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Abstract
The Lonicera genus with medicinal and edible characteristics is a rich source of bioactive compounds that together account for numerous health

benefits. Plants within this genus have been used traditionally in China to treat heat-related illnesses, viral respiratory infections, skin diseases,

and inflammation for thousands of years. The main bioactive compounds include chlorogenic acids, flavonoids, iridoids, and triterpene saponins.

Aside from the role of this genus as a valuable medicinal resource, constituent members have also been used in the food and cosmetic industries.

Due to the huge demand for plants within the Lonicera genus, and the propensity for overexploitation of the wild resources of Lonicera, there is a

need  to  meet  this  demand via alternative  and  efficient  strategies  such  as  metabolic  engineering  and  green  production.  Here,  we  provide  a

comprehensive  review  of  relevant  scientific  literature  covering  the  structure,  biosynthesis,  metabolic  engineering,  pharmacology  and

phylogenetic analysis of the main bioactive constituents of the Lonicera genus. Finally, we proffer suggestions on the prospects of fully exploiting

and utilizing plants of the Lonicera genus as useful medicinal plant resources.
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 Introduction

The Lonicera Linn.  genus  is  a  constituent  member  of  the
Caprifoliaceae family[1]. It is the largest genus in this family and
comprises at least 200 species with a notable presence in North
Africa,  North  America,  Asia,  and  Europe[1].  Members  of  the
Lonicera genus possess a wide range of economic benefits from
their  use  as  ornamental  plants  to  food  and  as  plants  credited
with  numerous  health  benefits.  Conspicuous  among  the
numerous  members  of  this  genus  with  known  medicinal  uses
are L.  japonica, L.  macranthoides, L.  hypoglauca, L.  confusa,  and
L.  fulvotomentosa[2].  Though these species feature prominently
in the Chinese Pharmacopoeia,  other species such as L.  acumi-
nata, L.  buchananii,  and L.  similis are  recognized  as  medicinal
resources  in  certain  parts  of  China[1].  Among  the  aforemen-
tioned species, L.  japonica takes  precedence over  the  rest  due
to its high medicinal and nutritional value[3,4].  For instance, the
microRNA  MIR2911,  an  isolate  from L.  japonica,  has  been
reported to inhibit the replication of viruses[5−7]. Also, the water
extract of L.  japonica has been used to produce various bever-
ages  and  health  products[8].  The Lonicera genus  therefore
possesses  huge  prospects  in  the  pharmaceutical,  food,  and
cosmetic industries as an invaluable raw material[9].

The  main  active  constituents  of  the Lonicera genus  include
organic  acids,  flavonoids,  iridoids,  and  triterpene  saponins.
Chlorogenic  acids,  iridoids,  and  flavones  are  mainly  credited
with  the  anti-inflammatory,  antiviral,  anticancer,  and

antioxidant  effects  of  the  various Lonicera species[10−13].  Their
hepatoprotective,  immune  modulatory,  anti-tumor  and  anti-
Alzheimer’s  effects  are for  the most  part  ascribed to the triter-
pene  saponins[14−16].  As  stated  in  the  Chinese  Pharmacopoeia
and  backed  by  the  findings  of  diverse  research  groups,  the
plants  of  the Lonicera genus  are  known  to  possess  high
amounts  of  organic  acids  (specifically  chlorogenic  acid)  and
pentacyclic triterpenoid saponins[2,17−19]. The flower and flower
bud have traditionally served as the main medicinal parts of the
Lonicera genus  even  though  there  is  ample  evidence  that  the
leaves possess the same chemical composition[20].  A perusal of
the current scientific literature reveals the fact that little atten-
tion  has  been  devoted  to  exploring  the  biosynthesis  of  the
chemical  constituents  of  the Lonicera genus  with  the  view  to
finding alternative means of obtaining higher yields. It is there-
fore  imperative  that  priority  is  given  to  the  exploration  of  the
biosynthesis of these bioactive compounds as a possible means
of  resource  protection.  There  is  also  the  need  for  further
research  on  ways  to  fully  tap  the  medicinal  benefits  of  other
plant parts in the Lonicera genus.

Here,  we provide a comprehensive review of  relevant scien-
tific  literature  covering  the  structure,  pharmacology,  multi-
omics  analyses,  phylogenetic  analysis,  biosynthesis,  and
metabolic  engineering  of  the  main  bioactive  constituents  of
the Lonicera genus.  Finally,  we  proffer  suggestions  on  the
prospects of fully exploiting and utilizing plants of the Lonicera
genus as useful medicinal plant resources.
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 Structure and distribution of main bioactive
constituents of Lonicera

A  total  of  at  least  400  secondary  metabolites  have  been
reported for the Lonicera genus. These metabolites are catego-
rized into four main groups (Fig. 1a), including not less than 50
organic  acids,  80  flavonoids,  80  iridoids,  and  80  triterpene
saponins[21−23].  Organic  acids  are  mainly  derivatives  of  p-
hydroxycinnamic  acid  and  quinic  acid.  Among  the  organic
acids,  chlorogenic  acids  are  reported to  be the main bioactive
compounds  in L.  japonica[24−26].  The  organic  acids  are  most
abundant  in  the  leaves,  while  the  least  amounts  are  found  in
the  stem of L.  japonica.  The  flowers  of  the  plant  are  known to
contain moderately high amounts of organic acids[27]. The basic
core  structure  of  the  flavonoids  is  2-phenylchromogen.  Lute-
olin and its glycoside which are characteristic flavonoids of the
Lonicera genus  are  most  abundant  in L.  japonica[28].  On  the
whole, the flavonoid contents in L.  japonica are also highest in
the leaves, available in moderate amounts in the flowers, and in
lowest  amounts  in  the  stem[21].  The  core  structures  of  the
iridoids  are  iridoid  alcohols,  the  chemical  properties  of  which
are similar to hemiacetal. The iridoids often exist in the form of
iridoid  glycosides  in  plants.  Secoiridoids  glycosides  are
predominant  in  the Lonicera genus[25].  In L.  japonica,  the
contents  of  the  iridoids  are  most  abundant  in  the  flowers,
moderate in leaves, and lowest in the stem[21].  The characteris-
tic saponins of the Lonicera genus are mainly pentacyclic triter-
penoids,  including  the  hederin-,  oleanane-,  lupane-,  ursulane-
and  fernane-types,  etc[22].  The  hederin-type  saponins  are
reported in the highest amounts in L. macranthoides[17] (Fig. 1b).

 Biosynthesis and regulation of the main
bioactive constituents of Lonicera

 Biosynthesis of chlorogenic acids and flavonoids
The  similarities  between  chlorogenic  acid  (CGA)  and

flavonoids  can  be  traced  back  to  their  biosynthesis  since

p-coumaroyl  CoA  serves  as  the  common  precursor  for  these
compounds[29]. p-coumaroyl  CoA is  obtained through sequen-
tial  catalysis  of  phenylalanine  and  its  biosynthetic  intermedi-
ates  by  phenylalanine-ammonia-lyase  (PAL),  cinnamate  4-
hydroxylase (C4H) and 4-coumarate CoA ligase (4CL)[30−33].

CGA  is  a  phenolic  acid  composed  of  caffeic  acid  and  quinic
acid and is the most important bioactive compound among the
organic  acids.  Its  biosynthesis  has  been  relatively  well-estab-
lished;  three main biosynthetic  routes  have been propounded
(Fig.  2a).  One route relates to the catalysis of caffeoyl-CoA and
quinic  acid  by  hydroxycinnamoyl-CoA  quinate  transferase
(HQT)/hydroxycinnamoyl  CoA  shikimate/quinate  hydroxycin-
namoyl transferase (HCT) to produce CGA[34−37]. The HQT-medi-
ated  pathway  has  been  deemed  the  major  route  for  CGA
synthesis  in in different plant species[38,39].  The second biosyn-
thetic  route  stems  from  the  biosynthesis  of  p-coumaroyl
quinate  through  the  catalytic  effect  of  HCT/HQT  and  subse-
quent  hydroxylation of  p-coumaroyl  quinate under  the cataly-
sis  of  p-coumarate  3'-hydroxylase  (C3’H)[34,36,37].  For  the  third
route,  caffeoyl  glucoside  serves  as  the  intermediate  to  form
CGA, a process that is catalyzed by hydroxycinnamyl D-glucose:
quinic acid hydroxycinnamyl transferase (HCGQT)[40,41].

The  key  enzymes  in  the  biosynthesis  of  p-coumaroyl  CoA,
and invariably CGA,  thus,  PAL,  C4H,  and 4CL have been estab-
lished in diverse studies such as enzyme gene overexpression/
knockdown[42],  enzyme  activity  analysis[33] and
transcriptomics[18].  However,  the  centrality  of  HQT  in  the
biosynthesis  of  CGA  remains  disputable.  While  some  studies
have  reported  a  strong  correlation  between  HQT  expression
level  with  CGA  content  and  distribution[18,35,39,43,44],  others
found no such link[45], bringing into question the role of HQT as
a key enzyme in CGA biosynthesis.

Few studies have been conducted on the regulation of CGA
biosynthesis  in  the Lonicera genus.  It  was  found  that  overex-
pression  of  the  transcription  factor,  LmMYB15  in Nicotiana
benthamiana can  promote  CGA  accumulation  by  directly  acti-
vating  4CL  or  indirectly  binding  to  MYB3  and  MYB4

a b

 
Fig. 1    Core structures of main secondary metabolites and their distribution in five species of Lonicera. (a) 1 and 2, the main core structures of
organic  acids;  3,  the  main  core  structures  of  flavonoids;  4,  the  main  core  structures  of  iridoids;  5,  the  main  core  structures  of  triterpene
saponins. (b) Comparison of dry weight of four kinds of substances in five species of Lonicera[17,28].
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Fig.  2    Biosynthetic  pathways  of  main  bioactive  constituents  of Lonicera.  (a)  Biosynthetic  pathways  of  chlorogenic  acid.  (b)  Biosynthetic
pathways  of  luteoloside.  (c)  Biosynthetic  pathways  of  secologanin.  (d)  Biosynthetic  pathways  of  hederin-type  triterpene  saponins.  PAL,
phenylalanine  ammonia-lyase;  C4H,  cinnamate  4-hydroxylase;  4CL,  4-hydroxycinnamoyl  CoA  ligase;  HCT,  hydroxycinnamoyl  CoA
shikimate/quinate  hydroxycinnamoyl  transferase;  C3’H,  p-coumaroyl  3-hydroxylase;  HQT,  hydroxycinnamoyl-CoA  quinate  transferase;  UGCT,
UDP  glucose:  cinnamate  glucosyl  transferase;  CGH,  p-coumaroyl-D-glucose  hydroxylase;  HCGQT,  hydroxycinnamoyl  D-glucose:  quinate
hydroxycinnamoyl  transferase;  CHS,  Chalcone  synthase;  CHI,  Chalcone  isomerase;  FNS,  Flavone  synthase;  F3H,  flavonoid  30-
monooxygenase/flavonoid 30-hydroxylase; UF7GT, flavone 7-O-β-glucosyltransferase; GPS, Geranyl pyrophosphatase; GES, geraniol synthase;
G8O,  geraniol  10-hydroxylase/8-oxidase;  8HO,  8-hydroxygeraniol  oxidoreductase;  IS,  iridoid  synthase;  IO,  iridoid  oxidase;  7DLGT,  7-
deoxyloganetic  acid  glucosyltransferase;  7DLH,  7-deoxyloganic  acid  hydroxylase;  LAMT,  loganic  acid  O-methyltransferase;  SLS,  secologanin
synthase; FPS, farnesyl pyrophosphate synthase; SS,  squalene synthase; SE,  squalene epoxidase; β-AS, β-amyrin synthase; OAS, oleanolic acid
synthetase.
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promoters[46]. LjbZIP8 can specifically bind to PAL2 and act as a
transcriptional  repressor  to  reduce PAL2 expression levels  and
CGA  content[47].  Under  NaCl  stress,  increased  PAL  expression
promoted  the  accumulation  of  phenolic  substances  in  leaves
without  oxidative  damage,  a  condition  that  was  conducive  to
the accumulation of the bioactive compounds in leaves[48].

Luteolin  and  its  derivative  luteolin  7-O-  glucoside  (luteolo-
side) are representative flavonoids of the Lonicera genus. Simi-
lar to CGA, luteolin is biosynthesized from p-coumaroyl CoA but
via a  different  route.  The  transition  from p-coumaroyl  CoA  to
luteolin  is  underpinned  by  sequential  catalysis  by  chalcone
synthetase  (CHS),  chalcone  isomerase  (CHI),  flavonoid
synthetase  (FNS),  and  flavonoid  3'-monooxygenase/flavonoid
3'-hydroxylase  (F3'H)[45,49,50] (Fig.  2b).  Luteoloside  is  synthe-
sized  from  luteolin  by  UDP  glucose-flavonoid  7-O-β-glucosyl-
transferase  (UF7GT)[51].  Similar  to  CGA  biosynthesis,  the  key
enzymes  of  luteolin  synthesis  include  PAL,  C4H,  and  4CL  in
addition to FNS[33,45,52]. The content of luteoloside was found to
be highly abundant in senescing leaves relative to other tissues
such as stem, flowers, and even young leaves[52]. Through tran-
scriptomic  analysis,  luteoloside  biosynthesis-related  differen-
tially expressed unigenes (DEGs) such as PAL2, C4H2, flavone 7-
O-β-glucosyltransferase  (UFGT),  4CL,  C4H,  chalcone synthase  2
and  flavonoid  3'-monooxygenase  (F3'H)  genes  were  found  to
be  upregulated  in  the  senescing  leaves.  Biosynthesis-related
transcription  factors  such  as  MYB,  bHLH,  and  WD40  were  also
differentially expressed during leaf senescence[52],  while bHLH,
ERF,  MYB,  bZIP,  and  NAC  were  differentially  expressed  during
flower  growth[53].  Further  analysis  of  the  transcription  factors
revealed  that  MYB12,  MYB44,  MYB75,  MYB114,  MYC12,
bHLH113, and TTG1 are crucial in luteoloside biosynthesis[52,53].

 Biosynthesis of iridoids and triterpene saponins
The biosynthesis of terpenoids mainly involves three stages;

formation of intermediates, formation of basic structural skele-
ton, and modification of basic skeleton[54]. The intermediates of
terpenoids  are  mainly  formed  through  the  mevalonate  (MVA)
and  methylerythritol  phosphate  (MEP)  pathways,  and  eventu-
ally  converted  to  the  universal  isoprenoid  precursors,  isopen-
tenyl  pyrophosphate  (IPP)  and  its  isomer  dimethylallyl
pyrophosphate (DMAPP) through a series of enzyme-catalyzed
reactions.  Under  the  catalysis  of  geranyl  pyrophosphatase
(GPS),  IPP  is  then  converted  to  geranyl  pyrophosphate  (GPP).
Different terpenoids are subsequently derived from GPP as the
intermediate product. For instance, in the formation of secoiri-
doid,  GPP  first  removes  the  phosphoric  acid  group  to  obtain
geraniol,  second  through  a  series  of  reactions  such  as  oxida-
tion  and  cyclization,  the  skeleton  of  iridoid,  namely  iridodial,
can be obtained. Finally, through a series of reactions, the basic
carbon  skeleton  of  the  secoiridoid,  namely  secologanin,  is
obtained[55−61] (Fig. 2c). In the formation of triterpene saponins,
the  key  step  lies  in  the  formation  of  the  precursor,  2,3-
oxidosqualene,  a  reaction that  is  catalyzed by squalene epoxi-
dase  (SE).  There  are  many  pentacyclic  triterpenes  in  the
Lonicera genus,  the  most  important  type  being  the  hederin-
type  saponins  with  hederagenin  as  aglycones.  Hederin-type
saponins  are  produced  after  the  synthesis  of  oleanolic  acid
from β-amyrin and catalyzed by β-starch synthetase (β-AS) and
Oleanolic acid synthase (OAS)[62,63]. The skeletal modification of
the triterpenoid saponins is mainly achieved via the activities of
the  CYP450  enzymes  and  UDP-glycosyltransferase  (UGT).

Hence,  the  corresponding  aglycones  are  first  obtained via
oxidation  by  the  CYP450  enzymes  (e.g.,  CYP72A),  and  further
subjected  to  glycosylation  by  the  appropriate  UGT
enzyme[63−65] (Fig.  2d).  Skeletal  formations  of  the  iridoids  and
triterpene saponins  in  general  have been well  researched,  but
the same cannot be said about the enzymes involved in biosyn-
thesis of these groups of compounds in the Lonicera genus. To
fully utilize the iridoids and triterpene saponins in the Lonicera
genus, it is necessary to further explore their biosyntheses with
the view to enhancing and optimizing the process.

 Metabolic engineering of the main bioactive
compounds of the Lonicera genus

Given  the  importance  of  the  bioactive  compounds  in  the
Lonicera genus,  continual  isolation  of  these  compounds  using
the traditional methods are not only tedious and time-consum-
ing, but also unsustainable. With the development and applica-
tion  of  microbial  metabolic  engineering,  different  strategies
have been introduced to  produce these bioactive  compounds
by heterologous synthesis (Table 1).

 Metabolic engineering of chlorogenic acid,
luteolin and their glycosides

Due  to  the  demand  for  CGA  in  the  food,  pharmaceutical,
chemical,  and  cosmetic  industries,  the  traditional  means  of
obtaining the same requires a relatively longer period for plant
maturation  to  obtain  low  yields  of  the  desired  product.  This
therefore brings into question the sustainability  and efficiency
of this approach. The alternative and sustainable approach has
been  to  produce  CGA  using  synthetic  biology  and  metabolic
engineering.

Current research has sought to utilize Escherichia coli (and its
mutant  strain)  and Saccharomyces  cerevisiae to  synthetically
generate  CGA  and  other  flavonoids[66−73].  For  instance,  Cha  et
al.  employed two strains of E.  coli to produce a relatively good
yield of CGA (78 mg/L).  Their approach was based on the abil-
ity  of  one strain to generate caffeic  acid from glucose and the
other strain to use the caffeic acid produced and quinic acid as
starting materials to synthesize CGA[66].  Using a bioengineered
mutant of E. coli (aroD mutant), Kim et al. increased the yield of
CGA to as high as 450 mg/L[67]. Others have sought to increase
the  yield  of  CGA  by  employing  a  polyculture  of  three E.  coli
strains that act as specific modules for the de novo biosynthesis
of caffeic acid, quinic acid and CGA. This strategy eliminates the
competition  posed  by  the  precursor  of  CGA  (i.e.,  caffeic  acid
and  quinic  acid)  and  generally  results  in  improved  production
of CGA[68]. Saccharomyces cerevisiae is a chassis widely used for
the  production of  natural  substances  from plants  with  an  inti-
mal  structure  that  can  be  used  for  the  expression  of
cytochrome P450 enzymes that  cannot be expressed in E.  coli.
Researchers  have  used  yeast  to  increase  the  production  of
organic  acids[69].  A de  novo biosynthetic  pathway  for  the
construction  of  CGA  in  yeast  has  been  reported  new  cell-free
biosynthetic system based on a mixture of chassis cell  extracts
and  purified  Spy  cyclized  enzymes  were  adopted  by  Niu  et  al.
to  a  produce  the  highest  yield  of  CGA  reported  so  far  up  to
711.26 ± 15.63 mg/L[70].

There are many studies on the metabolic engineering for the
synthesis  of  flavonoids,  but  few on luteolin  and its  glycosides.
Strains  of E.  coli have  been  engineered  with  specific  uridine
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diphosphate  (UDP)-dependent  glycosyltransferase  (UGT)  to
synthesize  three  novel  flavonoid  glycosides.  These  glycosides
were  quercetin  3-O-(N-acetyl)  quinovosamine  (158.3  mg/L),
luteolin 7-O-(N-acetyl) glucosaminuronic acid (172.5 mg/L) and
quercetin  3-O-(N-acetyl)-xylosamine  (160.8  mg/L)[71].  Since
most  of  the  flavonoid  glycosides  synthesized  in E.  coli are
glucosylated,  Kim  et  al.  in  their  bid  to  synthesize  luteolin-7-O-
glucuronide, deleted the araA gene that encodes UDP-4-deoxy-
4-formamido-L-arabinose  formyltransferase/UDP-glucuronic
acid C-4'' decarboxylase in E.coli and were able to obtain a yield
of 300 mg/L of the desired product[72].

 Metabolic engineering of iridoids and triterpene
saponins

Terpenoidal saponins are mostly derived from slow-growing
plants  and  usually  possess  multiple  chiral  centers[74].  Tradi-
tional isolation and even chemical synthesis of the terpenoidal
saponins  are  both  tedious  and  uneconomical  for  large-scale
production.  Therefore,  it  is  necessary  to  find  other  ways  to
synthesize  these  compounds  known  to  have  diverse  pharma-
cological functions.

Heterologous  synthesis  has  become  an  important  way  to
improve  the  target  products.  With  the  development  of
synthetic  biology,  heterologous  synthesis  of  triterpene
saponins involves chassis of both plant and microbial origin. In
this regard, Nicotiana benthamiana is a model plant species for
the  reconstruction  of  the  biosynthetic  pathways  of  different
bioactive  compounds  including  monoterpenes,  hemiterpenes,
and  diterpenes[59,75−77].  Aside  from Nicotiana  benthamiana,
other  plants  have  also  been  used  as  heterologous  hosts[78].
Heterologous  synthesis  using  microbial  hosts  mainly  involves
Saccharomyces  cerevisiae and Escherichia  coli[79−81],  and  other
microorganisms[82,83].  Comparatively,  plants  as  biosynthetic
hosts  have  the  advantages  of  an  established  photosynthetic
system, abundant supply of relevant enzymes, and presence of

cell  compartments,  etc.  They  are  however  not  as  fast  growing
as  the  microorganisms,  and  it  is  also  difficult  to  extract  and
separate  the  desired  synthesized  compounds  from  them  as
hosts.

Although heterologous  synthesis  has  many advantages,  the
premise of successful construction of synthetic pathway in host
is  to  elucidate  the  unique structure  of  the  compound and the
key  enzyme  reaction  mechanism  in  the  biosynthetic  pathway.
There is little research on metabolic engineering of the hederin-
type  pentacyclic  triterpene  saponins  in Lonicera,  but  there  are
studies on the heterologous synthesis of its aglycone precursor,
oleanolic  acid[84,85].  There  is  a  dearth  of  scientific  literature  on
key  enzymes  in  the  biosynthesis  of  pentacyclic  triterpenoid
saponins in the Lonicera genus.

 Pharmacological activities of the main
bioactive compounds of Lonicera

Scientific  evidence  by  diverse  research  groups  has  linked
members of  the Lonicera genus to a  wide range of  pharmaco-
logical  effects  (Fig.  3).  These  pharmacological  effects  are
elicited by different chemical constituents, much of the under-
lying mechanisms of which have been elucidated by the omics
techniques.  Here,  we  summarize  the  pharmacological  effects
and  pharmacodynamics  of  the Lonicera genus  in  the  last  6
years.

 Anti-inflammatory effects
Bioactive  compounds  of  plants  in  the Lonicera genus  have

demonstrated varying degrees of anti-inflammatory actions. In
a recent study, Lv et al.  showed that lonicerin inhibits the acti-
vation of NOD-like receptor thermal protein domain associated
protein  3  (NLRP3)  through  regulating  EZH2/AtG5-mediated
autophagy  in  bone  marrow-derived  macrophages  of  C57BL/6
mice[86].  The  polysaccharide  extract  of L.  japonica reduces

Table 1.    Biosynthesis of Lonicera-specialized metabolites using metabolic engineering.

Engineering bacteria Operational methods Products Yield Refs

S. cerevisiae Eliminate the tyrosine-induced feedback inhibition, delete genes
involved in competing pathways and overexpress rate-limiting
enzymes

Caffeic acid 569.0 mg/L [69]

S. cerevisiae Employe a heterologous tyrosine ammonia lyase and a 4HPA3H
complex composed of HpaB and HpaC derived from different
species

Caffeic acid 289.4 mg/L [73]

S. cerevisiae Supply and recycle of three cofactors: FADH2, S-adenosyl-L-
methion, NADPH

Caffeic acid
Ferulic acid

Caffeic acid: 5.5 g/L;
Ferulic acid: 3.8 g/L

[117]

E. coli Knocking out competing pathways Caffeic acid 7,922 mg/L [118]
E. coli Artificial microbial community, a polyculture of three

recombinant Escherichia coli strains
Chlorogenic acid 250 µM [68]

Cell-free biosynthesis Extract and purify spy-cyclized enzymes (CFBS-mixture) Chlorogenic acid 711.26 mg/L [70]
S. cerevisiae Three metabolic engineering modules were systematically

optimized: shikimate pathway and carbon distribution, branch
pathways, CGA pathway genes

Chlorogenic acid Flask fermentation:
234.8 mg/L;

Fed-batch fermentation:
806.8 mg/L

[119]

E. coli Using modular coculture engineering: construction of the
defective strain improves the production and utilization of
precursor substances

Chlorogenic acid 131.31 mg/L [122]

E. coli Introduce heterologous UDP-glucose biosynthetic genes Luteolin 34 mg/L [120]
Y. lipolytica Overexpression of the key genes involved in the mevalonate

pathway, the gene encoding cytochrome P450 (CYP716A12) to
that encoding NADPH-P450 reductase

Oleanolic acid 129.9 mg/L [85]

S. cerevisiae Improve the pairing efficiency between Cytochrome P450
monooxygenase and reductase and the expression level of key
genes

Oleanolic acid 606.9 mg/L [121]

S. cerevisiae Heterologous expression and optimization of CrAS, CrAO, and
AtCPR1, and regulation of ERG1 and NADPH regeneration system

Oleanolic acid 433.9 mg/L [123]

Progress of bioactive compounds in Lonicera genus
 

Chen et al. Medicinal Plant Biology 2024, 3: e008   Page 5 of 12



atopic  dermatitis  in  mice  by  promoting  Nrf2  activation  and
NLRP3  degradation  through  p62[87].  Several  products  of
Lonicera have  been  reported  to  have  ameliorative  effects  on
DSS-induced colitis.  Among them, flavonoids of L.  rupicola can
improve  the  ulcerative  colitis  of  C57BL/6  mice  by  inhibiting
PI3K/AKT,  and  pomace  of L.  japonica can  improve  the  ulcera-
tive colitis  of  C57BL/6 mice by improving the intestinal  barrier
and  intestinal  flora[88,89].  The  flavonoids  can  also  ameliorate
ulcerative  colitis  induced  by  local  enema  of  2,4,6-trinitroben-
zene  sulfonic  acid  (TNBS)  in  Wistar  rats  by  inhibiting  NF-κB
pathway[90]. Ethanol extract from L. Japonica has demonstrated
the  potential  to  inhibit  the  expressions  of  inflammatory
cytokines  in  serum  and  macrophages  of  LPS-induced  ICR
mice[91].  The  water  extract  of L.  japonica and  luteolin  were
found  to  exhibit  their  anti-inflammatory  effects via the  inhibi-
tion of the JAK/STAT1/3-dependent NF-κB pathway and induc-
tion  of  HO-1  expression  in  RAW263.7  cells  induced  by  pseu-
dorabies virus (PRV)[92].

 Antimicrobial effects
Existing  scientific  evidence  indicates  that  the  extracts  of

plants  in  the Lonicera genus  exhibit  strong  inhibition  against
different  pathogenic  microorganisms.  Phenolic  compounds
from L.  japonica demonstrated  a  particularly  significant
inhibitory  effect  against Staphylococcus  aureus and Escherichia
coli, in vitro, making these compounds potential food preserva-
tives[93].  Influenza  A  virus  is  a  serious  threat  to  human  health.
Recent research has found the ethanol extract of L. japonica to
possess a strong inhibitory effect against H1N1 influenza virus-
infected  MDCK  cells  and  ICR  mice[94].  The  incidence  of  the
COVID-19 pandemic called to  action various  scientists  in  a  bid
to  find  safe  and  efficacious  treatment[95].  Traditional  Chinese
medicines  became  an  attractive  alternative  in  this  search.  The
water  extract  of  the  flower  bud of L.  japonica which  has  tradi-
tionally  served  as  a  good  antipyretic  and  antitussive  agent
attracted the attention of researchers. Scientific evidences have
confirmed that the water extract of L. japonica can induce let-7a
expression in human rhabdomyosarcoma cells or neuronal cells

and  blood  of  lactating  mice,  inhibiting  the  entry  and  replica-
tion  of  the  virus in vitro and in  vivo[96].  In  addition,  the  water
extract  of L.  japonica also  inhibits  the  fusion  of  human  lung
cancer  cells  Calu-3  expressing ACE2 receptor  and BGK-21 cells
transfected  with  SARS-CoV-2  spike  protein,  and  up-regulates
the expression of miR-148b and miR-146a[97].

 Anti-oxidative stress effect
Oxidative stress has been implicated in the pathophysiology

of  many  diseases,  hence,  amelioration  of  the  same  could  be  a
good therapeutic approach[98,99]. In keeping with this therapeu-
tic  strategy,  various compounds from the Lonicera genus have
demonstrated the ability to relieve oxidative stress due to their
pronounced antioxidant effects. For instance, the polyphenolic
extract  of L.  caerulea berry  was  found  to  activate  the  expres-
sion  of  AMPK-PGC1α-NRF1-TFAM  proteins  in  the  skeletal
muscle  mitochondria,  improve  the  activity  of  SOD,  CAT  and
GSH-Px enzymes in blood and skeletal  muscle,  relieve exercise
fatigue in mice by reducing oxidative stress in skeletal muscle,
and  enhance  mitochondrial  biosynthesis  and  cell
proliferation[100].  The  diverse  health  benefits  of  the  antho-
cyanins  from L.  japonica have  been  mainly  credited  to  their
antioxidant  and  anti-inflammatory  effects.  The  anthocyanin
and cyanidin-3-o-glucoside have been reported to possess the
potential  to  prolong  life  and  delay  senescence  of Drosophila
through  the  activation  of  the  KEAP1/NRF2  signaling
pathway[101].

 Hepatoprotection
The liver is an essential organ that contributes to food diges-

tion and detoxification of the body. These functions expose the
liver  to  diverse  toxins  and  metabolites.  The Lonicera genus  is
rich  in  phytochemicals  that  confer  protection  on  the  liver
against  various  toxins.  The  phenolic  compound,  4,  5-di-O-
Caffeoylquinic  acid  methyl  ester  was  shown  to  be  able  to
improve  H2O2-induced  liver  oxidative  damage  in  HepG2  cells
by  targeting  the  Keap1/Nrf2  pathway[102].  Hepatic  fibrosis  is  a
complex  dynamic  process,  with  the  propensity  to  progress  to
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Fig.  3    Schematic  summary  of  four  main  pharmacological  effects  (anti-inflammatory,  antimicrobial,  anti-oxidative  and  hepatoprotective
effects) of the Lonicera genus and the underlying mechanisms of actions.
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liver  cancer  in  severe  cases.  The L.  japonicae flos  water  extract
solution  increased  the  cell  viability  of  FL83B  cells  treated  with
thioacetamide  (TAA),  decreased  the  levels  of  serum  alanine
aminotransferase  (ALT)  and  alkaline  phosphatase  (ALP),  inhib-
ited  the  transformation  growth  factor β1  (TGF-β1)  and  liver
collagen  deposition[103].  Sweroside,  a  secoiridoid  glucoside
isolate of L. japonica is known to protect the C57BL/6 mice liver
from  hepatic  fibrosis  by  up-regulating  miR-29a  and  inhibiting
COL1 and TIMP1[104].

 Other pharmacological effects
Aside  from  the  aforementioned,  other  pharmacological

effects have been ascribed to the Lonicera genus. The ethanolic
extract of L. caerulea has been reported to inhibit the prolifera-
tion  of  SMMC-7721  and  H22  hepatoma  cells,  while  its  antho-
cyanins induced the apoptosis of tumor cells via the release of
cytochrome C and activation of caspase[105].  AMPK/PPARα axes
play an important role in lipid metabolism. A chlorogenic acid-
rich  extract  of L.  Japonica was  found  to  significantly  decrease
the  early  onset  of  high-fat  diet-induced  diabetes  in  Sprague-
Dawley  rats via the  CTRPs-AdipoRs-AMPK/PPARα axes[106].  In  a
high-fat  diet-induced  non-alcoholic  fatty  liver  disease  in
C57BL/6  mice,  treatment  with L.  caerulea polyphenol  extract

decreased  serum  inflammatory  factors  and  endotoxin  levels
and  the  Firmicutes/Bacteroidetes  ratio,  an  indication  of  its
modulatory effect on the gut microbiota[107]. The iridoid-antho-
cyanin extract from L.  caerulea berry contributed to alleviating
the  symptoms  of  intestinal  infection  with  spirochaeta  in
mice[108].

 Chloroplast genomic and phylogenetic
relationships of Lonicera species

The traditional  classification of  the Lonicera genus based on
the  morphology  of  member  plants  is  further  categorized  into
two  subgenera, Chamaecerasus and Periclymenum. The
Chamaecerasus  includes  four  categories,  Coeloxylosteum,
 Isika,  Isoxylosteum and Nintooa. The Periclymenum includes
two  categories, Subsect.  Lonicera and Subsect.  Phenianthi
(Supplemental Table S1).

High-throughput  chloroplast  genome  sequencing  of L.
japonica found  its  length  to  be  155078  bp,  which  is  similar  to
the structure of the typical  angiosperm chloroplast genome. It
contains  a  pair  of  inverted  repeat  regions  (IRa  and  IRb,  23774
bp),  a  large  single  copy  region  (LSC,  88858  bp)  and  a  small

 
Fig. 4    Phylogenetic tree of 42 species of the Lonicera genus based on complete chloroplast genome sequence data. The phylogenetic tree
was constructed by the maximum likelihood method. Coeloxylosteum, Isika, Isoxylosteum,  and Nintooa belong to Chamaecerasus and Subsect.
Lonicera belongs to the Periclymenum. Chamaecerasus and Periclymenum are the two subgenera of Lonicera.  'Not retrieved' indicates that the
species failed to retrieve a subordinate taxon in the Lonicera.
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single  copy  area  (SSC,  18672  bp)[109,110].  However,  compared
with  chloroplast  genomes  of  other  plants,  the  chloroplast
genome  of L.  japonica has  a  unique  rearrangement  between
trnI-CAU and trnN-GUU[110]. Based on the phylogenetic analysis
of  the  plastid  genomes  of  seven  plants  in  the Lonicera genus,
16  diverging  hot  spots  were  identified  as  potential  molecular
markers  for  the  development  of  the Lonicera plants[111].  The
phylogeny  of Lonicera is  rarely  researched  at  the  molecular
level and the pattern of repetitive variation and adaptive evolu-
tion  of  the  genome  sequence  is  still  unknown.  Chloroplast
genome  sequences  are  highly  conserved,  but  insertions  and
deletions,  inversions,  substitutions,  genome  rearrangements,
and translocations also occur and have become powerful tools
for studying plant phylogeny[112,113].

We present here the phylogenetic tree of the Lonicera genus
based  on  the  published  complete  chloroplast  genome
sequences  downloaded  from  the  National  Center  for  Biotech-
nology Information (NCBI)  database using the Maximum likeli-
hood  method  (Fig.  4).  Based  on  our  chloroplast  phylogenies,
we propose to merge L. harae into Sect. Isika and L. insularis into
Chamaecerasus, but whether L. insularis belongs to Sect. Isika or
Sect.  Coeloxylosteum is  uncertain.  Based  on  protein-coding
regions  (CDS)  of  the  chloroplast  genome  or  complete  chloro-
plast genomes, Liu et al. and Chen et al. supported the classifi-
cation  of  the  two  subgenera  in Lonicera[111,114].  Sun  et  al.  and
Srivastav  et  al.  demonstrated  a  classification  between  the  two
subgenera  with  more  species  by  using  sequences  of  nuclear
loci generated, chloroplast genome, and restriction site-associ-
ated DNA sequencing (RADSeq)[115,116].  However,  our phyloge-
netic  analysis  and  that  of  Sun  et  al.  show  relations  within  the
subgenus Chamaecerasus are tanglesome in some respects[116].
Plant traits are affected by the environment to varying degrees.
Since  evidence  of  plant  speciation  is  implicit  in  its  genome
sequence, comparative analysis at the molecular level provides
a  relatively  accurate  depiction of  inherent  changes  that  might
have  occurred  over  time.  These  findings  suggest  the  need  for
more species of the Lonicera genus to be sequenced to provide
a  more  accurate  theoretical  basis  for  the  evolution  of  the
Lonicera plants  and  a  more  effective  revision  in  the  classifica-
tion of the Lonicera genus.

 Conclusions and future perspectives

The Lonicera genus  is  rich  in  diverse  bioactive  compounds
with  immeasurable  prospects  in  many  fields.  Members  of  this
genus  have  been  used  for  thousands  of  years  in  traditional
Chinese  medicine  for  heat-clearing  and  detoxification.  These
plants generally have a good taste and form part of the ingredi-
ents  of  various  fruit  juices.  In  cosmetics,  they  are  known  to
possess  anti-aging  and  moisturizing  functions.  Plants  of  the
Lonicera genus are also known for their good ecological adapt-
ability and can be used to improve soil and ecological environ-
ment.  Based  on  the  value  of  the Lonicera genus,  besides
researching their use through molecular biological means, their
efficient utilization can also be promoted in the following ways:
(1)  The stems and leaves of  the plants could be developed for
consumption and use since the chemical profiles of these parts
do  not  differ  significantly  from  the  flowers.  This  way,  the
wastage of this scarce resource could be minimized or avoided.
(2)  Most  of  the Lonicera plants  are  vines  or  shrubs  and  their
natural  regeneration  speed  is  slow,  so  the  introduction  and

domestication of species could be strengthened to avoid over-
exploitation of wild resources.

At  present,  only  the  research  on  the  biosynthesis  and  effi-
cacy of chlorogenic acid is  quite comprehensive and has been
used widely  in  various fields.  There is  limited research on vari-
ous  aspects  of  other  bioactive  compounds  and  should  there-
fore  be  given  priority  in  future  research  goals.  Currently,  the
multi-omics analytical approach has gradually evolved as a reli-
able  and  helpful  analytical  platform.  Hence,  multi-omics
research  on  the Lonicera genus  could  lead  to  discoveries  in
drug discovery and human health.
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