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Abstract
Terrestrial  ecosystems  are  fundamental  to  human  well-being,  providing  essential  services

such as food production,  biodiversity maintenance,  water regulation,  carbon sequestration,

and  soil  conservation.  However,  the  accelerating  pace  of  climate  change  is  profoundly

reshaping  these  ecosystems,  heightening  the  urgency  and  complexity  of  their  sustainable

management.  Although  considerable  advances  have  been  made  in  understanding  how

climate change affects terrestrial ecosystems, global assessments of its impacts on nitrogen

cycles  remain  fragmented,  lacking  systematic  feedback  analyses  at  the  global  scale  and

robust  quantification of  regional  heterogeneity.  This  fragmentation constrains  the incorpo-

ration  of  nitrogen  feedback  into  Earth  system  models,  thereby  reducing  the  precision  and

reliability  of  future  climate  projections.  This  review  synthesizes  current  knowledge  on  how

key  climate  change  drivers,  including  elevated  atmospheric  CO2 concentrations,  rising

temperatures,  and  altered  precipitation  regimes,  individually  influence  nitrogen  dynamics

across  terrestrial  ecosystems.  This  review  further  assesses  the  potential  impacts  of  climate

change  on  nitrogen  budgets  in  global  croplands,  forests,  and  grasslands.  The  review  also

identifies  critical  challenges  and  emerging  research  priorities,  emphasizing  the  need  for

integrated  nitrogen  cycle  management  under  a  changing  climate.  By  advancing  a  unified

understanding  of  climate–nitrogen  interactions,  this  work  provides  a  scientific  basis  for

designing adaptation strategies that promote both ecological resilience and progress toward

the Sustainable Development Goals (SDG).
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Highlights
•  Elevated CO2 concentrations, warming, and altered precipitation regimes are reshaping global terrestrial nitrogen cycles.

•  Insufficient knowledge of climate-nitrogen feedback limits the reliability of future predictions.

•  Integrated governance of the nitrogen cycle is essential for effective climate adaptation strategies.
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Graphical abstract

 
 Introduction

Climate  change  is  accelerating  at  an  unprecedented  pace,  threaten-
ing  human  well-being  and  planetary  health[1].  This  includes  elevated
carbon dioxide concentrations (eCO2)[2],  warming[3],  and altered preci-
pitation  regimes[4].  In  2024,  the  atmospheric  CO2 concentration
reached a record high of 423.9 ± 0.2 parts per million (ppm), 152% of
the pre-industrial level of 278.3 ppm[5], while the year also became the
warmest on record in the past 175 years, with the temperature nearly
1.55  ±  0.13  °C  above  the  1850–1990  average[2].  Additionally,  precipi-
tation  patterns  showed  significant  regional  variability,  with  changes
in  both  rainfall  frequency  and  intensity[6] (Fig.  1a–c).  Terrestrial  eco-
systems,  including  croplands,  forests,  and  grasslands,  are  vital  for
providing essential  resources that sustain human well-being (Fig.  1d).
However,  climate  change  can  alter  nitrogen  (N)  cycling  as  well  as
other  biogeochemical  processes,  thereby  negatively  impacting  these
ecosystems  and  threatening  their  ability  to  sustain  vital  services[1].
Cropland,  vital  for  food  security,  is  under  threat  from  climate
change[7,8].  Extreme rainfall can limit N availability during rice tillering,
leading  to  yield  losses[9].  Forests  and  grasslands,  which  play  crucial
roles in biodiversity maintenance, water regulation, soil retention, and
carbon (C) sequestration, are increasingly exposed to extreme weather
events  such  as  droughts  and  wildfires[10−15].  In  particular,  increased
fire frequency can lead to significant losses of soil N and C in broadleaf
forests  and  savanna  grasslands,  thereby  reducing  ecosystem  C
storage[16].

Terrestrial  N  cycling  plays  a  key  role  in  sustaining  ecosystem
productivity  and  ensuring  food  security[17−19].  The  main  terrestrial
N  transformation  processes  include  ammonification,  assimilation,
biological  N  fixation (BNF),  nitrification,  denitrification,  and anaero-
bic  ammonium  oxidation  (anammox)[20−22] (Table  1).  Based  on  N
mass balance principles, this study investigates changes in N inputs
(including N deposition,  BNF,  fertilizer,  and manure)  and N outputs
(including N harvest  and N surplus)  in  terrestrial  ecosystems under
climate  change,  as  well  as  variations  in  N  accumulation  within
forests.  Nitrogen  surplus  encompasses  the  losses  of  reactive  N  (Nr)
compounds and dinitrogen gas (N2)  emissions (Fig.  2, Tables 1 and
2). Nr emissions increased from 164 Tg in 1997 to 210 Tg in 2017[23],
primarily  from  industrial  sources  like  fossil  fuel  combustion,  and
agricultural  sources  such  as  fertilizer  application[24,25].  Nr pollution
is  a  significant  challenge  of  the  21st century,  causing  a  cascade
of  negative  impacts  across  environmental  systems[18,26−31].  Its

interactions  with  climate  change  make  effective  N  management
even  more  difficult[24,32].  Therefore,  balancing  N  levels  to  maximize
benefits while minimizing harmful effects is critical[33].

This review summarizes the impacts of climate change on terres-
trial  ecosystem  N  cycling,  focusing  on  the  mechanisms  by  which
elevated CO2 concentrations, global warming, and altered precipita-
tion regimes influence N cycling, and explores the potential impacts
of  climate  change  on  N  budgets  in  global  croplands,  forests,  and
grasslands, highlighting the existing challenges and future research
directions. Through these discussions, this review aims to provide a
critical  foundation  for  understanding  the  mechanisms  underlying
terrestrial  ecosystem  N  cycling  in  response  to  climate  change,  and
to offer theoretical  support for developing strategies to optimize N
use  efficiency  (NUE)  while  reducing  Nr emissions  in  this  context
(Table 1).

 Elevated CO2 levels

Elevated atmospheric  CO2 levels  (eCO2)  generally  promote  crop yield
by  21%  (95%  confidence  interval  [CI],  18%  to  25%)  relative  to  the
ambient CO2 level, with positive effects observed for major crops such
as wheat, rice, maize, and soybeans[34]. Elevated CO2 also increases net
primary productivity (NPP) in grasslands (10%; 8% to 12%) and forests
(27%; 23% to 31%) (Table 1), although the extent of these effects varies
depending  on  the  vegetation  type[34,35] (Fig.  3).  In  C3 grasslands,  NPP
increases by 10% (8% to 13%) under eCO2, primarily due to enhanced
photosynthesis[36]. Elevated CO2 increases intercellular and chloroplas-
tic CO2 concentrations, thereby raising the ratio of Rubisco carboxyla-
tion  to  oxygenation,  which  reduces  photorespiration  and  enhances
net  C  assimilation[36,37].  In  contrast,  C4 grasslands  show  no  significant
response  (10%; −9%  to  15%)  because  their  CO2 concentrating
mechanism already maintains high local CO2 around Rubisco, making
carboxylation  relatively  insensitive  to  additional  CO2

[38,39].  However,
under drought stress, eCO2 improves water-use efficiency by reducing
stomatal conductance and increasing intercellular CO2 concentrations,
thereby alleviating water limitation and indirectly promoting NPP[40,41].
Notably,  the  predicted  CO2 increase  by  2050  is  +109  ppm  under  the
SSP2-4.5 middle-of-the-road scenario and +39 ppm under the SSP1-1.9
sustainability scenario, both of which are lower than the CO2 increase
in the current eCO2 experiments. This suggests that adaptive responses
are unlikely to occur before 2050[35].
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Fig. 1  Global climate change and terrestrial ecosystems. (a) Changes in global atmospheric CO2 from 1980 to 2100 under different Shared Socioeconomic
Pathways-Representative Concentration Pathways (SSP-RCP) scenarios. (b) Changes in global air temperature from 1980 to 2100 under different SSP-RCP
scenarios. (c) Changes in global land precipitation from 1980 to 2100 under different SSP-RCP scenarios. (d) Effects of different climate change factors on
the  nitrogen  cycle  in  global  terrestrial  ecosystems.  Yellow  arrows  denote  interactions  between  systems;  Red  arrows  indicate  the  impacts  of  climate
change on terrestrial ecosystems. N, nitrogen. The symbols are from Integration and Application Network (https://ian.umces.edu/media-library/).

 

Table 1  Terminologies included in this paper

Variable Description

Yield Crop yield is a metric of the quantity of harvested crop production per land area.
Net primary productivity NPP includes both aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP).
Ammonia emission NH3 is emitted into the atmosphere from soil or water bodies of terrestrial ecosystems.
Nitrous oxide emission N2O emission is released into the atmosphere during nitrification and denitrification.
Nitrogen oxide emission NOx emission refers to a collection of N and oxygen compounds including NO, NO2, and N2O3.

Nitrate leaching NO3
− leaching is the movement of inorganic N from soil, fertilizer, and residues into groundwater or deep soil through rainfall

or drip irrigation.
Nitrate runoff NO3

− runoff refers to the loss of inorganic N to surface water.
Nitrogen use efficiency NUE is defined as the N harvest divided by the N input in the terrestrial ecosystems.

Biological nitrogen fixation BNF is the conversion of N2 to NH4
+ by N-fixing microorganisms, including symbiotic and non-symbiotic ones.

Accumulation Accumulation is the process by which N is gradually retained and concentrated in soil, litter, and vegetation, mainly in forests,
while N accumulation in croplands and grasslands is assumed stable and therefore not considered here.

Denitrification Denitrification is the process by which denitrifying microorganisms convert NO3
− to gaseous N (N2O, NO, and N2).

Nitrification Nitrification is the process by which nitrifying microorganisms convert NH4
+ to NO3

− under aerobic conditions.

Ammonification Ammonification refers to the conversion of organic N to NH4
+ by microorganisms.

Assimilation Assimilation is the process by which plants and microorganisms incorporate inorganic N (NH4
+, NO3

−) into organic
compounds for growth and metabolism.

Anammox Anammox is the process by which ammonium (NH4
+) is oxidized with nitrite (NO2

−) under anaerobic conditions to produce N2.
Leaf nitrogen content Leaf [N] denotes the N content in the leaf of a plant.
Grain nitrogen content Grain [N] denotes the N content in the grain of a plant.
Stem nitrogen content Stem [N] denotes the N content in the stem of a plant.
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Additionally,  elevated  CO2 reduces  plant  N  content,  including
grains,  leaves,  and  stems,  likely  due  to  N  dilution  resulting  from
increased  C  assimilation  and  decreased  investment  in  Rubisco  for
photosynthesis[42,43].  Leaf  N  content  in  woody  plants  decreases
under eCO2

[44] (Table 1), with non-leguminous trees showing appro-
ximately twice the reduction compared to legumes,  and evergreen
species  exhibiting  more  substantial  declines  than  deciduous  ones.
Needle-like leaves experience a two- to four-fold greater decrease in
leaf N compared to other leaf types. Meanwhile, woody plants tend
to exhibit greater N reductions than herbaceous plants[45].  In crops,
eCO2 typically  induces  a  N  dilution  effect,  although  its  magnitude
varies among species. Potato and major cereal crops such as barley,
rice,  and  wheat  generally  show  notable  reductions  in  N  content,
whereas  soybean  exhibits  only  a  minimal  decrease[46].  Long-term
trends also indicate a decline in N availability in forests and natural
grasslands  under  eCO2

[47].  Decreased  N  content  may  progressively
diminish  the  productivity  gains  typically  associated  with  eCO2 and
constrain  ecosystem  C  sequestration[47,48].  In  agricultural  systems,
although mineral  fertilization can compensate  for  N deficits,  plants
under  eCO2 tend  to  allocate  more  N  to  roots  rather  than  leaves,
leading  to  lower  leaf  N  content[49].  Overall,  despite  the  reduction
in  plant  N  content,  the  rise  in  NPP  and  crop  yields  under  eCO2

ultimately  leads  to  an  increase  in  total  N  harvest  in  terrestrial
ecosystems[34,35] (Fig. 3).

Elevated  CO2 also  enhances  BNF  rates,  boosting  microbial  capa-
city to convert inert N2 into plant-available N and reducing nitrates
to  N2

[50−52].  Concurrently,  eCO2 stimulates  N  uptake  by  plants,
improving  NUE  by  19%–32%  in  terrestrial  ecosystems[34,35].  This
increase in NUE reduces Nr losses, including the emissions of ammo-
nia  (NH3),  nitrous  oxide  (N2O),  and  nitrogen  oxides  (NOx)  to  the
atmosphere,  as  well  as  decreases  in  nitrate  leaching  and  runoff
(NO3

−)  into  water  bodies[34,35] (Table  1).  Nitrogen  deposition,  influ-
enced by ammonia and nitrogen oxide emissions, generally declines
under  eCO2,  and  anthropogenic  N  inputs,  such  as  fertilizers  and
manure,  are  also  expected  to  decrease[34,35] (Fig.  3).  In  summary,
eCO2 has a positive impact on N cycling in terrestrial ecosystems. It

 

Fig. 2  Nitrogen flows in terrestrial ecosystems. Nitrogen inputs and outputs are differentiated by blue and yellow arrows, respectively. Nitrogen inputs
include biological nitrogen fixation (BNF), deposition, fertilizer, and manure. Nitrogen outputs include harvest, reactive nitrogen losses, and non-reactive
nitrogen emissions. Simplified soil nitrogen cycle, such as ammonification, ammonium assimilation, BNF, nitrification, denitrification, and anaerobic ammo-
nium oxidation (anammox) are shown in light pink arrows. The symbols are from the Integration and Application Network (https://ian.umces.edu/media-
library/).

 

Table  2  Nitrogen  fluxes  in  croplands,  grasslands,  and  forests  derived  from
models in 2020

Variable Ecosystem value Component Ecosystem value

N input (Tg) Cropland: 253
Grassland: 138

Forest: 91

BNF (Tg) Cropland: 40
Grassland: 16

Forest: 66
Deposition (Tg) Cropland: 21

Grassland: 15
Forest: 21

Fertilizer (Tg) Cropland: 141
Grassland: 27

Forest: 4
Manure (Tg) Cropland: 51

Grassland: 80
Forest: /

N harvest (Tg) Cropland: 118
Grassland: 95

Forest: 22
N surplus (Tg) Cropland: 135

Grassland: 43
Forest: 32

NH3 (Tg) Cropland: 29
Grassland: 9

Forest: 2
N2O (Tg) Cropland: 5

Grassland: 1
Forest: 3

NOx (Tg) Cropland: 2
Grassland: 0.4

Forest: 3
NO3

− (Tg)
(Including

leaching and
runoff)

Cropland: 54
Grassland: 11

Forest: 11

N2 (Tg) Cropland: 45
Grassland: 22

Forest: 13
N accumulation
(Tg)

Forest: 37

NUE (%) Cropland: 47
Grassland: 69

Forest: 65

All  nitrogen budgets  refer  to  the  year  2020.  The cropland data  are  derived from
the  Integrated  Model  to  Assess  the  Global  Environment  (IMAGE),  the  grassland
data  from  the  Model  of  Agricultural  Production  and  its  Impact  on  the  Environ-
ment  (MAgPIE),  and  the  forest  data  from  the  Dynamic  Land  Ecosystem  Model
(DLEM).
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reduces  the  need  for  external  N  inputs,  mitigates  N  surplus,  and
promotes greater NUE.

Overall,  elevated  CO2 levels  not  only  have  the  potential  to
increase  food  production  but  also  offer  an  opportunity  to  reduce
environmental pollution. This highlights a significant opportunity to
accelerate  progress  toward  several  Sustainable  Development
Goals[53,54].  Specifically,  improving  NUE  by  19%–32%  can  reduce
nitrate  leaching  and  mitigate  water  eutrophication[34,35],  directly
supporting  SDG  6  ('clean  water  and  sanitation').  Elevated  CO2 can
also  increase  productivity  by  10%–27%[34,35],  contributing  to  SDG 2
('zero hunger').  In  addition,  enhancing NUE and reducing excess  Nr

losses  can  lower  environmental  pollution[34,35],  supporting  SDG 13
('climate  action'),  and  improving  health  and  well-being.  However,
the anticipated rise in BNF under eCO2 needs careful monitoring to
avoid excessive N inputs and losses in terrestrial ecosystems. Exces-
sive N input can be reduced by decreasing reliance on mineral ferti-
lizers and promoting the reuse of organic N sources, such as organic
fertilizers  and  straw[55].  Meanwhile,  the  reduction  in  N  concentra-
tions could impact protein supply in human diets[56], suggesting the
need  to  adjust  dietary  recommendations  to  balance  human  nutri-
tional requirements with protein content[57].

 Global warming

Climate  warming  is  expected  to  have  both  positive  and  negative
impacts  on  N  cycles.  In  croplands,  warming  generally  reduces  crop
yields,  with  maize  experiencing  the  most  significant  decline[58],
especially  in  tropical  and  arid  regions  due  to  heat  stress  and  water
limitations[59,60].  While  wheat  yields  show  no  significant  response  in
high-latitude regions[58], warming in general has a negative impact on
wheat  yields  in  low-latitude  regions[61,62].  In  grasslands  and  forests,
warming increases NPP, primarily through prolonged growing seasons
and enhanced photosynthetic activity[63−65]. Since most vegetation has
not  yet  reached  its  optimal  temperature  for  photosynthesis  under

current  climate  conditions,  moderate  warming  typically  promotes
overall vegetation growth[66]. C3 grasslands, which thrive in temperate
and cold climates,  benefit  from effective photosynthesis  under moist,
cool  conditions[67].  As  a  result,  NPP  increases  by  about  10%  (5%  to
15%)[63].  In  contrast,  C4 grasslands,  which  dominate  subtropical  and
tropical climates, are more efficient in water use under warm, drought-
prone conditions[67]. However, their NPP response to warming remains
statistically  elusive[63].  Although  C4 grasslands  tend  to  be  heat-
tolerant[68], the combined effects of erratic precipitation and increased
evaporation  due  to  climate  warming  may  still  limit  plant  growth[69].
Additionally,  warming  increases  N  concentrations  in  grains,  leaves,
and  stems,  likely  due  to  elevated  N  uptake  and  improved  soil  N
availability[70].  Consequently,  warming tends  to  decrease  N harvest  in
croplands, while increasing it in forests and grasslands. However, forest
N  accumulation  is  projected  to  decrease  globally,  with  the  most
pronounced reductions in regions such as the Amazon, Congo basins,
and Southeast  Asia.  In  contrast,  slight  increases  are  expected in  parts
of North America, northern Eurasia, and high-elevation regions such as
mountains  and  plateaus.  These  patterns  indicate  that  temperature,
elevation, latitude, and precipitation jointly shape regional N accumu-
lation, driving spatial heterogeneity[64] (Fig. 4).

Warming also stimulates microbial activity, accelerating C decom-
position  and  microbial  respiration,  which  in  turn  provides  more
substrates  for  microbial  processes  and  enhances  BNF[71,72].  BNF,
which is likely influenced by changes in root exudates and microbial
activity,  becomes  a  key  contributor  to  increased  N  input  in  crop-
lands  and  grasslands[58,63].  The  primary  focus  of  this  review  is  on
the individual effects of warming on BNF. Although it is recognized
that  soil  moisture  and  temperature  are  key  drivers[73],  the  complex
interactive  effects  of  CO2,  temperature,  and  drought  are  complex
and  will  be  explored  in  future  studies.  Meanwhile,  N  deposition,
influenced  by  ammonia  and  nitrogen  oxides  emissions,  generally
increases  under  warming,  and  anthropogenic  N  inputs  (e.g.,  fertili-
zers and manure) are expected to remain stable. However, warming

 

Fig. 3  The impacts of elevated CO2 levels on terrestrial nitrogen cycles. The orange box represents changes in nitrogen input. The blue box represents
changes in nitrogen output. Red arrows indicate positive effects, green arrows represent suppressive effects, and blue arrows indicate their interrelations.
BNF,  biological  nitrogen fixation;  NPP,  net  primary  productivity;  NUE,  nitrogen use  efficiency;  NH3,  ammonia;  N2O,  nitrous  oxide;  NOx,  nitrogen oxides;
NO3

−,  nitrate  leaching  and  runoff;  N,  nitrogen.  Specific  ecological  processes  corresponding  to  each  arrow:  Red  arrow  → increased  BNF  → increased
nitrogen  input;  Green  arrow  → decreased  deposition/fertilizer/manure/other  input  → decreased  nitrogen  input;  Red  arrow  → increased  yield/NPP  →
increased  nitrogen  harvest;  Green  arrow  → decreased  nitrogen  content  → decreased  nitrogen  harvest;  Red  arrow  → increased  NUE  → decreased
nitrogen  surplus;  Green  arrow  → decreased  ammonia/nitrous  oxide/nitrogen  oxides/nitrate  leaching  and  runoff  → decreased  nitrogen  surplus.  The
symbols are from the Integration and Application Network (https://ian.umces.edu/media-library/).
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also leads to substantial increases in Nr losses, ranging from 22% to
169%[58,63,64].  Enhanced  microbial  processes  and  thermodynamic
reactions result in higher emissions of ammonia, nitrous oxide, and
nitrogen oxides, as well as increased nitrate leaching and runoff into
aquatic  systems[58,63,64] (Fig.  4).  These  increased  N  losses  highlight
the potential for significant environmental pollution.

Overall,  climate warming is projected to lead to crop yield losses
in croplands and increased Nr losses in global terrestrial ecosystems,
posing  potential  risks  and  challenges  for  both  human  society  and
the  environment[27].  Reduced  food  production  may  have  particu-
larly severe consequences for developing economies in Africa, Latin
America,  and Asia,  where crop losses could exacerbate hunger and
malnutrition[8].  On  the  other  hand,  increased  feed  production  in
grasslands  may  bolster  global  livestock  production[74],  prompting
policymakers  to  prioritize  livestock  production  to  meet  the  grow-
ing  demand  for  food  and  protein  from  an  expanding  global
population[75]. While current projections suggest an increase in NPP
in  grasslands  and  forests,  sustained  global  warming  could  push
more ecosystems beyond their optimal temperatures for photosyn-
thesis,  potentially  reducing productivity  and exacerbating negative
impacts[76,77]. Additionally, the accelerating rates of N losses, already
a concerning trend, could significantly affect soil  and water quality,
thereby  hindering  food  production[78,79].  Extreme  heat  further
reduces soil C pools and ecosystem productivity while increasing Nr

losses[80−82].  The  uneven  effects  of  climate  warming  could  exacer-
bate  spatial  inequalities[64],  underscoring  the  need  for  timely  and
robust adaptive strategies to mitigate the diverse impacts of global
warming[83,84].

 Altered precipitation regimes

Decreased  precipitation  reduces  crop  yields  and  NPP  by  imposing
water  stress,  whereas  moderate  increases  alleviate  drought  and
enhance  photosynthesis  and  microbial  activity  that  support  N
cycling[85,86] (Fig.  5).  However,  responses  to  precipitation  variability
are  region-specific.  In  arid  regions,  reductions  in  precipitation  cause
relatively  smaller  declines  in  plant  growth,  reflecting  adaptations  to
chronic water limitation, such as deep rooting and enhanced stomatal
regulation[87,88].  In  contrast,  plants  in  more  humid  regions,  which  are
adapted  to  more  stable  water  availability,  exhibit  greater  growth
reductions  under  drought  conditions[89,90].  Under  decreased  preci-
pitation,  NPP  declines  by  15%  (−24%  to −3%)  in  arid  grasslands,
compared  to  a  greater  decrease  of  29%  (−39%  to −19%)  in  humid
grasslands[91]. Increased precipitation boosts NPP by 30% (22% to 44%)
in arid grasslands, but only 8% (2% to 15%) in humid grasslands[91]. In
arid  grasslands,  increased  precipitation  provides  additional  moisture,
alleviating  the  primary  constraint  on  plant  growth  and  significantly
enhancing  NPP[86].  In  humid  grasslands,  where  water  is  less  limiting,
growth  is  more  influenced  by  temperature,  leading  to  a  smaller
increase  in  NPP[89].  Overall,  increased  precipitation  tends  to  enhance
terrestrial  N  harvest,  while  reduced  precipitation  exerts  the  opposite
effect.

Water  scarcity  also  restricts  microbial  activity,  including  that  of
N-fixing  bacteria[92],  leading  to  a  23%–57%  reduction  in  BNF[91].
Conversely,  increased  precipitation  promotes  microbial  activity
and C availability,  thereby stimulating BNF by 36%–129%[91].  These
effects  may  be  further  mediated  by  changes  in  the  quantity  and
composition of  root  exudates,  such as  rhizoctonia,  which influence

 

Fig. 4  The impacts of global warming on terrestrial nitrogen cycles. The left box represents the impacts of warming on the cropland nitrogen cycles. The
middle  box  represents  the  impacts  of  warming  on  the  forest  nitrogen  cycles.  The  right  box  shows  the  impacts  of  warming  on  the  nitrogen  cycle  in
grasslands.  The  nitrogen  fluxes,  including  nitrogen  input  and  output,  are  shown  by  blue  and  yellow  arrows,  respectively.  Red  arrows  indicate  positive
effects, while green arrows represent suppressive effects. The gray solid lines indicate nonsignificant effects. Feedback mechanisms differ across various
ecosystems.  BNF,  biological  nitrogen  fixation;  NPP,  net  primary  productivity;  NUE,  nitrogen  use  efficiency;  NH3,  ammonia;  N2O,  nitrous  oxide;  NOx,
nitrogen  oxides;  NO3

−,  nitrate  leaching  and  runoff;  [N],  nitrogen  content.  Specific  ecological  processes  corresponding  to  each  arrow:  Red  arrow  →
increased BNF/deposition → increased nitrogen input; Gray solid line → unchanged fertilizer/manure/other input → unchanged nitrogen input; Green
arrow  → decreased  yield  → decreased  nitrogen  harvest;  Red  arrow  → increased  NPP  → increased  nitrogen  harvest;  Red  arrow  → increased  nitrogen
content → increased nitrogen harvest; Red arrow → increased ammonia/nitrous oxide/nitrogen oxides/nitrate leaching and runoff → increased nitrogen
surplus; Green arrow → decreased nitrogen accumulation. The symbols are from the Integration and Application Network (https://ian.umces.edu/media-
library/).
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the  colonization  and  activity  of  N-fixing  microorganisms[93−95].
Meanwhile,  N  deposition,  inferred  from  the  combined  inputs  of
ammonia  and  nitrogen  oxides,  exhibits  different  responses  across
ecosystems.  Anthropogenic  N  inputs  also  vary  by  ecosystem.  In
forests  and  grasslands,  these  inputs  remain  relatively  stable  under
changing  precipitation[91],  whereas  in  croplands,  human-driven  N
inputs generally increase (Fig. 5).

Precipitation  changes  strongly  regulate  Nr dynamics  by  control-
ling  soil  moisture  and  microbial  activity[96−98].  Increased  precipita-
tion enhances soil  water content and hydraulic conductivity,  there-
by  accelerating  N  cycling  and  stimulating  microbial  processes,  in-
cluding  the  activation  of  nitrifying  and  denitrifying  bacteria[99−101].
This  leads  to  higher  nitrate  losses  via  leaching  and  increased
gaseous  N  emissions,  including  nitrous  oxide  and  nitrogen
oxides[91].  Excessive  precipitation  may  also  impair  root  functions
under  waterlogged  conditions,  promoting  ammonia  volatilization
from  croplands[102,103],  whereas  generally  reducing  ammonia  emis-
sions  from  forests  and  grasslands,  as  more  ammonia  remains
dissolved  in  the  soil  solution[104] (Fig.  5).  In  contrast,  decreased
precipitation imposes water  stress,  limiting plant growth,  microbial
N  transformations,  and  NUE[105,106].  This  suppresses  the  activity  of
nitrifying  and  denitrifying  microorganisms[107],  which  reduces  Nr

losses,  including  nitrate  losses  and  emissions  of  nitrous  oxide  and
nitrogen oxides[91].  Meanwhile, ammonia emissions may rise due to
inhibited  nitrification,  leading  to  ammonium  accumulation  and
volatilization[99,100].

These  findings  highlight  the  contrasting  effects  of  precipitation
variability  on  N  cycling:  drought  tends  to  enhance  N  retention  by

limiting  losses,  whereas  wetter  conditions  promote  hydrologically
mediated microbial processes[101,104,108]. These findings suggest that
both  the  magnitude  and  spatial  heterogeneity  of  future  precipita-
tion  changes  are  likely  to  increase,  amplifying  hydrological  and
climatic  pressures  on  global  food  production  and  N  cycling,  and
intensifying  disparities  in  the  global  N  budget[91].  Such  imbalances
call  for  the  urgent  development  and  implementation  of  timely,
region-specific  adaptation  strategies  to  safeguard  food  security
and  environmental  sustainability[109,110].  In  regions  experiencing
decreased  precipitation  and  reduced  yields,  these  measures  alone
may not fully mitigate the associated N pollution. To maintain food
production,  N  inputs  are  likely  to  increase;  however,  with  limited
potential  for  further  improvements  in  NUE,  reactive  N  losses  are
expected to persist.  As a result,  N pollution will  remain a long-term
and  significant  challenge,  especially  under  increasingly  variable
precipitation  patterns.  Extreme  heavy  rainfall  events  further  nega-
tively  affect  soil  C  pools  and N fluxes,  enhancing nitrate losses  and
exacerbating  water  eutrophication[80,111,112].  These  findings  high-
light  the  need  for  integrated  policy  frameworks  that  address
climate,  ecology,  and  pollution  management  simultaneously  to
enhance system resilience and support a sustainable future[113,114].

 Challenges and future directions

This paper focuses on the impacts of individual climate change factors
on  terrestrial  N  cycling.  Climate  change  encompasses  various  factors,
such  as  rising  atmospheric  CO2 concentrations,  global  warming,
altered  precipitation  regimes,  and  extreme  weather  events[115].  These

 

Fig. 5  The impacts of altered precipitation regimes on terrestrial  nitrogen cycles.  The left box represents the impacts of increased precipitation on the
terrestrial nitrogen cycles. The right box represents the impacts of decreased precipitation on the terrestrial nitrogen cycles. The nitrogen fluxes, including
nitrogen  input  and  output,  are  shown  by  dark  blue  and  yellow  arrows  and  boxes,  respectively.  Red  arrows  indicate  positive  effects,  green  arrows
represent suppressive effects, and light blue arrows indicate their interrelations. The gray solid lines indicate nonsignificant effects. Nitrogen deposition,
based  on  combined  ammonia  and  nitrogen  oxides,  varies  across  ecosystems  due  to  differing  feedback  mechanisms.  BNF,  biological  nitrogen  fixation;
NPP, net primary productivity; NH3, ammonia; N2O, nitrous oxide; NOx, nitrogen oxides; NO3

−, nitrate leaching and runoff; N, nitrogen. Specific ecological
processes  corresponding  to  each  arrow:  Red  or  green  arrow  → increased  or  decreased  BNF/deposition/fertilizer/manure/other  input  → increased  or
decreased nitrogen input;  Gray solid line → unchanged fertilizer/manure → unchanged nitrogen input;  Red or green arrow → increased or decreased
yield/NPP  → increased  or  decreased  nitrogen  harvest;  Red  or  green  arrow  → increased  or  decreased  ammonia/nitrous  oxide/nitrogen  oxides/nitrate
leaching and runoff → increased or decreased nitrogen surplus; Red or green arrow → increased or decreased nitrogen accumulation. The symbols are
from the Integration and Application Network (https://ian.umces.edu/media-library/).

Impacts of climate change on global terrestrial nitrogen cycles

Nitrogen Cycling  |  Volume 1  |  2025  |  e012 page 7 of 12

https://ian.umces.edu/media-library/
https://ian.umces.edu/media-library/
https://ian.umces.edu/media-library/


factors  interact  through  multiple  mechanisms  to  affect  terrestrial
ecosystems,  and  the  complexity  of  these  interactions  makes  it
challenging  to  comprehensively  address  them  within  a  single  study.
In  particular,  the  frequency  and  intensity  of  extreme  climate  events
should be incorporated into  Earth  system models  to  more accurately
assess  N  cycling  responses  of  terrestrial  ecosystems  under  climate
change[80,116].  Consequently,  a  comprehensive  assessment  of  the
combined effects  of  multiple  climate drivers  on N cycling remains  an
ambitious but necessary research goal.  Future studies should employ
machine  learning  and  other  approaches  to  explore  the  interactions
among  multiple  factors[117,118] (Fig.  6).  Specific  applications  include
using random forest models for Nr loss prediction and deep learning to
integrate  remote  sensing,  field  experiments,  and  model  outputs  to
predict long-term N dynamics.

The  data  include  experimental  manipulations  of  both  managed
and  natural  ecosystems.  While  the  distribution  of  study  sites  is
uneven due to data availability,  the current dataset spans all  conti-
nents and climate zones globally[34,35,58,63,64,91].  However, integrated
global  datasets  with  uniform  distributions  that  simultaneously
capture CO2, temperature, and precipitation are lacking, which limits
the feasibility of combining these variables in a single unified analy-
sis.  In  addition,  high  experimental  costs  and  limited  resources  in
low-latitude  developing  countries  hinder  the  widespread  imple-
mentation  of  climate  manipulation  experiments,  thereby  reducing
the  global  applicability  of  research  findings[119].  As  more  compre-
hensive  datasets  and  advanced  methodologies  become  available,
large-scale  synthesis  of  multi-factor  climate  impacts  will  be  increa-
singly  feasible.  Alternative  solutions,  such as  incorporating satellite
inversion data, establishing international cooperation networks, and
promoting  low-cost  observation  technologies,  should  be  explored
to make climate experiments more feasible and accessible in these
regions.  Overcoming  these  challenges  will  require  policy  interven-
tions, including financial support and capacity-building projects[120].

Given  the  accelerating  pace  of  climate  change,  only  through
sustained, coordinated global action can we effectively address the
interconnected  challenges  of  food  security  and  environmental
sustainability (Fig. 6).

The  long-term  responses  of  terrestrial  ecosystems  to  climate
change  are  further  influenced  by  factors  such  as  physiological
thresholds,  species  interactions,  domestication,  and  adaptation,  all
of  which  may  introduce  non-linear  dynamics[121−123].  These  effects
are context-dependent and vary over time and across environmen-
tal  conditions,  making  it  challenging  to  extrapolate  short-term
results  to  long-term  predictions,  especially  those  extending  to
2100[124,125].  Therefore,  the  application  of  century-scale  models  is
essential  for  capturing  the  long-term  dynamics  of  terrestrial  N
cycling  and  informing  adaptation  and  mitigation  strategies  under
ongoing  climate  change.  Additionally,  climate-induced  shifts  in
species  composition  may  indirectly  affect  productivity,  potentially
amplifying  or  mitigating  the  direct  effects  of  climate  change[126].
Future  research  should  integrate  species  turnover  models  with
climate projections to better understand the feedback mechanisms
of N cycling under different climate scenarios (Fig. 6).

Although this study emphasizes the impacts of climate change on
N cycling, it is acknowledged that other nutrients, such as phospho-
rus,  potassium,  and  antibiotics,  also  play  crucial  roles  in  ecosystem
responses  to  climate  change[76].  For  instance,  warming  has  been
shown to exacerbate the release of phosphorus from soils and water
bodies[127,128].  Further  research  is  needed  to  assess  the  interactive
effects of N and other nutrients, expanding from a 'single N cycle' to
a  'multi-nutrient  synergistic  cycle',  and  to  develop  strategies  for
maintaining  nutrient  stoichiometric  balance,  which  is  essential  for
ecosystem  health  and  service  provision[129].  Nitrous  acid  is  also  a
significant N loss pathway[130], and the effects of climate change on
nitrous  acid  can  be  a  key  focus  in  future  research[131].  Given  the
transboundary  nature  of  Nr loss,  it  necessitates  solid  international

 

Fig.  6  Challenges  and  future  perspective  on  terrestrial  nitrogen  cycles  under  global  climate  change.  The  symbols  are  from  the  Integration  and
Application Network (https://ian.umces.edu/media-library/).
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cooperation to manage the global  N cycle[24].  Integrating N-related
policies into frameworks such as the Paris  Agreement can enhance
synergies  and  guide  national  actions  through  nationally  deter-
mined  contributions,  promoting  efficient  NUE  and  reducing  envi-
ronmental threats to support sustainable development goals[132,133].

Policymakers, scientists, and the public must continue to collabo-
rate.  Decision-makers  should  implement  strategies  to  improve
productivity  and  reduce  Nr losses  in  parallel  with  measures  to
manage  climate  impacts[8] (Fig.  6).  For  example,  in  rainfed  and
mixed farming systems of  sub-Saharan Africa,  combining rainwater
harvesting  with  organic  amendments  can  effectively  enhance  soil
fertility  and  improve  both  water- and  N-use  efficiency[134].  In
Panama  forests,  introducing  N2-fixing  tree  species  helps  sustain
natural N inputs and reduces dependence on external fertilizers[135].
A  comprehensive  understanding  of  the  mechanisms  controlling
terrestrial  N  cycling  is  essential  for  developing  effective  manage-
ment strategies[136−138].

 Conclusions

This  review  quantifies  the  impacts  of  elevated  CO2,  global  warming,
and  altered  precipitation  regimes  on  N  cycling  across  croplands,
forests, and grasslands, and further identifies the key drivers of regional
heterogeneity,  highlighting  how  climate  change  may  exacerbate
spatial  disparities  in  N  dynamics.  Based  on  these  insights,  this  study
outlines  several  priority  future  research  directions:  (1)  investigating
multi-factor interactions among climate change drivers; (2) integrating
comprehensive  datasets  and  refining  model  structures;  (3)  exploring
cross-nutrient interactions beyond the N cycle; (4) assessing long-term
and  non-linear  ecosystem  responses;  and  (5)  developing  region-
specific  adaptation  strategies.  A  comprehensive  understanding  of
these  processes  is  essential  for  promoting  sustainable  development
under a changing climate.
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