeze-dried  to
detect compound content.  All  experiments were performed in
triplicate.

 Alkaloid extraction and quantitative analysis

 Alkaloid extraction
Freeze-dried  hairy  root  samples  were  crushed  using  a  high-

throughput  tissue  lapping  device.  Five  milligrams  of  powder
was accurately weighed, vortexed in 1 ml of 80% methanol and
extracted  by  ultrasound  for  30  min  at  room  temperature;  this
procedure  was  repeated  two  times.  Then,  the  samples  were
allowed  to  sit  overnight.  The  extracts  were  separated  by
centrifugation and filtered through a 0.22 µm membrane filter
prior to analysis.

 Quantitative analysis
The  extracts  were  quantitatively  analyzed  by  LC-triple

quadrupole  MS.  UPLC  was  carried  out  with  an  Acquity  system
using  a  CSH  C18  column  (2.1  mm  ×  100  mm,  1.7 µm  particle
size;  Waters,  Ireland).  The  mobile  phases  were  acetonitrile
(eluent A) and 0.5% aqueous formic acid (B) run at a flow rate of
0.4 ml/min with the following linear gradient elution program:
5%−10%  A  from  0  to  3.0  min,  10%−16%  A  from  3.0−5.0  min,
16%−18%  A  from  5.0−18.0  min,  18%−90%  A  from  18.0−23.0
min,  90%−5%  A  from  23.0−28.0  min,  and  5%−5%  A  from
28.0−30.0  min.  One  microliter  of  sample  was  injected  into  the
system.  Sanguinarine  (final  concentration:  500  ng/ml)  was
added as an internal standard.

Eight target alkaloids [norcoclaurine (Yuanye, China), coclau-
rine  (Yuanye,  China),  N-methycoclaurine  (Rongchengxinde,
China),  fangchinoline  (Yuanye,  China),  tetrandrine  (Yuanye,
China), reticuline (Yuanye, China), scoulerine (Rongchengxinde,
China), and magnoflorine (Rongchengxinde, China)] were iden-
tified by the quantitative ion pairs 272.0→107.0, 286.0→107.1,
299.8→175.0,  609.2→367.2,  623,2→381.1,  329.8→192.1,
328.0→178.2,  342.0→297.1,  respectively.  Sanguinarine  (500
ng/ml)  was  used  as  an  internal  standard  with  the  quantitative
ion  pairs  332.2→274.1.  Data  acquisition  and  detection  were
performed in MRM mode. The data were processed using quan-
titative analysis software. For absolute quantification analysis of
the target compound, the method was validated using a mixed
standard solution, which was diluted with methanol to produce
at least five data points.

 Statistical analysis
All  experiments  were  conducted with  at  least  three  biologi-

cal replicates. The BIA content was measured as the mean value
±  standard  deviation  (SD).  Error  bars  were  determined  for
biological triplicates. The differences between the means were

Table 1.    Primer sequences used for PCR analysis.

Gene Primer F (5'-3') Primer R (5'-3')

rolB GCTCTTGCAGTGCTAGATTT GAAGGTGCAAGCTACCTCTC
rolC CTCCTGACATCAAACTCGTC TGCTTCGACTTATGGGTACA
virD ATGTCGCAAGGCAGTAAG CAAGGAGTCTTTCAGCATG
eGFP CATGGTCCTGCTGGAGTTCGTG TGAAACTGATGCATTGAACT
CyOMT7 TGATAGTAGGCTCGTTACT TTAAGGATAAGCCTCAATCA
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determined  by  analysis  of  variance  with  Multiple  Mann-Whit-
ney test using GraphPad Prism statistical software (version 7.0,
USA).

 Results

 Hairy root induction system in S. tetrandra
To obtain fast-growing materials for the efficient production

of  tetrandrine,  we  constructed  a S.  tetrandra hairy  root  induc-
tion  system.  In  this  study,  the A.  rhizogenes strain  C58C1 was
used to induce leaves of S. tetrandra to form hairy roots. The cut
leaves  of S.  tetrandra were  used  as  explants.  Approximately  7-
15 d after infection, calluses appeared at the wound sites, espe-
cially at the leaf veins (Fig. 2a, b). The calluses were white, solid
and  grew  slowly  (Fig.  2b).  After  subculture  on  cefotaxime-
supplemented 1/2 MS medium for 20−30 d, approximately 1−2
hairy  roots  grew  out  on  each  callus  (Fig.  2c).  The S.  tetrandra
hairy  roots  showed  typical  morphological  features  with  lateral
branches  and  a  lack  of  geotropism  (Fig.  2d).  The  hairy  roots
identified as  free  of  Agrobacterium contamination were  trans-
ferred  to  1/2  MS  liquid  medium  (Fig.  2e),  in  which  the  hairy
roots grew faster. In the process of culture, we found that the S.
tetrandra hairy  roots  were  relatively  coarse  and  grew  slowly,
which is similar to the characteristics of the slowly growing, silty
and  swollen  roots  of S.  tetrandra, suggesting  that  plant  root
traits may manifest in hairy roots.

Hairy  roots  constantly  exchange  materials  and  energy  with
the  external  environment  during  growth.  To  explore  the

growth of hairy root culture, we investigated the biomass accu-
mulation  of  the  hairy  roots  after  different  suspension  culture
times in 1/2 MS liquid medium (Fig. 2f). Hairy roots that demon-
strated stable repeatable growth were selected for continuous
cultivation  for  50  d,  and  their  fresh  and  dry  biomasses  were
measured.  Without  the  addition  of  exogenous  growth  regula-
tors  to  the  medium,  the  growth  of S.  tetrandra the  hairy  roots
exhibited a typical 'S' curve (Fig. 2g). The fresh hairy roots grew
slowly in the first 10 d and then rapidly from 10 to 30 d owing
to vigorous cell division and adequate nutrition. After 30 d, the
growth  gradually  slowed  down,  and  the  material  started  to
brown. Finally,  4.30 ± 0.26 g FW and 0.582 ± 0.013 g DW were
obtained after 50 d of cultivation, which were approximately 10
times  the  initial  biomass.  However,  the  50-day-old  hairy  roots
were  dark  brown  and  lacked  vitality  and  could  no  longer  be
used for  subculture,  so expansion is  appropriate at  20 d when
the growth rate is the fastest.

To further determine the optimal harvesting time of the hairy
roots,  the  BIA  content  in  the  hairy  roots  was  compared
between  different  culture  times.  The  content  of  each
compound  did  not  change  significantly  in  the  first  20  d,  and
then  the  contents  of  precursor  compounds  (norcoclaurine,
coclaurine)  gradually  decreased,  and  the  biaBIAs  (berbamine,
fangchinoline,  tetrandrine)  began  to  accumulate.  Contrary  to
the  hairy  root  growth  conditions,  the  rapid  accumulation  of
biaBIAs  mainly  occurred  after  30  d,  which  may  be  due  to  the
stress experienced by the hairy roots caused by nutrient and air
shortage  in  the  later  period.  Eventually,  the  contents  of
fangchinoline and tetrandrine in the hairy roots reached 0.915
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Fig. 2    A. rhizogenes-mediated hairy root induction system in S. tetrandra and the consequent hairy root growth. (a) Leaf explants, (b) calluses
and (c) hairy roots that appeared from the calluses. (d) Hairy root culture on 1/2 MS solid medium and (e) in liquid medium. (f) Change in the
growth status of hairy roots cultured in 1/2 MS liquid medium for 50 d. (g) Hairy root biomass growth curve. (h) Contents of alkaloids in the S.
tetrandra hairy roots at different culture times. The bars showed standard deviation. The scale bar = 1,000 µm.
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± 0.087 mg/g DW and 8.382 ± 0.160 mg/g DW accounting for
14.62%  and  59.67%  of  the  content  in  the  plants,  respectively
(content in plants was the average of plant content from each
region[25]).  Therefore, S.  tetrandra hairy  roots  should  be
harvested after 50 d.

In  general, S.  tetrandra hairy  root  culture  is  a  practical  and
effective  method  for  tetrandrine  production,  but  further
increasing  the  content  of  tetrandrine  by  genetic  modification
of S. tetrandra hairy roots is still needed.

 Hairy root genetic transformation system in S.
tetrandra

Metabolic  engineering  has  been  used  to  modify  plants  and
hairy  roots  to  provide  sustainable  active  compounds,  such  as
Artemisia annua[21] and Atropa belladonna[22]. However, genetic
transformation of plants or hairy roots is needed. Therefore, we
constructed  a  genetic  transformation  system  for S.  tetrandra
hairy  roots.  The  binary  vector  pCAMBIA1300  with  an  EGFP
reporter  gene  was  used  for  transformation,  and  the  obtained
hairy  roots  were  examined  by  GFP  fluorescence  and  genomic
PCR.  Compared  with  the  wild-type  hairy  roots,  the  transgenic
hairy  roots  showed  bright  fluorescence  and  contained  EGFP
gene fragments (Fig. 3a−e), which proved that S. tetrandra hairy
roots  had  integrated  the  EGFP  gene  fragments  carried  by  the
overexpression  vector  from  the  engineered A.  rhizogenes.  In

addition, the Rol B and Rol C genes, which are located in the T-
DNA  region  of  the  Ri  plasmid  and  were  integrated  into  the
plant genome to direct hair root differentiation, were present in
the  hairy  roots,  showing  that  hairy  roots  were  induced  by A.
rhizogenes (Fig. 3e). The Vir D gene is required for T-DNA trans-
fer  and  processing  but  is  located  outside  of  the  T-DNA  region
and was absent in the transgenic hairy roots (Fig. 3e), showing
that there was no A. rhizogenes contamination. In summary, the
A.  rhizogenes-mediated  hairy  root  transformation  system  in S.
tetrandra was successfully established.

We  further  confirmed  whether  the  hairy  root  transgenic
system could achieve functional verification of the target genes
and  metabolic  engineering  improvement  of  the  hairy  roots.
According  to  previous  research,  changes  in  the  expression  of
the  6OMT  gene,  which  catalyzes  the  conversion  of  norcoclau-
rine  to  coclaurine,  will  affect  the  content  of  BIAs,  such  as
sanguinarine[26−28]. Here, CyOMT-7, the 6OMT in C. yanhusuo[24],
was  selected  to  verify  the  characteristics  of  this  gene  in  the
metabolic  flow  of S.  tetrandra hairy  roots  for  the  following
reasons:  1)  the  catalytic  efficiency  of  CyOMT-7  is  higher  than
that  of  St6OMT  from S.  tetrandra[29];  and  2)  alignment  analysis
revealed  that  there  CyOMT-7  and  the  OMTs  from S.  tetrandra
share 78% identity, which could avoid the gene silencing effect
of endogenous genes. Ten independent lines were established
as CyOMT-7 transformants, as confirmed by EGFP fluorescence
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Fig.  3    Establishment of  the hairy  root  genetic  transformation system. (a)−(e)  Hairy  roots  transformed by pCAMBIA1300-eGFP.  (a)  WT hairy
root and (b) GFP fluorescence. (c) Transgenic hairy root and (d) GFP fluorescence. PCR analysis of (e) rol B, rolC, Vir D and eGFP in independent
hairy  roots  transformed  by  pCAMBIA1300-EGFP.  (f)−(j)  Identification  of  CyOMT-7-overexpressing  hairy  roots  and  determination  of  the
compounds  contained  within.  (f)  CyOMT-7-overexpressing  hairy  roots  and  (g)  GFP  fluorescence.  (h)  PCR  analysis  of  rol  B,  rolC,  eGFP  and
CyOMT-7 in CyOMT-7-overexpressing hairy roots. (i) Relative expression level of CyOMT-7 in control (hairy roots transformed by pCAMBIA1300-
EGFP)  and  CyOMT-7-overexpressing  hairy  roots.  (j)  Contents  of  alkaloids  in  control  and  CyOMT-7-overexpressing  hairy  roots.  Significant
differences indicated at ** p < 0.01, when the means were compared with respective controls. The bars showed standard deviation. Scale bar =
1,000 µm.
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and  genomic  PCR  (Fig.  3f−h).  RT‒qPCR  analysis  determined
that  CyOMT-7  was  significantly  overexpressed  relative  to  the
control  group  inoculated  with  pCAMBIA1300-EGFP  (Fig.  3i).
Quantitative  analysis  showed  that  the  content  of  1-BIA
compounds downstream of  the 6OMT gene,  including coclau-
rine,  the  protoberberine-type  compound  scoulerine,  was
higher  in  CyOMT-7-overexpressing  hairy  roots  than  in  the
control,  while  bisBIAs,  including  berbamunine,  fangchinoline
and  tetrandrine,  accumulated  at  similar  levels  in  the  transfor-
mants  and  the  wild-type  (Fig.  3j).  This  indicates  that  overex-
pression of CyOMT-7 is more favorable to the metabolic flow of
protoberberine alkaloid synthesis.

 Effect of elicitor treatment on S. tetrandra hairy roots
The  biosynthesis  of  secondary  metabolites  is  affected  by

many  factors.  Elicitors,  as  extracellular  signaling  compounds,
can trigger or initiate defense responses in plant cells,  causing
secondary  metabolites  to  accumulate  or  be  produced[30].
Currently,  the  chemical  elicitor  methyl  jasmonate  (MJ)  and
biological elicitor yeast extract (YE) are the most often used and
have  led  to  successful  increases  the  contents  of  sanguinarine,
dihydrosanguinarine  and  thebaine  in  poppy  suspension
cells[31,32].

After 15 d of culture,  when the hairy roots grew rapidly and
the  change  in  compound  content  was  relatively  smooth  (Fig.
2g−h),  the hairy  roots  were treated with 0.1 mM MJ or  0.2 g/L
YE  for  10  d.  In  our  study,  0.1  mM  MJ  treatment  significantly
inhibited hairy root growth and caused root browning (Fig. 4a).
The  effect  of  MJ  on  BIA  accumulation  mainly  occurred  during
the first  three days.  Compared with the control  treatment,  the
addition  of  MJ  significantly  increased  the  contents  of  coclau-
rine, N-methycoclaurine,  tetrandrine,  reticuline  and  scoulerine
in  hairy  roots,  which  increased  by  2.93,  5.65,  0.85,  2.75,  and
13.44 times (Fig. 4b), respectively. However, there was no effect

on  hairy  root  growth  or  the  accumulation  of  BIAs  after  treat-
ment with 0.2 g/L YE (Supplemental Fig. S1).

During tetrandrine biosynthesis, 0.1 mM MJ treatment signif-
icantly  increased  the  contents  of  the  precursor  compounds
(coclaurine, N-methycoclaurine).  Although  there  was  also  an
increase  in  tetrandrine,  it  was  relatively  weak.  In  a  previous
study, 0.1 mM MJ showed a weak increase in CYP80B1 expres-
sion[31],  indicating  that  0.1  mM  MJ  treatment  may  not  be  the
most  appropriate  for  tetrandrine  production.  The  types  and
concentrations of  the signal  compounds and the leakage time
are  important  factors  that  promote  the  production  of
secondary metabolites. Therefore, the conditions that can stim-
ulate  the  synthesis  of  tetrandrine  need  to  be  explored.
However, in our experiment and previous studies, it was found
that 0.1 mM MJ significantly enhanced the content of protober-
berines, which can be further applied to production.

 Discussion

As  a  traditional  Chinese  medicine, S.  tetrandra has  great
potential  in  the  treatment  of  Ebola  virus,  silicosis  and
rheumatalgia. Due to its difficult cultivation, wild resources are
heavily  relied upon.  However,  this  medicine is  currently  under
great resource pressure, and an alternative material for produc-
tion  is  urgently  needed.  In  this  study,  we  successfully  estab-
lished  the A.  rhizogenes-mediated  hairy  root  transformation
system in S. tetrandra (Fig. 5). The hairy roots grew rapidly, with
a more than 10-fold increase after 50 d of culture. BIAs substan-
tially accumulated in the hairy roots. Specifically, the content of
tetrandrine in hairy roots was 8.382 ± 0.160 mg/g DW, which is
slightly lower than that found in wild-type plant roots (this is an
average  of  the  contents  in  plants  from  each  region[25]).  This
shortage  would  certainly  be  overcome  by  the  much  higher
growth rate of the hairy roots. Then, we established a hairy root
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genetic transformation system overexpressing CyOMT-7 (6OMT
in C. yanhusuo), a key upstream enzyme gene, for further study
of plant metabolic  flow. Interestingly,  the genetically  modified
hairy roots mainly increased the metabolic flow of protoberber-
ine alkaloid synthesis rather than that of bisbenzylisoquinoline,
similar to the MJ treatment experiment. This result is consistent
with previous reports that overexpressing 6OMT or inducing E.
californica suspension cultures with MJ resulted in an increased
content of protoberberine alkaloids[28]. These data indicate that
the  coupling  and  cyclization  steps  may  be  the  rate-limiting
steps that limit the synthesis of bisbenzylisoquinoline alkaloids
in  hairy  roots  and  knocking  down  the  branch  pathway  and
overexpressing  the  BS  gene  may  increase  the  tetrandrine
content  in  hairy  roots.  In  addition,  the combination of  genetic
engineering  with  elicitors  may  further  increase  the  content  of
BIAs  in  hairy  roots.  The  strategy  has  been  verified  to  further
increase the content of tanshinone in the transgenic S.  miltior-
rhiza hairy  roots[33,34] and  the  content  of  tropane  alkaloids  in
the  transgenic Atropa  baetica[35].  In  our  study,  it  has  been
demonstrated that methyl jasmonate (MJ) treatment and over-
expression  of  CyOMT7  can  increase  the  content  of  precursor
compounds  such  as  coclaurine  and  N-methycoclaurine  in  the
biosynthesis  pathway of bisbenzylisoquinoline alkaloids (BIAs).
Adding MJ to CyOMT-7-overexpressing hairy roots might boost
BIA  yields  by  providing  more  precursors  for  biosynthesis  of
BIAs, which is worth trying.

Active ingredients  in  medicinal  plants  are usually  present  in
trace amounts and are tissue specific. With the development of
plant  tissue  culture  and  genetic  transformation  technology,
metabolic  engineering  has  been  widely  used  in  the  genetic
modification of secondary metabolites in medicinal plants.  For
example,  by  simultaneously  overexpressing  multiple  genes  in
the  artemisinin  biosynthetic  pathway,  HMGR,  FPS  and  DBR2,
Shen et al. obtained transgenic A. annua lines with significantly
increased  artemisinin  contents[21].  As  a  direction  in  plant
metabolic  engineering,  hairy  root  genetic  transformation
systems  have  the  advantages  of  a  short  transformation  cycle,
fast growth rate and high yield and have been applied to gene
function  characterization,  secondary  metabolite  production,
germplasm  resource  improvement  and  breeding[36],  plant

physiology and pathology research[37], showing great develop-
ment  value.  At  present,  hairy  root  systems  have  been  estab-
lished  in  hundreds  of  medicinal  plants[23],  and  many  of  them
have  been  used  in  production.  A  variety  of  biotechnology
strategies,  such  as  multigene  engineering,  CRISPR/Cas9  and
omics  technologies,  are  gradually  being  applied  to  hairy  root
research,  which  will  help  us  better  understand  and  study
important medicinal plants. In addition, in our study, we found
that S.  tetrandra hairy  roots  exhibited  the  same  inflated,  silty
traits  as  the  plant  roots,  implying  that  plant  root  traits  may
manifest in the hairy roots. Previously, we paid more attention
to  the  secondary  metabolism  in  hairy  roots  and  used  hairy
roots to study the synthesis and metabolism of the active ingre-
dients  in  medicinal  plants[23],  but  this  phenomenon  indicated
that hairy roots can be used to study the formation mechanism
of root trait diversity in medicinal plants.

In conclusion, we have established the S. tetrandra hairy root
induction  system  by  coculturing  leaf  explants  with A.  rhizo-
genes C58C1 and further developed a hairy root genetic transfor-
mation system overexpressing the reported key enzyme 6OMT.
The characteristics of a higher growth rate, effective transgenic
methods  and  chemical  compounds  equivalent  to  those  of
plants  not  only  address  the  challenges  of S.  tetrandra supply
but also provide a method and technology system for research
on S. tetrandra.
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