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Abstract
Andrographis paniculata, a traditional medicinal plant, is widely used to treat various disorders. According to traditional Chinese medicine (TCM)

theory,  it  is  intensely  bitter  in  taste  and cold-natured.  Andrographolide  and its  derivates  are  the  major  bioactive  compounds that  show anti-

inflammatory, anti-tumor, anti-diabetes, cardiovascular protection, neuroprotective, and hepatoprotective effects. In this review, we will focus on

the  application  of  TCM  prescriptions  and  the  modern  bioactivities  of  Andrographis  Herba.  Due  to  the  low  content  of  andrographolide  and

derived lactones in the original species and the complexity of chemical structure, there is an urgent need to develop biotechnological methods

for  obtaining  andrographolide  and  its  derivatives  sustainably.  Nevertheless,  the  andrographolide  biosynthetic  pathway  still  needs  to  be  fully

elucidated in A. paniculata. Therefore, we further review recent progress in revealing the andrographolide biosynthetic pathway, combined with

heterologous  synthesis  strategies  of  other  plant  diterpenoids  to  help  create  a  cell  factory  with  higher  production  of  andrographolide  in  the

future.
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 Introduction

Andrographis  paniculata (Burm.  F.)  Nees  is  one  of  the  most
widely recognized medicinal plants, which has been utilized for
thousands  of  years  as  a  traditional  Chinese  medicine.  It  is  an
annual herbaceous plant belonging to the genus Andrographis,
the  botanical  family  Acanthaceae  in  the  order  of  Lamiales[1].
Macroscopically, the erect herb is 50−70 cm tall. The upper part
of the stem is quadrilateral, and the lower part is nearly round.
The stem texture is fragile and easy to break. Leaves are simple,
opposite,  shortly  petiolate,  or  almost  sessile.  The  leaf  blade  is
flattened  or  ovate-lanceolate,  2−7  cm  long  and  1−3  cm  wide,
with  an  acuminate  apex,  reticulate  venation,  and  cuneate-
decurrent  base.  The  margin  of  the  leaf  blade  is  entire  or
undulated[1].  In  the  theory  of  traditional  Chinese  medicine
(TCM), the medicinal property of A. paniculata belongs to 'cold',
which  exhibits  the  effect  of  clearing  heat,  detoxifying,  cooling
blood, and reducing swelling[1]. A. paniculata has a long history
of  application  in  TCM  theory,  as  well  as  the  traditional  Indian
medicine  system-Ayurveda. A.  paniculata was  first  introduced
into  the  Chinese  Pharmacopoeia  (ChP)  in  1977  and  was
approved  by  the  Food  and  Drug  Administration  (FDA)  to
include  into  the  United  States  Pharmacopoeia  (USP).  Accord-
ing  to  the  ChP,  the  dried  leaves  and  above-ground  stems  are
made into a Chinese medicine Andrographis Herba (Chuanxin-
lian,  CXL),  which  acts  as  a  natural  immune  booster  with  anti-
infection, anti-inflammatory, antiviral, and analgesic effects[2,3].

The  main  active  constituents  of  CXL  include  lactones,  diter-
penoids,  flavonoids,  diterpenoids  lactones,  diterpenoid
glycosides,  especially  labdane  diterpenoids  lactones  such  as
andrographolide  (C20H30O5),  neoandrographolide  (C26H40O8),
14-deoxyandrographolide  (C20H30O4)  and  dehydroandro-
grapholide  (C20H28O4)[1,3].  Many  studies  have  shown  that  the

diterpene  compound  andrographolide  and  its  derivatives  are
the main active components in CXL and play an essential role in
treating  COVID-19  infection  through  TCM[4].  Notably,  the
content  of  active  ingredients  is  the  core  of  the  quality  of  CXL,
which  was  proven  previously  to  be  affected  by  the  area  of
growing  places,  the  time  of  harvesting  and  processing  (bud
stage  with  the  highest  content  of  andrographolide),  and  the
storage time. Considering that the content of andrographolide
in  leaves  is  significantly  higher  than  that  in  stems,  the  2015
edition of ChP requires that the proportion of leaves must be at
least  30% to  ensure  the  quality  of  the  medicinal  herb  and the
clinical  efficacy[1].  Besides,  the  total  amount  of  active  andro-
grapholide  and  dehydrated  andrographolide  in  CXL  must  be
more  than  1.5%,  according  to  the  ChP.  However,  there  is  no
unified international standard for CXL, and the current impera-
tive  is  to  establish  a  consistent  quality  standard  and  grade
evaluation.

South  India  and  Sri  Lanka  are  widely  acknowledged  as  the
origin and center of genetic diversity for the plant A. paniculata,
which possesses a broad range of germplasm resources. Nowa-
days,  it  is  prevalent  and  widely  spread  from  Southeast  Asian
countries  (India,  Sri  Lanka,  China,  Cambodia,  Malaysia,  and
Thailand) to North America and the West Indies[5]. Interestingly,
it  has  been  speculated  that A.  paniculata in  Thailand  and
Malaysia  may  have  come  from  India[6].  There  are  about  20
species of Andrographis plants,  two of which are distributed in
China,  including  the  cultivated  species  (A.  paniculata)  and  the
wild  types  (A.  laxiflora var. glomerulifera)[7]. A.  paniculata was
introduced  into  China  in  the  1950s  and  primarily  cultivated  in
Guangxi  Zhuang  Autonomous  Region  and  Guangdong
Province,  which  produce  more  than  90%  of  China's  total
production  (Fig.  1)[8].  Others  are  scattered  in  Fujian,  Jiangxi,
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Sichuan,  and Anhui provinces.  Furthermore,  the germplasm of
Chinese A.  paniculata is  mainly  from  Guangdong  and  Hainan.
After  over  80  years  of  being  introduced  and  cultivated,  the
origin of A. paniculata remains relatively singular, with a highly
similar genetic background and limited potential  for evolution
within the population[6].

Due  to  the  significant  increase  in  the  demand  for  CXL
(~10,000  tons  per  year  in  China),  the  diversity  of  wild  plant
resources has been severely threatened in recent years. On the
other  hand,  the  long-term  artificial  cultivation,  the  different
geographical  regions,  the  natural  environment,  and  produc-
tion  management  have  led  to  gene  variation  and  isolation,
interspecies  hybridization,  and  even  apparent  differentiation
phenomenon, resulting in unstable herb quality and heteroge-
neous  andrographolide  content  of A.  paniculata[5].  Therefore,
collecting  germplasm  resources  and  identifying  high-quality
plant  varieties  have  become  the  primary  task  of A.  paniculata
breeding.  Germplasm  materials  of A.  paniculata mutant  have
been obtained by specific  mutagenesis  techniques[6].  With the
development  of  high-throughput  sequencing  technology,
scientists  have  begun  to  study  the  genetic  and  metabolic
processes  of A.  paniculata at  the  omics  level.  Notably,  whole-
genome  databases  have  been  assembled[2,9],  which  contained
a large amount of  gene annotation information and identified
three terpenoid synthases,  two cytochrome P450 monooxyge-
nases,  and  a  UDP-dependent  glycosyltransferase  related  to
andrographolide  biosynthesis[2].  It  is  conceivable  that  com-
bined  with  the  seven  basic  leucine  zipper  (bZIP)  transcription
factors[10] and seven WRKY transcription factors[11] found in the
transcriptomes  that  may  be  involved  in  regulating  the  andro-
grapholide biosynthesis, more precise molecular breeding of A.
paniculata and efficient heterologous synthesis of active andro-
grapholide will be possible.

In  this  review,  we will  focus on the pharmacological  activity
of  CXL and reveal  that andrographolide and its  derivatives are
the main  active  substances  of  CXL,  from the  theory  of  TCM to
modern  pharmacological  research.  Subsequently,  we  will
review  the  biosynthesis  pathway  of  andrographolide  and  the
heterologous synthesis strategies of other plant diterpenoids. It
is  expected  that  a  higher  yield  of  andrographolide  can  be
achieved by cell factories in the future, eliminating the need to
harvest A. paniculata plants.

 Theoretical effect and application of
Andrographis Herba in TCM

Andrographis  Herba  (Chuanxinlian,  CXL)  is  a  herb  with  a
nontraditional  significance imported from abroad,  also named
Yijianxi  or  Sifanglian in  some places[7].  The medical  book Ling-
nan Medicinal Collection Record has recorded that CXL can cure
snake bites and manage internal injury cough[12].  According to
the Four Natures and Five Flavors theory of Traditional Chinese
Medicine,  the  'bitter'  and  'cold'  Chinese  herbal  medicine  CXL
belongs  to  the  heart  meridian  of  hand-shaoyin,  the  lung
meridian  of  hand-taiyin,  the  large  intestine  meridian  of  hand-
yangming  and  the  bladder  meridian  of  foot-taiyang[1].  Specifi-
cally, CXL can clear heat and detoxify, cool blood and detumes-
cence, dry dampness, and eliminate dysentery[12]. CXL is widely
used  in  the  clinical  practice  of  TCM,  and  its  efficacy  is  like
Coptidis Rhizoma (Huanglian, HL). It is usually taken orally with
6-9 g added into decoction or powder[1].

When used to clear heat and detoxify, CXL collaborates with
Lonicerae  Japonicae  Flos  (Jinyinhua)  and  Scutellariae  Radix
(Huangqin) to treat the symptoms of  lung heat cough,  or  sore
throat  caused  by  upper  respiratory  tract  infection,  tonsillitis,
bronchitis, pneumonia, and other diseases. Furthermore, as CXL
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Fig. 1    Schematic diagram of the main origin in China and the industrialization process of Andrographis paniculata.
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plays the role of cooling blood and detumescence, it is usually
used  in  combination  with  Houttuyniae  Herba  (Yuxingcao),
Coicis Semen (Yiyiren), and Phragmitis Rhizome (Lugen) to treat
lung  carbuncle  characterized  by  cough,  chest  pain,  vomiting
purulent  blood  and  sputum.  And  in  the  function  of  drying
dampness  and  eliminating  dysentery,  CXL  always  cooperates
with  Coptidis  Rhizoma  (Huanglian),  Talcum  (Huashi),  Garde-
niae  Fructus  (Zhizi),  Artemisiae  Scopariae  Herba  (Yinchen,  YC),
Phellodendri  Chinensis  Cortex  (Huangbai)  or  Sophorae  Flaves-
centis  Radix  (Kushen)  to  cure  dampness-heat  diarrhea,  jaun-
dice,  and  gonorrhea.  CXL  can  also  detoxify  snake  bite  poison-
ing by  external  use  with  glycerin  after  grinding.  In  addition to
these primary functions,  CXL can assist  other  medical  herbs in
their  therapeutic  effects.  For  example,  when  decocted  with
Gypsum  Fibrosum  (Shigao),  the  two  drugs  work  together  to
clear  up  excessive  heat  syndrome  in  Qi  and  treat  the  symp-
toms of high fever, sweating, irritability, thirst, and tachycardia.
Conclusively,  due  to  its  bitter  and  cooling  properties,  CXL  can
guide  and  assist  in  the  treatment  of  many  damp-heat
syndromes, playing a crucial role in TCM prescriptions.

With  the  increasing  recognition  of  the  medicinal  value  of
CXL, it has been used in many TCM formulas. Here, we summa-
rized formulas containing CXL (Table 1). These formulas can be
divided  into  seven  types:  heat-clearing  drugs,  damp-resolving
drugs,  exterior-relieving  drugs,  sore  and  ulcer  drugs,  phlegm-
resolving drugs, astringent drugs, and reinforcing drugs. Mean-
while,  dosage  forms  include  tablets,  capsules,  pills,  injections,
granules,  medicinal  extracts,  suppositories,  powders,  and
pastilles. Among them, the most significant formula type is the
heat-clearing drugs (44.4%) (Fig. 2a), while tablets dosage is the
most  (57.8%)  (Fig.  2b).  Especially  one  of  the  most  famous
formula  tablets  in  China,  Fufang  Dantong  Pian  (tablet),
composed  of  Isodi  Lophanthoidis  (Xihuangcao),  YC,  CXL,  Rhei
Radix et Rhizome (Dahuang) and 7-hydroxy-4-methylcoumarin
(Dantong), has the effect of clearing heat, improving choleretic
and  relieving  spastic  pain.  Moreover,  Fufang  Dantong  Pian
could  also  solve  problems  or  diseases  such  as  acute  and
chronic  cholecystitis,  cholangitis,  gallbladder,  biliary  calculi
complicated with infection,  cholecystectomy syndrome, biliary
tract  dysfunction,  etc[13,14].  Another  typical  formula  containing
CXL  is  called  Ganmaoqing  Pian  (tablet)[15],  which  treats  the
wind-heat  common  cold  with  symptoms  of  fever,  headache,
nasal  congestion,  sneezing,  sore  throat,  and  body  aches.
Besides, there are also granules and capsules of Jinji Keli (gran-
ule)[16] and Jinji Jiaonang (capsule)[17] containing CXL, which are
used  to  treat  damp-heat  adnexitis  by  invigorating  spleen  and
dehumidification  and  activating  blood  circulation.  Shanghai
Sheyao  Pian[18],  a  tablet  with  CXL  as  the  main  component,  is
commonly  used  in  clinics  to  treat  various  poisonous  snake
bites, providing essential support for patients' health and well-
being.

 Pharmacological activities and mechanism of
andrographolide

Andrographolide and its derivates are the principal bioactive
compounds of the medicinal plant A. paniculata[4],  which have
anti-inflammatory,  anti-tumor,  anti-diabetes,  cardiovascular
protection, neuroprotective effect, hepatoprotective effect, and
others (Fig. 3).

 Anti-inflammatory effects and mechanism of
andrographolide

As  mediators  of  intercellular  interactions,  cytokines  are
crucially  involved  in  initiating  and  perpetuating  inflammatory
disorders. The inhibition of inflammatory mediators represents
an  effective  therapeutic  strategy  for  both  acute  and  chronic
inflammatory  conditions.  Andrographolide  exerts  its  anti-
inflammatory  effects  through  many  pathways  and  targets,
including regulating the synthesis and release of inflammatory
mediators.

According to the research, andrographolide has been shown
to  alleviate  airway  inflammation  by  neutrophil  infiltration  in
lung  tissue  in  a  mouse  model  of  ovalbumin  (OVA)-induced
asthma  by  blocking  cytokines  regulated  by  helper  T  cell  17
(Th17)  and  inhibiting  the  expression  of  Janus  tyrosine-protein
kinase one and signal transducer and activator of transcription
3  (JAK1/STAT3)  signaling  pathway,  thereby  reducing  exagger-
ated  allergic  inflammation  response  of  the  upper  respiratory
tract[49]. In the complete Freund's adjuvant (CFA)-induced acute
paw  edema  inflammation  model,  andrographolide  can  signifi-
cantly  reduce  the  degree  of  inflammatory  swelling  in  mice.  It
has  exerted  anti-inflammatory  effects  by  inhibiting  a  series  of
inflammation-related  molecules,  such  as  COX-2,  NF-κB,  p-p38,
CD40,  tumor  necrosis  factor-α,  IL-1β,  and  IL-6,  suggesting  that
andrographolide  possesses  strong  anti-inflammatory  proper-
ties[50].  Inflammatory  disorders  are  often  associated  with  acti-
vating NOD-like receptor protein 3 (NLRP3) inflammasomes by
various stimuli, including monosodium urate (MSU). Upon acti-
vation, NLRP3 inflammasomes release a large amount of inter-
leukin  (IL)-1β,  contributing  to  the  pathogenesis  of  numerous
inflammatory  diseases.  In  a  mouse  model  of  MSU-induced
arthritis,  treatment  with  andrographolide  has  been  found  to
reduce monocyte infiltration and IL-1β release in the knee joint,
indicating  its  potential  therapeutic  effect  in  ameliorating
inflammation  associated  with  NLRP3  inflammasome
activation[51].  Moreover,  the  miR-27-3p/matrix  metallopro-
teinase  13  (MMP-13)  signaling  axis  may  represent  another
potential  therapeutic  target  for  treating  and  preventing
osteoarthritis  progression.  Andrographolide  has  been  demon-
strated  to  mitigate  cartilage  damage  and  stimulate  chondro-
cyte  anabolism  by  regulating  MMP-13  through  the  miR-27-3p
signaling  pathway[52].  Additionally,  andrographolide  has  been
found  to  ameliorate  acute  colitis  in  mice via the  activation  of
the  adenosine  monophosphate-activated  protein  kinase
(AMPK)  signaling  pathway.  The  disease  activity  index  (DAI)
score has been significantly reduced, and colon shortening has
been  markedly  improved  in  the  andrographolide-treated
group[53].

It  can  be  concluded  that  the  primary  mechanism  through
which  andrographolide  exerts  anti-inflammatory  effects
includes  inhibiting  inflammatory  cell  activity  and  suppressing
inflammatory mediators' expression. In terms of clinical trials of
drugs,  the  evaluation  of  the  efficacy  and  safety  of  andro-
grapholide  sulfonate  in  the  treatment  of  acute  tonsillitis  and
acute  bronchitis  has  entered  Phase  VI  (NCT  numbers:
NCT03134443,  NCT03132623).  Meanwhile,  the clinical  study of
andrographolide  in  treating  acute  exacerbations  of  chronic
bronchitis  has  also  entered  Phase  VI  (NCT  number:
NCT03132610).
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Table 1.    TCM formulas containing Andrographis Herba (Chuanxinlian, CXL).

Formula name Components Formula type Dosage form

Liaofeining Pian[19] Stemonae Radix (Baibu, BB), CXL, Imperatae Rhizoma (Baimaogen), Bletillae
Rhizoma (Baiji)

Reinforcing Tablet

Qingre Anchuang Wan[20]

Qingre Anchuang Pian[21]
Japonicae Flos (Jinyinhua, JYH), Rhei Radix et Rhizome (Dahuang, DH), CXL,
Taraxaci Herba (Pugongying), Margarita (Zhenzhu, ZZ), Sophorae
Tonkinensis Radix et Rhizoma (Shandougen), Glycyrrhizae Radix et Rhizoma
(Gancao, GC), Gardeniae Fructus (Zhizi)

Blood-activating
and stasis
eliminating

Pill
Tablet

Waiyong Zijin Ding[15] Cremastrae Pseudobulbus Pleiones Pseudobulbus (Shancigu), Cinnabaris
(Zhusha), Galla Chinensis (Wubeizi), Realgar (Xionghuang, XH), Knoxiae
Radix (Hongdaji), CXL, Euphorbiae Semen (Qianjinzi), Notoginseng Radix et
Rhizoma (Sanqi), Borneolum Syntheticum (Bingpian, BP), Caryophylli Flos
(Dingxiang)

Pastille

Kangfu Xiaoyan Shuan[22] Sophorae Flavescentis Radix (Kushen), Patriniae Herba (Baijiangcao), Violae
Herba (Zihuadiding), CXL, Taraxaci Herba (Pugongying), Suis Fellis
(Zhudan), Arnebiae Radix (Zicao), ALOE (Luhui)

Dampness-
resolving

Suppository

Fufang Chuanxinlian Pian[23] CXL, Isatidis Folium (Daqingye, DQY) Tablet
Fuke Qianjin Pian[24] Radix Flemingiae (Qianjinba, QJB), Zanthoxyli Radix (Danmianzhen), Rosae

Laevigatae Radix (Jinyinggen, JYG), CXL, Mahoniae Caulis (Gonglaomu,
GLM), Codonopsis Radix (Dangshen), Spatholobi Caulis (Jixueteng, JXT),
Angelicae Sinensis Radix (Danggui)

Tablet

Fufang Dantong Pian[13] Isodi Lophanthoidis (Xihuangcao, XHC), Artemisia Scopariae Herba
(Yinchen), CXL, DH and 7-hydroxy-4-methylcoumarin (Dantong,)

Tablet
Fufang Dantong Jiaonang[14] Capsule
Fufang Huangqin Pian[25] Scutellariae Radix (Huangqin, HQ), Polygoni Cuspidati Rhizoma Et Radix

(Huzhang), CXL, GLM
Tablet

Fufang Kumu Xiaoyan Pian[26] CXL, Picrasmae Ramulus et Folium (Kumu, KM) Tablet
Lixieling Pian[27] Bistortae Rhizoma (Quanshen), CXL, Sophorae Flavescentis Radix (Kushen,

KS)
Tablet

Zhilining Pian[28] CXL, KS, Aucklandiae Radix (Muxiang) Tablet
Jinji Keli[16]

Jinji Jiaonang[17]
JYG, JXT, QJB, GLM, Zanthoxyli Radix (Liangmianzhen), CXL Granules

Capsule

Xiaoyan Zhike Pian[29] Elaeagnus Pungens Folium (Hutuiziye), Platycodonis Radix (Jiegeng),
Pseudostellariae Radix (Taizishen), BB, Papaveris Pericarpium (Yingsuke),
Ephedrae Herba (Mahuang, MH), Fructus Viticis Negundo (Huangjingzi),
Adenophorae Radix (Nanshashen), CXL

Expectorant Tablet

Qinggan Chuanxinlian Pian[30] CXL, Gnetum parvifolium (Maimateng) Exterior
disorder-
relieving

Tablet
Cuilian Jiedu Pian[31] Selaginellae Uncinatae Herba (Cuiyuncao), CXL, Radix Helicteris

Angustifoliae (Shanzhima, SZM), Radix Et Caulis Ilicis Asprellae (Gangmei,
GM), Viticis Negundo Herba (Wuzhigan), Menthae Haplocalycis Herba
(Bohe, BH)

Tablet

Ganmaoqing Pian[32] Isatidis Radix (Banlangen, BLG), DQY, Spanishneedles Herb (Jinzhan
yinpan), GM, SZM, CXL

Tablet
Ganmaoqing Jiaonang[32] Capsule
Ganmaokang Jiaonang[33] CXL, Chrysanthemi Indici Flos (Yejuhua, YJH), Solidaginis Herba

(Yizhihuanghua), Herb of Marginate Rockbell (Lanhuashen), Stauntoniae
Caulis et Folium (Yemugua)

Capsule

Kangle Biyan Pian[34] Xanthii Fructus (Cang'erzi), Magnoliae Flos (Xinyi), Angelicae Dahuricae
Radix (Baizhi), MH, CXL, HQ, Saposhnikoviae Radix (Fangfeng),
Pogostemonis Herba (Guanghuoxiang), Moutan Cortex (Mudanpi), BH

Heat-clearing Tablet

Zhiganjia Pian[35] SZM, CXL, Tadehagi Triquetri Herba (Hulucha), Euodiae Leptae Folium et
Ramulus (Sanchaku), BLG, Notopterygii Rhizoma et Radix (Qianghuo), BH

Tablet

Houkang San[36] BP, ZZ, Ginseng Radix et Rhizoma (Renshen), Borax (Pengsha), Natrii Sulfas
Exsiccatus (Xuanmingfen), L-Menthol (Bohenao), Trichosanthis Radix
(Tianhuafen), CXL, Indigo Naturalis (Qingdai), GC

powder

Liandan Xiaoyan Pian[37] CXL, KM Tablet
Lianzhi Xiaoyan Pian[38] CXL, SZM Tablet
Lianzhi Xiaoyan Jiaonang[39] Capsule
Fufang Honggencao Pian[40] Alviae Prionitidis Herba (Honggencao), Houttuyniae Herba (Yuxingcao),

JYH, YJH, CXL
Tablet

Houshuning Pian[41] Herba Hedyotidis (Baihua Sheshe cao), CXL, SZM Tablet
Qianxi Pian[42] CXL, Senecionis Scandentis Hebra (Qianliguang) Tablet
Qinghuo Zhimai Pian[43] CXL, ZZ, Ophiopogonis Radix (Maidong) Tablet
Qinghuo Zhimai Jiaonang[44] Capsule
Xiaoyan Lidan Pian[45] CXL, XHC, KM Tablet
Xinxue Pian[46] Magnetitum (Cishi), Gypsum Fibrosum (Shigao), Talcum (Huashi), Gypsum

Rubrum (Hanshuishi), Saltpeter (Xiaoshi), Natrii Sulfas (Mangxiao), ZZ,
Lophatheri Herba (Zhuye), Radix Serratulae Chinensis (Guangshengma),
CXL, ZZ, Aquilariae Lignum Resinatum (Chenxiang), BP

Tablet
Xinxue Keli[47] Granules

Yanhou Xiaoyan Wan[48] Bufonis Venenum (Chansu), CXL, Ramulus et Folium Schefflerae (Qiyelian),
ZZ, BP, XH, Plant Soot (Baicaoshuang)

Pill

Shang Hai She Yao Pian[18] CXL, Ecliptae Herba (Mohanlian) Tablet
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 Antitumor effects and mechanism of andrographolide
Andrographolide  has  been  shown  to  possess  antitumor

activity  by  activating,  regulating,  and  modulating  the  expres-
sion of various genes. In anti-prostate cancer, andrographolide
has  been  found  to  inhibit  cell  proliferation  and  migration,
induce G1/G0 cell cycle arrest, and suppress tumor growth and
metastasis  in  mice[54].  Similarly,  andrographolide  has  been
demonstrated to  impede breast  tumor  growth and metastasis
in  mice  and  inhibit  the in  vitro proliferation,  migration,  and

invasion  of  MCF-7  breast  cancer  cells[55].  Furthermore,  andro-
grapholide  can  block  breast  cancer  invasion  by  upregulating
tissue inhibitors of metalloproteinase 1 (TIMP1) and downregu-
lating  the  expression  of  MMP-7[56].  In  the  case  of  anti-cervical
cancer,  andrographolide  can  dose-dependently  inhibit  cell
proliferation, promote apoptosis, induce cell cycle arrest at the
G1/S  phase,  and  significantly  reduce  the  expression  of
inducible nitric oxide synthase (iNOS), which is associated with
poor  survival  and  increased  tumor  aggressiveness  in  cervical
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Fig. 2    Classification of formulas containing Andrographis herba.  (a)  Classification according to formula type.  (b) Classification according to
dosage form.
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Fig. 3    Pharmacological activities of andrographolide.
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cancer[57].  Besides,  andrographolide  has  been  shown  to
increase both early and late apoptosis of colorectal cancer cells
by  inducing  G0/G1  phase  cell  cycle  arrest,  upregulating  pro-
apoptotic protein Bax and downregulating anti-apoptotic gene
Bcl-2[58].  Additionally, andrographolide can work synergistically
with other anti-tumor drugs to induce colon cancer cell  apop-
tosis  through  nuclear  condensation,  phosphatidylserine  exter-
nalization,  and  Caspase-3  activation[59].  The  role  of  andro-
grapholide  in  palliative  treatment  for  advanced  esophageal
cancer  has  entered  phase  III  clinical  trials  (NCT  number:
NCT04196075).

 Treatment of cardiovascular diseases and diabetes
with andrographolide

By using a cerebral  ischemia-reperfusion injury (CIRI)  animal
model, it has been demonstrated that the protective effects of
andrographolide on CIRI may be attributed to reducing neuro-
inflammation  and  cellular  apoptosis[60].  Additionally,  andro-
grapholide  has  been  found  to  relieve  endothelial  dysfunction
in mice with coronary heart disease by modulating peroxisome
proliferator-activated  receptor  (PPAR)  and  NF-κB  signaling
pathways[61].  As  is  well-known,  inhibiting  cellular  apoptosis,
regulating  serum  lipid  levels,  improving  hemodynamics,  and
suppressing oxidative and inflammatory cytokine expression all
play crucial roles in mitigating the pathogenesis of cardiovascu-
lar  disease.  Research  has  presented  that  andrographolide
possesses specific abilities in regulating glucose metabolism, as
demonstrated  by  reducing  serum  high-density  lipoprotein
cholesterol  (HDL-C)  levels  and  increasing  low-density  lipopro-
tein  cholesterol  (LDL-C)/HDL-C  in  mice[62].  Type  2  diabetes
(T2DM)  is  closely  related  to  intestinal  barrier  dysfunction.
Andrographolide has been shown to improve glycemic control
by  enhancing  intestinal  barrier  function  and  increasing  micro-
bial  diversity  of Akkermansia  muciniphila in  vitro[63].  Further-
more,  nano-emulsion-based  andrographolide  delivery  can
enhance andrographolide anti-diabetic activity[64]. Notably, the
evaluation of the pharmaco-metabolomics of andrographolide
and metformin under fasting conditions in healthy people has
entered  phase  1  clinical  trial  evaluation  (NCT  number:
NCT04161404).

 Neuroprotective effects and mechanism of
andrographolide

In the pathogenesis of Alzheimer's disease, andrographolide
plays a role in regulating multiple vital steps. It has been shown
to  lower  acetylcholinesterase  (AChE), β-amyloid  1-42  (Aβ1-42),
and p-tau levels in response to Alzheimer's disease induced by
streptozotocin  (STZ)  in  mice.  This  neuroprotective  effect  is
achieved through anti-inflammatory, antioxidant, and modula-
tion  of  neurotransmitter  pathways[65].  Andrographolide  can
also  significantly  reduce  the  expression  levels  of  total  Aβ
burden,  IL-6,  4-hydroxynonenal,  and N-tyrosine adducts  in  the
rat brain[66].  In addition,  it  decreases the expression of Toll-like
receptor  2  (TLR2),  leukocyte  differentiation  antigen  14  (CD14),
chemokine  ligand  3  (CCL3),  and  Toll-like  receptor  1  (TLR1)  in
APP/PS1  mice,  thereby  alleviating  symptoms  of  Alzheimer  by
reducing  neuroinflammation[67].  Furthermore,  andro-
grapholide  exhibits  an  antidepressant  effect  by  improving the
mood of mice exposed to various unpredictable stressors. This
antidepressant  property  is  attributed  to  promoting  the
hippocampal  brain-derived  neurotrophic  factor  (BDNF)  signal-
ing pathway[68].

 Hepatoprotective and pulmonary protective effects of
andrographolide

Andrographolide  has  a  beneficial  effect  on  the  model  of
ethanol-induced alcoholic liver disease (ALD).  After drug treat-
ment, it can improve serum aminotransferase levels, liver func-
tion,  lipid  accumulation,  and  liver  reactive  oxygen  species
levels  and  alleviate  liver  pathological  damage  and  oxidative
stress in ALD mice. The mechanism is related to the downregu-
lation of  NF-κB and TNF-α expression[69].  Multiple studies have
reported  the  protective  effects  of  andrographolide  on  lung
tissue.  In  a  rat  model  of  pulmonary  fibrosis  induced  by
bleomycin  (BLM),  andrographolide  can  ameliorate  lung  tissue
fibrosis  by  inhibiting  lung  fibroblast  proliferation,  differentia-
tion,  and  extracellular  matrix  deposition  through  the  regula-
tion  of  Smad-dependent  and  Smad-independent  pathways
mediated  by  transforming  growth  factor-β1  (TGF-β1)[70].  Bene-
fiting from the anti-inflammatory activity, andrographolide can
significantly  alleviate  inflammatory  lesions  in  lung tissue,  such
as pulmonary edema and alveolar wall thickening, by reducing
inflammatory cell infiltration and the secretion of proinflamma-
tory cytokines (IL-1β, IL-6)[71].

 Other effects
Andrographolide  has  been  suggested  for  use  with  mela-

tonin  for  treating  COVID-19  based  on  its  antipyretic,  anti-
inflammatory,  antioxidant,  antiviral,  and  endoplasmic  reticu-
lum  stress  regulation  properties.  Docking  calculations  have
been  performed  between  andrographolide  and  the  binding
sites  of  SARS-CoV-2[72].  A  phase  Ⅲ clinical  trial  is  ongoing
(NCT05019326)  to  evaluate  the  effects  of A.  paniculate and
Boesenbergia  Rotunda vs  control  in  asymptomatic  COVID-19
patients.  The  'Xi  Yan  Ping'  injection  is  listed  in  the  Diagnosis
and Treatment Protocol for Novel Coronavirus Pneumonia (Trial
Version  10)  for  the  clinical  treatment  of  COVID-19  in  China[73].
The  active  ingredient  of  the  injection  is  andrographolide  total
sulfonate,  which  has  been  proven  with  the  functions  of  clear-
ing  heat,  detoxification,  and  anti-inflammatory  of  patients
infected with SARS-CoV-2.

Andrographolide has also shown promise in the treatment of
osteoporosis  by  promoting  bone  formation  and  enhancing
osteoblast  differentiation,  in  which  the  mechanism  is  regulat-
ing  the  osteoprotegerin  (OPG)/receptor  activator  of  the  NF-κB
ligand  (RANKL)  signaling  pathways[74].  In  addition,  andro-
grapholide  exhibits  potent  antimalarial  activity  against Plas-
modium  falciparum 3D7,  potentially  by  inhibiting  glycogen
synthase  kinase  3β (GSK3β)  expression  and  NF-κB  activity[75].
Meanwhile, it can reverse chloroquine resistance by enhancing
the inhibitory effect of chloroquine on plasmodial hemoglobin
formation[76].

In conclusion, andrographolide has been shown to have vari-
ous pharmacological effects, including anti-inflammatory, anti-
tumor, treatment of cardiovascular diseases and diabetes, pro-
tection of the nervous system, and hepatoprotection. However,
most studies on the effects of andrographolide on the nervous
and  cardiovascular  systems  have  been  limited  to  laboratory
stages  using  cell  and  animal  models.  Therefore,  most  of  these
pharmacological  effects  need  more  clinical  research  data  to
support  them,  which  requires  further  investigation  to  fully
understand  andrographolide's  absorption,  distribution,  and
metabolic processes in vivo and the pathways through which it
targets organs and exerts therapeutic effects.
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 The original biosynthetic pathway of
andrographolide

Andrographolide  is  regarded  as  the  principal  constituent
responsible  for  the  therapeutic  properties  of  CXL,  which  is  a
diterpene  lactone  derived  from  C5  unit  isopentenyl  diphos-
phate  (IPP)  and  dimethyl  allyl  pyrophosphate  (DMAPP).
Notably,  diterpenoids  (C20)  are  a  vast  class  of  structurally
diverse metabolites of medical plants and are derived from the
precursor (E,E,E) ‐geranylgeranyl diphosphate (GGPP)[2]. Diter-
penoids  are  required  for  plant  growth  or  development  and
carry critical ecological and agronomic functions. Furthermore,
diterpenoids  have  a  wide  range  of  commercial  applications  in
the cosmetic, food additive, and pharmaceutical industries[77].

Like  diterpenoids,  the  biosynthesis  of  andrographolide  can
be divided into three modules (Fig. 4a, c & d, annotated in gray
color): the formation of precursor GGPP, derived from cytosolic
mevalonate  (MVA)  pathway  and  plastidial  2-C-methyl-D-
erythritol  4-phosphate  (MEP)  pathway;  the  construction  of
carbon  skeletons  through  cyclization  and  isomerization
catalyzed  by  class  II  diTPSs  (copalyl  diphosphate  synthases‐
like, CPSs) and/or class I diTPSs (kaurene synthases‐like, KSLs);
and the post‐modification of the molecular skeletons, includ-
ing  oxidation,  glycosylation,  and  acylation.  In  the  first  module
(Fig. 4a), the MVA pathway in plants starts with acetyl-CoA and
is finally converted into IPP[78], which is orderly catalyzed by six
enzymes  including  acetyl-CoA  acetyltransferase  (AACT),  3-
hydroxy-3-methylglutaryl-CoA (HMGS), 3-hydroxy-3-methylglu-
taryl-CoA  reductase  (HMGR),  mevalonate  kinase  (MVK),  phos-
phomevalonate  kinase  (PMK),  and  mevalonate  5-diphosphate
decarboxylase (MVD). Meanwhile, The MEP pathway consists of
seven  enzymatic  steps  orderly  catalyzed  by  1-deoxy-D-xylu-
lose-5-phosphate  synthase  (DXS),  1-deoxy-D-xylulose-5-phos-
phate reductoisomerase (DXR),  MEP cytidylyltransferase (MCT),
4-(cytidine  5-diphosphate)-2-C-methylerythritol  kinase  (CMK),
2-C-methyl-D-erythritol2,4-cyclo  diphosphate  synthase  (MDS),
hydroxymethyl  butenyl  4-diphosphate  synthase  (HDS),  and  4-
hydroxy-3-methyl  but-2-enyl  diphosphate  reductase  (HDR).
Subsequently, HDRs catalyze the last reaction in the MEP path-
way;  to  be  specific,  HMBPP  (1-hydroxy-2-methyl-2-butenyl-4-

diphosphate)  is  converted  to  a  mixture  of  IPP  and  DMAPP
5:1–6:1[79].  Isopentenyl  diphosphate  isomerase  (IPI)  is  mainly
responsible  for  the  reversible  conversion  between  IPP  and
DMAPP.

For  the  second  module  (Fig.  4c),  diterpenoid  synthetases
(diTPSs) play a role in the formation of diterpene backbones in
plant A.  paniculata,  which  can  be  divided  into  two  categories
(class I and class II) following conserved modular structure (α, β
and γ)  within  the  proteins.  Functionally,  class  II  diTPSs  (CPSs)
initiate  the  cyclization  of  GGPP  by  protonation  of  a  double
bond  into  several  bicyclic  prenyl  diphosphates  with  specific
stereo  configuration  ((+)-CPP, ent-CPP),  which  are  subse-
quently converted by class I  diTPSs (KSLs) into labdane-related
diterpenes  (LRDs).  Three  class  II  diTPSs  (ApCPS1, ApCPS2,  and
ApCPS3) probably participate in distinct diterpenoid metabolic
pathways of A. paniculate[2]. ApCPS2 potentially converts GGPP
to ent-CPP,  as  shown  by  biochemical  characterization  of  the
recombinant  protein  and  accumulation  of  tissue-specific ent-
LRDs[80].  While ApCPS1  has  been  demonstrated  to  produce
both ent-CPP  and  (+)-CPP, ApCPS3  can  only  make  (+)-CPP  of
normal stereochemistry as shown by GC-MS chromatograms of
extracts  from  cultures  expressing  these  proteins  in E.  coli also
engineered  to  produced  GGPP[2].  Moreover,  two  KSLs  (ApKSL1
and ApKSL2)  have  been  just  recognized  to  consume ent-CPP
and (+)-CPP but are not related to producing the ent-copalol or
ent-labdatriene, the precursors of andrographolide and derived
diterpenoids[2].

In  addition,  specific  functional  modifications  of  LRDs prima-
rily  include  the  addition  of  hydroxyl  group  and  glycosylation,
which  can  be  mediated  by  the  activities  of  cytochrome  P450
monooxygenases  (CYPs)  and  glycosyltransferases  (GTs)  indivi-
dually  (Fig.  4d).  Furthermore,  multi-omics  data  integration
revealed some genes encoding CYPs, which may participate in
the  biosynthesis  of  andrographolide  and  related  diterpenoids
without being proved by functional studies[2]. And, ApUGTs are
known  as  glycosyltransferases  which  are  responsible  for  the
formation  of  neoandrographolide,  a  glycosylated  androgra-
phinin. Recently, ApUGT12(UGT86C11) has been established to
be  closely  involved  in  synthesizing  neoandrographolide  in A.
paniculate[81]. Given the discovery of fewer key enzymes related

a In plants In yeast Module 2
midstream simulation

Module 3 downstream explorationModule 1 upstream enhancement

GGPPSGGPPSGPPS FPPS

IPI IPI

MDCHDR

MDA HDA
MK PMK

HMGR

HMGS

CMK

MCT

DXRDXS
AACT

ERG9 BTS1
ERG20

ERG19
H H

OH

COOH

OPP

OH
OHOH

O O
OO P P

ERG8
ERG12

ERG13

ERG10

HMG1/2

GGPPS

CYPs, UGTs,
OMTs, etc

Class Ⅱ and/or
Class Ⅰ di TPSs

IDI

Chloroplast
MEP pathway

Cytosol
MVA pathway

b c

d

 
Fig.  4    Biosynthetic  pathway  of  andrographolide  (the  original  biosynthetic  pathway  of  andrographolide  is  annotated  in  gray  color)  and
heterologous  synthesis  strategies  of  diterpenoids  and  derivatives  in  microbes.  (a)  The  formation  of  diterpenoid's  precursor  (E,E,E)  -
geranylgeranyl diphosphate (GGPP) in original plants. (b) The formation of GGPP in yeast. (c) The midstream module to generate diterpenoids
skeletons. (d) The downstream module to create various diterpenoids with different pharmacological activities.
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to the biosynthetic pathway of andrographolide, there is still  a
need for further exploration and verification of the black box.

 Heterologous production of diterpenoids and
derivatives in microbes

The  medicinal  characteristics  of  the  plant A.  paniculata are
attributed  to  diterpene  lactones  and  their  derivatives,  like
andrographolide  and  neoandrographolide.  Due  to  the  limited
availability of andrographolide from natural sources[82] and pro-
blems regarding the commercial cultivation of A. paniculata[83],
it  was  proposed  that  biotechnological  interventions  may  be
exploited  for  the  sustained  production  of  andrographolide.
Over  the  last  20  years,  progress  has  been  made  in  designing
and constructing synthetic biology systems in yeast and bacte-
ria, which serve as cell factories to produce second metabolites
belonging to medical plants. Metabolic engineering in microor-
ganisms  can  provide  a  cost‐effective  alternative  to  gain
medicinal diterpenoids such as forskolin[84]. However, heterolo-
gous  production  of  andrographolide  in  microbes  implies  at
least partial or total replication of the andrographolide biosyn-
thetic  pathway,  which  is  not  fully  elucidated  in A.  paniculata.
Fortunately,  the  production  of  diterpenoids  and  derivatives
from other medicinal plants in microbial cell factories has been
achieved,  including  the  precursor  of  taxol  (taxadiene)[85],
tanshinone  analogs  (miltiradiene)[86],  sclareol[87],  etc.  Thus,  the
strategies  and  methods  of  constructing  cell  factories  to
produce  these  diterpenes  can  be  learned  when  we  need  to
utilize microbes for the green production of andrographolide.

Corresponding  to  the  original  diterpenoid  biosynthetic
pathway  in  plants,  diterpenoid  cell  factory  construction  is
divided  into  three  modules:  upstream  pathway  enhancement
(Fig.  4b),  midstream  pathway  simulation,  and  downstream
pathway  exploration.  In  terms  of  upstream  pathway  enhance-
ment,  systematic multivariate analysis has been used to deter-
mine  a  balance  between  the  IPP  production  and  the  skeleton
formation,  which  could  maximize  the  productive  capacity  of
taxadiene[85].  This  optimization  strategy  resulted  in  an E.  coli
strain  containing an additional  copy of  the upstream pathway
(to  create  isoprenoid  precursors,  IPP,  and  DMAPP)  under  the
control  of  Trc  promoter  producing  2000-fold  more  taxadiene
titers  than  those  only  expressing  the  native  MEP  pathway.
Furthermore,  to  enlarge  the  endogenous  precursor  pools  of
GGPPS  substrates  (IPP  and  DMAPP),  the  copy  number  of  rate-
limiting  steps  (DXS,  IDI,  ISPD,  ISPF)  in  the  MEP  pathway  was
amplified  to  five  by  additional  expression,  generating  a  600-
fold  increase  of  levopimaradiene[88].  Notably,  central  meta-
bolism  and  transcription  factors  have  been  manipulated  in
Saccharomyces  cerevisiae to  further  rewire  the  global  cellular
metabolism  for  enhancing  the  supply  of  acetyl-CoA  and
NADPH, which resulted in a 160-fold increase in the production
of sclareol[87].

For the midstream modules that form the diterpenoid skele-
ton,  the  construction  of  cell  factories  has  focused  on  simulat-
ing diterpene synthases in plants. Extensive screening of diter-
pene  synthases  and  their  combinations  from  plants  that  can
produce diterpenoid skeletons may be an effective strategy to
improve  heterologous  productivity  in  specific  hosts[89].  The
most efficient combination of Coleus forskohlii TPS1 and Salvia
miltiorrhiza KSL1  has  finally  been  selected  from  the  enzyme
library for the high-level production of miltiradiene[89]. Besides,

51  functional  combinations  of  class  I  and  II  diTPSs  have  been
constructed in yeast by imitating the modularity of diterpenoid
biosynthesis  in  plants,  generating  diverse  diterpene
skeletons[90].  Notably,  the  combination  of  diterpene  synthases
TwTPS9  and TwTPS27  from Tripterygium  wilfordii has  been
introduced into yeast to produce the diterpene dehydroabietic
acid,  an  intermediate  of  triptolide.  Furthermore,  the  chloro-
plast transit peptide-truncated TwTPS9 and TwTPS27 raised the
production  of  miltiradiene  by  about  7.1  fold[91].  Similarly,  the
fused expression of SmCPS and SmKSL led to a 2.9-fold increase
in  miltiradiene  production  by  shortening  the  distance  and
avoiding  the  block  between  two  active  sites[92],  which  is
inspired  by  the  fact  that  the  class  II  and  class  I  diterpene
synthases in plants commonly form complexes in plastids.

The conversion process  from a diterpenoid skeleton to vari-
ous  compounds  with  specific  pharmacological  activities
primarily  occurred  in  the  downstream  modification  module.
Nevertheless,  this  module  is  unknown  in  most  diterpenoid-
producing  plants.  Therefore,  microbial  cell  factories  are  used
not only for metabolite production but also for identifying criti-
cal  enzymes.  Six  CYPs  have  been  examined  in  high-titer
casbene-producing  yeast  strain  JWY509  to  verify  the  ability  to
produce  jolkinol  C.  The  optimal  combination  of JcCYP71D495
(C9OX2)  and JcCYP726A20  (C5OX2)  from Jatropha  curcas has
been selected to  yield  400 mg/L  jolkinol  C[93].  In  addition,  two
tandemly  duplicated  CYP82Ds  from T.  wilfordii have  been
found  to  catalyze  the  aromatization  of  miltiradiene  in S.  cere-
visiae and  successfully  produced  triptolide  precursor  14-
hydroxy-dehydroabietic  acid[94].  Compared with  diversification
mediated  by  P450  oxidation,  glycosylated  diterpenoids  in
plants  are  relatively  less. GjUGT94E13  and GjUGT74F8  from
Gardenia  jasminoides have  been  functionally  characterized  to
catalyze  the  glycosylation  of  crocetin  by  using  an E.  coli cell
factory[95].  Moreover,  the  classic  case  extensively  studied  is
steviol  glycosides  (SGs).  Based  on  the  understanding  that  the
crystal  structure  of  the SrUGT76G1  (Stevia  rebaudiana)  can  be
used  to  accommodate  various  steviol-derived  ligands,  the
substrate-binding pockets of EUGT11, SrUGT76G1, and UGTSL2
have  been  modified  to  convert  stevioside/rebaudioside  A  to
sweeter rebaudioside D/M[96,97].

 Conclusions and perspective

A. paniculata is  a well-known traditional medicinal herb that
is utilized in India, China, Thailand, and Malaysia to treat infec-
tions  and  inflammation.  It  is  widely  distributed  in  Southeast
and South Asia.  According to the theory of TCM, it  is  intensely
bitter  in  taste  and  cold-natured.  Modern  pharmacological
research  has  discovered  that  the  plant  possesses  various
medicinal  properties  such  as  anti-tumor,  anti-inflammatory,
anti-viral,  cardio-protecting,  neuro-protectant,  and  hepato-
protectant.  Although  andrographolide  has  been  developed
into  many  dosage  forms  for  versatile  applications  in  clinical
treatment,  we still  need to pay more attention to the safety of
andrographolide  preparations,  especially  injection  (which
accounts  for  about  4.4%  of  the  market).  Since  Chinese  Food
and  Drug  Administration  (CFDA)  has  been  warning  of  the
severe  allergic  reactions  after  injecting  'Xi  Yan  Ping'  in  adults
and forbidden using 'Yan Hu Ning' injections in children. Thus,
future  directions  for  developing  pharmaceutical  preparations
need  more  extensive  and  comprehensive  pharmacological
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experimental  evidence  and  a  clear  mechanism  and  target
organ of andrographolide.

Notably,  andrographolide  and  related  diterpene  lactones
have been identified as the primary therapeutic active compo-
nent.  Due  to  the  high  demand  for  andrographolide  and  its
semi-synthetic  derivatives, A.  paniculata is  commercially  culti-
vated  worldwide.  Limited  by  the  low  content  of  andro-
grapholide  (3.8–31.2  mg/g  DCW)  and  low  plant  growth  rate,
the  price  of  purified  andrographolide  and  its  derivatives  is
about  $100,000/kg[98].  Chemical  synthesis  of  andrographolide
under  laboratory  conditions  is  inefficient  due  to  its  complex
structure  and  specific  stereo-conformation.  Therefore,  it  is
imperative  to  adopt  other  biotechnological  tools  to  produce
andrographolide  efficiently.  However,  the  biosynthetic  path-
way  of  andrographolide  has  not  been  fully  elucidated.  Urgent
research  is  focused  on  understanding  the  enzymatic  process
involved  in  the  formation  of  andrographolide  and  the
complete  pathways.  High‐throughput  approaches,  including
multi-omics  and  comparative  omics  analysis  combined  with
computational tools and artificial intelligence (AI), are excellent
ways  to  narrow  down  the  gene  candidates  from  large  gene
families.  Meanwhile,  heterologous  expression  systems  (stable
expression  in  microbes  and  transient  expression  in  tobacco
leaves[99]) can provide diverse platforms for functionalizing key
enzymes  and  act  as  green  factories  to  produce  andro-
grapholide  efficiently.  In  conclusion,  bioreactor  technologies
can rapidly scale up andrographolide production by construct-
ing  cell  factories  with  a  complete  understanding  of  the  other
diterpenoids' biosynthetic pathways.
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