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Abstract

Terrestrial ecosystems are fundamental to human well-being, providing essential services
such as food production, biodiversity maintenance, water regulation, carbon sequestration,
and soil conservation. However, the accelerating pace of climate change is profoundly
reshaping these ecosystems, heightening the urgency and complexity of their sustainable
management. Although considerable advances have been made in understanding how
climate change affects terrestrial ecosystems, global assessments of its impacts on nitrogen
cycles remain fragmented, lacking systematic feedback analyses at the global scale and
robust quantification of regional heterogeneity. This fragmentation constrains the incorpo-
ration of nitrogen feedback into Earth system models, thereby reducing the precision and
reliability of future climate projections. This review synthesizes current knowledge on how
key climate change drivers, including elevated atmospheric CO, concentrations, rising
temperatures, and altered precipitation regimes, individually influence nitrogen dynamics
across terrestrial ecosystems. This review further assesses the potential impacts of climate
change on nitrogen budgets in global croplands, forests, and grasslands. The review also
identifies critical challenges and emerging research priorities, emphasizing the need for
integrated nitrogen cycle management under a changing climate. By advancing a unified
understanding of climate-nitrogen interactions, this work provides a scientific basis for
designing adaptation strategies that promote both ecological resilience and progress toward
the Sustainable Development Goals (SDG).
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Highlights

+ Elevated CO, concentrations, warming, and altered precipitation regimes are reshaping global terrestrial nitrogen cycles.
+ Insufficient knowledge of climate-nitrogen feedback limits the reliability of future predictions.
« Integrated governance of the nitrogen cycle is essential for effective climate adaptation strategies.
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Climate change is accelerating at an unprecedented pace, threaten-
ing human well-being and planetary health[". This includes elevated
carbon dioxide concentrations (eCO,)!?, warming®), and altered preci-
pitation regimest’. In 2024, the atmospheric CO, concentration
reached a record high of 423.9 + 0.2 parts per million (ppm), 152% of
the pre-industrial level of 278.3 ppmP, while the year also became the
warmest on record in the past 175 years, with the temperature nearly
1.55 % 0.13 °C above the 1850-1990 average!?. Additionally, precipi-
tation patterns showed significant regional variability, with changes
in both rainfall frequency and intensity®® (Fig. 1a—c). Terrestrial eco-
systems, including croplands, forests, and grasslands, are vital for
providing essential resources that sustain human well-being (Fig. 1d).
However, climate change can alter nitrogen (N) cycling as well as
other biogeochemical processes, thereby negatively impacting these
ecosystems and threatening their ability to sustain vital services'.
Cropland, vital for food security, is under threat from climate
change!”#. Extreme rainfall can limit N availability during rice tillering,
leading to yield losses!. Forests and grasslands, which play crucial
roles in biodiversity maintenance, water regulation, soil retention, and
carbon (C) sequestration, are increasingly exposed to extreme weather
events such as droughts and wildfires!'®='%, In particular, increased
fire frequency can lead to significant losses of soil N and C in broadleaf
forests and savanna grasslands, thereby reducing ecosystem C
storagel'®l,

Terrestrial N cycling plays a key role in sustaining ecosystem
productivity and ensuring food security('7=19), The main terrestrial
N transformation processes include ammonification, assimilation,
biological N fixation (BNF), nitrification, denitrification, and anaero-
bic ammonium oxidation (anammox)2°-221 (Table 1). Based on N
mass balance principles, this study investigates changes in N inputs
(including N deposition, BNF, fertilizer, and manure) and N outputs
(including N harvest and N surplus) in terrestrial ecosystems under
climate change, as well as variations in N accumulation within
forests. Nitrogen surplus encompasses the losses of reactive N (N,)
compounds and dinitrogen gas (N,) emissions (Fig. 2, Tables 1 and
2). N, emissions increased from 164 Tg in 1997 to 210 Tg in 2017[23],
primarily from industrial sources like fossil fuel combustion, and
agricultural sources such as fertilizer application2425, N, pollution
is a significant challenge of the 215t century, causing a cascade
of negative impacts across environmental systems!'826-311 |ts

even more difficulti2432], Therefore, balancing N levels to maximize
benefits while minimizing harmful effects is critical®3l.

This review summarizes the impacts of climate change on terres-
trial ecosystem N cycling, focusing on the mechanisms by which
elevated CO, concentrations, global warming, and altered precipita-
tion regimes influence N cycling, and explores the potential impacts
of climate change on N budgets in global croplands, forests, and
grasslands, highlighting the existing challenges and future research
directions. Through these discussions, this review aims to provide a
critical foundation for understanding the mechanisms underlying
terrestrial ecosystem N cycling in response to climate change, and
to offer theoretical support for developing strategies to optimize N
use efficiency (NUE) while reducing N, emissions in this context
(Table 1).

Elevated CO, levels

Elevated atmospheric CO, levels (eCO,) generally promote crop yield
by 21% (95% confidence interval [Cl], 18% to 25%) relative to the
ambient CO, level, with positive effects observed for major crops such
as wheat, rice, maize, and soybeans¥. Elevated CO, also increases net
primary productivity (NPP) in grasslands (10%; 8% to 12%) and forests
(27%; 23% to 31%) (Table 1), although the extent of these effects varies
depending on the vegetation typel*3! (Fig. 3). In C; grasslands, NPP
increases by 10% (8% to 13%) under eCO,, primarily due to enhanced
photosynthesisB., Elevated CO, increases intercellular and chloroplas-
tic CO, concentrations, thereby raising the ratio of Rubisco carboxyla-
tion to oxygenation, which reduces photorespiration and enhances
net C assimilation®®%3”), In contrast, C, grasslands show no significant
response (10%; —9% to 15%) because their CO, concentrating
mechanism already maintains high local CO, around Rubisco, making
carboxylation relatively insensitive to additional CO,1*%3%, However,
under drought stress, eCO, improves water-use efficiency by reducing
stomatal conductance and increasing intercellular CO, concentrations,
thereby alleviating water limitation and indirectly promoting NPP1041,
Notably, the predicted CO, increase by 2050 is +109 ppm under the
SSP2-4.5 middle-of-the-road scenario and +39 ppm under the SSP1-1.9
sustainability scenario, both of which are lower than the CO, increase
in the current eCO, experiments. This suggests that adaptive responses
are unlikely to occur before 20508,

page2of12

Nitrogen Cycling | Volume 1 | 2025 | €012



Impacts of climate change on global terrestrial nitrogen cycles

Nitrogen
Cycling

(a) 250 Tistory (b) 3.0 ©)s
g 200 == SSPI-RCP2.6 _ 25 4
— - o e
g 150 SSP2-RCP4.5 g 20 S 3
v ] o
= 100 g 15 z 2
° s 10 ER!
< 50 53 o
2 z 05 z0
0 Z 00 21
& & &~
50 —0.5 2 N
co, 1+ Temperature Precipitation
-100 -1.0 -3
1980 2000 2020 2040 2060 2080 2100 1980 2000 2020 2040 2060 2080 2100 1980 2000 2020 2040 2060 2080 2100
Year Year Year

@

Increased
precipitation

Decreased
precipitation

Air environment

Fig. 1 Global climate change and terrestrial ecosystems. (@) Changes in global atmospheric CO, from 1980 to 2100 under different Shared Socioeconomic
Pathways-Representative Concentration Pathways (SSP-RCP) scenarios. (b) Changes in global air temperature from 1980 to 2100 under different SSP-RCP
scenarios. (c) Changes in global land precipitation from 1980 to 2100 under different SSP-RCP scenarios. (d) Effects of different climate change factors on
the nitrogen cycle in global terrestrial ecosystems. Yellow arrows denote interactions between systems; Red arrows indicate the impacts of climate
change on terrestrial ecosystems. N, nitrogen. The symbols are from Integration and Application Network (https://ian.umces.edu/media-library/).

Table 1 Terminologies included in this paper

Variable

Description

Yield

Net primary productivity
Ammonia emission
Nitrous oxide emission
Nitrogen oxide emission

Nitrate leaching

Nitrate runoff

Nitrogen use efficiency
Biological nitrogen fixation
Accumulation

Denitrification
Nitrification
Ammonification
Assimilation

Anammox

Leaf nitrogen content
Grain nitrogen content
Stem nitrogen content

Crop yield is a metric of the quantity of harvested crop production per land area.

NPP includes both aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP).

NH; is emitted into the atmosphere from soil or water bodies of terrestrial ecosystems.

N,O emission is released into the atmosphere during nitrification and denitrification.

NO, emission refers to a collection of N and oxygen compounds including NO, NO,, and N,0s.

NO;™ leaching is the movement of inorganic N from soil, fertilizer, and residues into groundwater or deep soil through rainfall
or drip irrigation.

NO;™ runoff refers to the loss of inorganic N to surface water.

NUE is defined as the N harvest divided by the N input in the terrestrial ecosystems.

BNF is the conversion of N, to NH,* by N-fixing microorganisms, including symbiotic and non-symbiotic ones.

Accumulation is the process by which N is gradually retained and concentrated in soil, litter, and vegetation, mainly in forests,
while N accumulation in croplands and grasslands is assumed stable and therefore not considered here.

Denitrification is the process by which denitrifying microorganisms convert NO;™ to gaseous N (N,O, NO, and N,).
Nitrification is the process by which nitrifying microorganisms convert NH,* to NO3~ under aerobic conditions.
Ammonification refers to the conversion of organic N to NH,* by microorganisms.

Assimilation is the process by which plants and microorganisms incorporate inorganic N (NH,*, NO5~) into organic
compounds for growth and metabolism.

Anammox is the process by which ammonium (NH,*) is oxidized with nitrite (NO,~) under anaerobic conditions to produce N,.
Leaf [N] denotes the N content in the leaf of a plant.

Grain [N] denotes the N content in the grain of a plant.

Stem [N] denotes the N content in the stem of a plant.
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Fig. 2 Nitrogen flows in terrestrial ecosystems. Nitrogen inputs and outputs are differentiated by blue and yellow arrows, respectively. Nitrogen inputs
include biological nitrogen fixation (BNF), deposition, fertilizer, and manure. Nitrogen outputs include harvest, reactive nitrogen losses, and non-reactive
nitrogen emissions. Simplified soil nitrogen cycle, such as ammonification, ammonium assimilation, BNF, nitrification, denitrification, and anaerobic ammo-
nium oxidation (anammox) are shown in light pink arrows. The symbols are from the Integration and Application Network (https://ian.umces.edu/media-

library/).

Table 2 Nitrogen fluxes in croplands, grasslands, and forests derived from
models in 2020

Variable Ecosystem value = Component Ecosystem value
N input (Tg) Cropland: 253 BNF (Tg) Cropland: 40
Grassland: 138 Grassland: 16
Forest: 91 Forest: 66
Deposition (Tg) Cropland: 21
Grassland: 15
Forest: 21

Fertilizer (Tg) Cropland: 141

Grassland: 27

Forest: 4
Manure (Tg) Cropland: 51
Grassland: 80
Forest:/
N harvest (Tg) Cropland: 118
Grassland: 95
Forest: 22
N surplus (Tg) Cropland: 135 NH; (Tg) Cropland: 29
Grassland: 43 Grassland: 9
Forest: 32 Forest: 2
N,O (Tg) Cropland: 5
Grassland: 1
Forest: 3
NO, (Tg) Cropland: 2
Grassland: 0.4
Forest: 3
NO;™ (Tg) Cropland: 54
(Including Grassland: 11
leaching and Forest: 11
runoff)
N, (Tg) Cropland: 45
Grassland: 22
Forest: 13
N accumulation Forest: 37
(Tg)
NUE (%) Cropland: 47
Grassland: 69
Forest: 65

All nitrogen budgets refer to the year 2020. The cropland data are derived from
the Integrated Model to Assess the Global Environment (IMAGE), the grassland
data from the Model of Agricultural Production and its Impact on the Environ-
ment (MAgPIE), and the forest data from the Dynamic Land Ecosystem Model
(DLEM).

Additionally, elevated CO, reduces plant N content, including
grains, leaves, and stems, likely due to N dilution resulting from
increased C assimilation and decreased investment in Rubisco for
photosynthesis“243l, Leaf N content in woody plants decreases
under eCO,*¥ (Table 1), with non-leguminous trees showing appro-
ximately twice the reduction compared to legumes, and evergreen
species exhibiting more substantial declines than deciduous ones.
Needle-like leaves experience a two- to four-fold greater decrease in
leaf N compared to other leaf types. Meanwhile, woody plants tend
to exhibit greater N reductions than herbaceous plantst*’l. In crops,
eCO, typically induces a N dilution effect, although its magnitude
varies among species. Potato and major cereal crops such as barley,
rice, and wheat generally show notable reductions in N content,
whereas soybean exhibits only a minimal decreasel*®l, Long-term
trends also indicate a decline in N availability in forests and natural
grasslands under eCO,!7l. Decreased N content may progressively
diminish the productivity gains typically associated with eCO, and
constrain ecosystem C sequestration®’48], In agricultural systems,
although mineral fertilization can compensate for N deficits, plants
under eCO, tend to allocate more N to roots rather than leaves,
leading to lower leaf N content™d. Overall, despite the reduction
in plant N content, the rise in NPP and crop yields under eCO,
ultimately leads to an increase in total N harvest in terrestrial
ecosystemsB34391 (Fig. 3).

Elevated CO, also enhances BNF rates, boosting microbial capa-
city to convert inert N, into plant-available N and reducing nitrates
to N,50-52 Concurrently, eCO, stimulates N uptake by plants,
improving NUE by 19%-32% in terrestrial ecosystemsB3435., This
increase in NUE reduces N, losses, including the emissions of ammo-
nia (NHs), nitrous oxide (N,0), and nitrogen oxides (NO,) to the
atmosphere, as well as decreases in nitrate leaching and runoff
(NO;7) into water bodies3435! (Table 1). Nitrogen deposition, influ-
enced by ammonia and nitrogen oxide emissions, generally declines
under eCO,, and anthropogenic N inputs, such as fertilizers and
manure, are also expected to decreaseB+33! (Fig. 3). In summary,
eCO, has a positive impact on N cycling in terrestrial ecosystems. It
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Fig. 3 The impacts of elevated CO, levels on terrestrial nitrogen cycles. The orange box represents changes in nitrogen input. The blue box represents
changes in nitrogen output. Red arrows indicate positive effects, green arrows represent suppressive effects, and blue arrows indicate their interrelations.

BNF, biological nitrogen fixation; NPP, net primary productivity; NUE, nitrogen use efficiency; NH;, ammonia;

N,O, nitrous oxide; NO,, nitrogen oxides;

NO;~, nitrate leaching and runoff; N, nitrogen. Specific ecological processes corresponding to each arrow: Red arrow — increased BNF — increased
nitrogen input; Green arrow — decreased deposition/fertilizer/manure/other input — decreased nitrogen input; Red arrow — increased yield/NPP —
increased nitrogen harvest; Green arrow — decreased nitrogen content — decreased nitrogen harvest; Red arrow — increased NUE — decreased
nitrogen surplus; Green arrow — decreased ammonia/nitrous oxide/nitrogen oxides/nitrate leaching and runoff — decreased nitrogen surplus. The
symbols are from the Integration and Application Network (https://ian.umces.edu/media-library/).

reduces the need for external N inputs, mitigates N surplus, and
promotes greater NUE.

Overall, elevated CO, levels not only have the potential to
increase food production but also offer an opportunity to reduce
environmental pollution. This highlights a significant opportunity to
accelerate progress toward several Sustainable Development
Goals®3>4, Specifically, improving NUE by 19%-32% can reduce
nitrate leaching and mitigate water eutrophicationB3+43%], directly
supporting SDG 6 ('clean water and sanitation'). Elevated CO, can
also increase productivity by 10%-27%[343%], contributing to SDG 2
('zero hunger'). In addition, enhancing NUE and reducing excess N,
losses can lower environmental pollution343%], supporting SDG 13
(‘climate action'), and improving health and well-being. However,
the anticipated rise in BNF under eCO, needs careful monitoring to
avoid excessive N inputs and losses in terrestrial ecosystems. Exces-
sive N input can be reduced by decreasing reliance on mineral ferti-
lizers and promoting the reuse of organic N sources, such as organic
fertilizers and strawl>3l. Meanwhile, the reduction in N concentra-
tions could impact protein supply in human diets%], suggesting the
need to adjust dietary recommendations to balance human nutri-
tional requirements with protein content!>7],

Global warming

Climate warming is expected to have both positive and negative
impacts on N cycles. In croplands, warming generally reduces crop
yields, with maize experiencing the most significant decline®,
especially in tropical and arid regions due to heat stress and water
limitations®>®’., While wheat yields show no significant response in
high-latitude regionsl®®, warming in general has a negative impact on
wheat yields in low-latitude regions®'®2. In grasslands and forests,
warming increases NPP, primarily through prolonged growing seasons
and enhanced photosynthetic activity®3-6°], Since most vegetation has
not yet reached its optimal temperature for photosynthesis under

current climate conditions, moderate warming typically promotes
overall vegetation growth®®. C; grasslands, which thrive in temperate
and cold climates, benefit from effective photosynthesis under moist,
cool conditions!®”). As a result, NPP increases by about 10% (5% to
15%)©3L, In contrast, C, grasslands, which dominate subtropical and
tropical climates, are more efficient in water use under warm, drought-
prone conditionst®’l. However, their NPP response to warming remains
statistically elusive®. Although C, grasslands tend to be heat-
tolerant’®8], the combined effects of erratic precipitation and increased
evaporation due to climate warming may still limit plant growth®”!,
Additionally, warming increases N concentrations in grains, leaves,
and stems, likely due to elevated N uptake and improved soil N
availability!”®.. Consequently, warming tends to decrease N harvest in
croplands, while increasing it in forests and grasslands. However, forest
N accumulation is projected to decrease globally, with the most
pronounced reductions in regions such as the Amazon, Congo basins,
and Southeast Asia. In contrast, slight increases are expected in parts
of North America, northern Eurasia, and high-elevation regions such as
mountains and plateaus. These patterns indicate that temperature,
elevation, latitude, and precipitation jointly shape regional N accumu-
lation, driving spatial heterogeneity®” (Fig. 4).

Warming also stimulates microbial activity, accelerating C decom-
position and microbial respiration, which in turn provides more
substrates for microbial processes and enhances BNF[7'72] BNF,
which is likely influenced by changes in root exudates and mlcroblal
activity, becomes a key contributor to increased N input in crop-
lands and grasslandsf5863l, The primary focus of this review is on
the individual effects of warming on BNF. Although it is recognized
that soil moisture and temperature are key driversl’3], the complex
interactive effects of CO,, temperature, and drought are complex
and will be explored in future studies. Meanwhile, N deposition,
influenced by ammonia and nitrogen oxides emissions, generally
increases under warming, and anthropogenic N inputs (e.g., fertili-
zers and manure) are expected to remain stable. However, warming

Nitrogen Cycling | Volume 1 | 2025 | €012

page5of12


https://ian.umces.edu/media-library/
https://ian.umces.edu/media-library/
https://ian.umces.edu/media-library/

Nitrogen
Cycling

Impacts of climate change on global terrestrial nitrogen cycles

. Depositionf
* BNF

[- Deposition + BNF f . Fertilizer—]

* Deposition *
« BNF

* Fertilizer
* Manure =
* Other input

Harvest crops *

* Yield ¥
* Grain [N]4

« NPP 4
+ Stem [N]

Accumulation {
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surplus; Green arrow — decreased nitrogen accumulation. The symbols are from the Integration and Application Network (https://ian.umces.edu/media-

library/).

also leads to substantial increases in N, losses, ranging from 22% to
169%[°863641, Enhanced microbial processes and thermodynamic
reactions result in higher emissions of ammonia, nitrous oxide, and
nitrogen oxides, as well as increased nitrate leaching and runoff into
aquatic systemsl863641 (Fig. 4). These increased N losses highlight
the potential for significant environmental pollution.

Overall, climate warming is projected to lead to crop yield losses
in croplands and increased N, losses in global terrestrial ecosystems,
posing potential risks and challenges for both human society and
the environment?”], Reduced food production may have particu-
larly severe consequences for developing economies in Africa, Latin
America, and Asia, where crop losses could exacerbate hunger and
malnutrition®l, On the other hand, increased feed production in
grasslands may bolster global livestock production, prompting
policymakers to prioritize livestock production to meet the grow-
ing demand for food and protein from an expanding global
population”3l, While current projections suggest an increase in NPP
in grasslands and forests, sustained global warming could push
more ecosystems beyond their optimal temperatures for photosyn-
thesis, potentially reducing productivity and exacerbating negative
impactsl76771, Additionally, the accelerating rates of N losses, already
a concerning trend, could significantly affect soil and water quality,
thereby hindering food productionl’879, Extreme heat further
reduces soil C pools and ecosystem productivity while increasing N,
losses(®9-821, The uneven effects of climate warming could exacer-
bate spatial inequalitiesl®¥, underscoring the need for timely and
robust adaptive strategies to mitigate the diverse impacts of global
warming(é3.84,

Altered precipitation regimes

Decreased precipitation reduces crop yields and NPP by imposing
water stress, whereas moderate increases alleviate drought and
enhance photosynthesis and microbial activity that support N
cycling®®®° (Fig. 5). However, responses to precipitation variability
are region-specific. In arid regions, reductions in precipitation cause
relatively smaller declines in plant growth, reflecting adaptations to
chronic water limitation, such as deep rooting and enhanced stomatal
regulation!®”#8, In contrast, plants in more humid regions, which are
adapted to more stable water availability, exhibit greater growth
reductions under drought conditions®®>°%, Under decreased preci-
pitation, NPP declines by 15% (—24% to —3%) in arid grasslands,
compared to a greater decrease of 29% (—39% to —19%) in humid
grasslands®". Increased precipitation boosts NPP by 30% (22% to 44%)
in arid grasslands, but only 8% (2% to 15%) in humid grasslands®®". In
arid grasslands, increased precipitation provides additional moisture,
alleviating the primary constraint on plant growth and significantly
enhancing NPP, In humid grasslands, where water is less limiting,
growth is more influenced by temperature, leading to a smaller
increase in NPP®. Overall, increased precipitation tends to enhance
terrestrial N harvest, while reduced precipitation exerts the opposite
effect.

Water scarcity also restricts microbial activity, including that of
N-fixing bacterial®, leading to a 23%-57% reduction in BNFE',
Conversely, increased precipitation promotes microbial activity
and C availability, thereby stimulating BNF by 36%-129%°"1. These
effects may be further mediated by changes in the quantity and
composition of root exudates, such as rhizoctonia, which influence
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Fig. 5 The impacts of altered precipitation regimes on terrestrial nitrogen cycles. The left box represents the impacts of increased precipitation on the
terrestrial nitrogen cycles. The right box represents the impacts of decreased precipitation on the terrestrial nitrogen cycles. The nitrogen fluxes, including
nitrogen input and output, are shown by dark blue and yellow arrows and boxes, respectively. Red arrows indicate positive effects, green arrows
represent suppressive effects, and light blue arrows indicate their interrelations. The gray solid lines indicate nonsignificant effects. Nitrogen deposition,
based on combined ammonia and nitrogen oxides, varies across ecosystems due to differing feedback mechanisms. BNF, biological nitrogen fixation;
NPP, net primary productivity; NHs, ammonia; N,O, nitrous oxide; NO,, nitrogen oxides; NO;~, nitrate leaching and runoff; N, nitrogen. Specific ecological
processes corresponding to each arrow: Red or green arrow — increased or decreased BNF/deposition/fertilizer/manure/other input — increased or
decreased nitrogen input; Gray solid line — unchanged fertilizer/manure — unchanged nitrogen input; Red or green arrow — increased or decreased
yield/NPP — increased or decreased nitrogen harvest; Red or green arrow — increased or decreased ammonia/nitrous oxide/nitrogen oxides/nitrate
leaching and runoff — increased or decreased nitrogen surplus; Red or green arrow — increased or decreased nitrogen accumulation. The symbols are
from the Integration and Application Network (https://ian.umces.edu/media-library/).

the colonization and activity of N-fixing microorganisms®3-951,
Meanwhile, N deposition, inferred from the combined inputs of
ammonia and nitrogen oxides, exhibits different responses across
ecosystems. Anthropogenic N inputs also vary by ecosystem. In
forests and grasslands, these inputs remain relatively stable under
changing precipitation!®!, whereas in croplands, human-driven N
inputs generally increase (Fig. 5).

Precipitation changes strongly regulate N, dynamics by control-
ling soil moisture and microbial activity!-98l, Increased precipita-
tion enhances soil water content and hydraulic conductivity, there-
by accelerating N cycling and stimulating microbial processes, in-
cluding the activation of nitrifying and denitrifying bacterial®®-1011,
This leads to higher nitrate losses via leaching and increased
gaseous N emissions, including nitrous oxide and nitrogen
oxidesl'l. Excessive precipitation may also impair root functions
under waterlogged conditions, promoting ammonia volatilization
from croplands!'02193], whereas generally reducing ammonia emis-
sions from forests and grasslands, as more ammonia remains
dissolved in the soil solutionl'%4 (Fig. 5). In contrast, decreased
precipitation imposes water stress, limiting plant growth, microbial
N transformations, and NUE['951061 This suppresses the activity of
nitrifying and denitrifying microorganisms!'%7], which reduces N,
losses, including nitrate losses and emissions of nitrous oxide and
nitrogen oxides®'l. Meanwhile, ammonia emissions may rise due to
inhibited nitrification, leading to ammonium accumulation and
volatilization(®9.100],

These findings highlight the contrasting effects of precipitation
variability on N cycling: drought tends to enhance N retention by

limiting losses, whereas wetter conditions promote hydrologically
mediated microbial processes!'01.104108] These findings suggest that
both the magnitude and spatial heterogeneity of future precipita-
tion changes are likely to increase, amplifying hydrological and
climatic pressures on global food production and N cycling, and
intensifying disparities in the global N budget®!l. Such imbalances
call for the urgent development and implementation of timely,
region-specific adaptation strategies to safeguard food security
and environmental sustainability(19°11%, |n regions experiencing
decreased precipitation and reduced yields, these measures alone
may not fully mitigate the associated N pollution. To maintain food
production, N inputs are likely to increase; however, with limited
potential for further improvements in NUE, reactive N losses are
expected to persist. As a result, N pollution will remain a long-term
and significant challenge, especially under increasingly variable
precipitation patterns. Extreme heavy rainfall events further nega-
tively affect soil C pools and N fluxes, enhancing nitrate losses and
exacerbating water eutrophication(®111.112 These findings high-
light the need for integrated policy frameworks that address
climate, ecology, and pollution management simultaneously to
enhance system resilience and support a sustainable futurel13.114],

Challenges and future directions

This paper focuses on the impacts of individual climate change factors
on terrestrial N cycling. Climate change encompasses various factors,
such as rising atmospheric CO, concentrations, global warming,
altered precipitation regimes, and extreme weather events!''*.. These
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factors interact through multiple mechanisms to affect terrestrial
ecosystems, and the complexity of these interactions makes it
challenging to comprehensively address them within a single study.
In particular, the frequency and intensity of extreme climate events
should be incorporated into Earth system models to more accurately
assess N cycling responses of terrestrial ecosystems under climate
changel® "9, Consequently, a comprehensive assessment of the
combined effects of multiple climate drivers on N cycling remains an
ambitious but necessary research goal. Future studies should employ
machine learning and other approaches to explore the interactions
among multiple factors!''”'"® (Fig. 6). Specific applications include
using random forest models for N, loss prediction and deep learning to
integrate remote sensing, field experiments, and model outputs to
predict long-term N dynamics.

The data include experimental manipulations of both managed
and natural ecosystems. While the distribution of study sites is
uneven due to data availability, the current dataset spans all conti-
nents and climate zones globally3435586364911 However, integrated
global datasets with uniform distributions that simultaneously
capture CO,, temperature, and precipitation are lacking, which limits
the feasibility of combining these variables in a single unified analy-
sis. In addition, high experimental costs and limited resources in
low-latitude developing countries hinder the widespread imple-
mentation of climate manipulation experiments, thereby reducing
the global applicability of research findings!''®. As more compre-
hensive datasets and advanced methodologies become available,
large-scale synthesis of multi-factor climate impacts will be increa-
singly feasible. Alternative solutions, such as incorporating satellite
inversion data, establishing international cooperation networks, and
promoting low-cost observation technologies, should be explored
to make climate experiments more feasible and accessible in these
regions. Overcoming these challenges will require policy interven-
tions, including financial support and capacity-building projects!'20l,

Given the accelerating pace of climate change, only through
sustained, coordinated global action can we effectively address the
interconnected challenges of food security and environmental
sustainability (Fig. 6).

The long-term responses of terrestrial ecosystems to climate
change are further influenced by factors such as physiological
thresholds, species interactions, domestication, and adaptation, all
of which may introduce non-linear dynamics!'2'-123, These effects
are context-dependent and vary over time and across environmen-
tal conditions, making it challenging to extrapolate short-term
results to long-term predictions, especially those extending to
210001241251 Therefore, the application of century-scale models is
essential for capturing the long-term dynamics of terrestrial N
cycling and informing adaptation and mitigation strategies under
ongoing climate change. Additionally, climate-induced shifts in
species composition may indirectly affect productivity, potentially
amplifying or mitigating the direct effects of climate changel'26l,
Future research should integrate species turnover models with
climate projections to better understand the feedback mechanisms
of N cycling under different climate scenarios (Fig. 6).

Although this study emphasizes the impacts of climate change on
N cycling, it is acknowledged that other nutrients, such as phospho-
rus, potassium, and antibiotics, also play crucial roles in ecosystem
responses to climate changel’®l, For instance, warming has been
shown to exacerbate the release of phosphorus from soils and water
bodies!27.128], Further research is needed to assess the interactive
effects of N and other nutrients, expanding from a 'single N cycle' to
a 'multi-nutrient synergistic cycle', and to develop strategies for
maintaining nutrient stoichiometric balance, which is essential for
ecosystem health and service provision['29), Nitrous acid is also a
significant N loss pathway!'3%, and the effects of climate change on
nitrous acid can be a key focus in future researchl'3l. Given the
transboundary nature of N, loss, it necessitates solid international
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Fig. 6 Challenges and future perspective on terrestrial nitrogen cycles under global climate change. The symbols are from the Integration and

Application Network (https://ian.umces.edu/media-library/).
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cooperation to manage the global N cyclel?4. Integrating N-related
policies into frameworks such as the Paris Agreement can enhance
synergies and guide national actions through nationally deter-
mined contributions, promoting efficient NUE and reducing envi-
ronmental threats to support sustainable development goals!'32133],

Policymakers, scientists, and the public must continue to collabo-
rate. Decision-makers should implement strategies to improve
productivity and reduce N, losses in parallel with measures to
manage climate impactst® (Fig. 6). For example, in rainfed and
mixed farming systems of sub-Saharan Africa, combining rainwater
harvesting with organic amendments can effectively enhance soil
fertility and improve both water- and N-use efficiency['34. In
Panama forests, introducing N,-fixing tree species helps sustain
natural N inputs and reduces dependence on external fertilizers!'35.
A comprehensive understanding of the mechanisms controlling
terrestrial N cycling is essential for developing effective manage-
ment strategiesl36-138],

Conclusions

This review quantifies the impacts of elevated CO,, global warming,
and altered precipitation regimes on N cycling across croplands,
forests, and grasslands, and further identifies the key drivers of regional
heterogeneity, highlighting how climate change may exacerbate
spatial disparities in N dynamics. Based on these insights, this study
outlines several priority future research directions: (1) investigating
multi-factor interactions among climate change drivers; (2) integrating
comprehensive datasets and refining model structures; (3) exploring
cross-nutrient interactions beyond the N cycle; (4) assessing long-term
and non-linear ecosystem responses; and (5) developing region-
specific adaptation strategies. A comprehensive understanding of
these processes is essential for promoting sustainable development
under a changing climate.
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