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Abstract
Agricultural  nitrogen  pollution  from  nonpoint  sources  remains  a  pervasive  issue  globally,

despite  widespread  adoption  of  best  management  practices  (BMPs).  A  critical  limitation

arises because traditional BMPs planning and modeling frameworks predominantly empha-

size  surface  runoff  processes,  often  overlooking  groundwater  transport,  legacy  nitrogen

accumulation,  and multi-year  delays  before measurable water  quality  improvements occur.

Building upon established optimization methods,  this  review introduces a nitrogen-specific

spatial  optimization  framework.  Recent  advances  are  integrated  by  emphasizing  three  key

dimensions: (1) detailed representation of subsurface nitrogen transport and legacy effects;

(2)  dynamic  and  time-sensitive  optimization  objectives;  and  (3)  practical  implementation

constraints, including farmer adoption behaviors and institutional feasibility. Specifically, the

adoption  of  process-informed  spatial  decision  units  and  integrated  watershed  models  that

explicitly  represent  subsurface  nitrate  transport  pathways  and  legacy  nitrogen  depletion  is

advocated.  To  effectively  manage  inherent  delays  and  uncertainties,  it  is  recommended

to  incorporate  dynamic  optimization  objectives,  such  as  time  to  achieve  water  quality

standards  and  rates  of  legacy  nitrogen  reduction,  alongside  traditional  cost-effectiveness

measures.  These  objectives  should  be  evaluated  across  multiple  plausible  future  scenarios.

To  preserve  computational  feasibility  while  maintaining  process  accuracy,  surrogate

modeling,  and  scenario-based  optimization  methods  are  advised,  with  techniques  such  as

adaptive  sampling  and  parallel  computation.  The  proposed  framework  integrates  socio-

economic  considerations,  incorporates  farmer  adoption probabilities  and transaction costs,

and  establishes  monitoring  and  verification  processes  linked  to  results-based  incentives,

such  as  milestone  payments  tied  to  measurable  nitrate  reductions  or  buffer  strip  effec-

tiveness.  These  measures  are  further  supported  by  risk-sharing  arrangements.  Collectively,

these  components  bridge  the  gap  between  theoretical  solutions  and  practical  implemen-

tation,  transforming  nitrate  management  from  a  modeling  exercise  into  actionable

programs.  The  present  approach  guides  policymakers  toward  strategies  that  are  environ-

mentally  optimal  yet  practically  implementable,  emphasizing  enhanced  near-field  nitrate

monitoring,  integrating  stakeholder  adoption  directly  into  solution  design,  and  combining

immediate  nutrient  reduction  actions  with  long-term  soil  health  practices,  under  clearly

defined environmental and economic safeguards.
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Highlights
•  Process-aware units and coupled surface–groundwater models capture subsurface transport, legacy nitrogen, and delays.

•  Objectives include time-to-standard, legacy drawdown rate, and compliance probabilities.

•  Surrogate-assisted, scenario-based optimization with active learning maintains computational efficiency.

•  Implementation  considers  adoption  rates,  transaction  costs,  and  monitoring  criteria,  ensuring  balanced  portfolios  of  BMP

configurations.

Graphical abstract

 
 Introduction

Diffuse nitrogen pollution from agricultural runoff remains a pervasive
global  threat  to  water  quality[1].  Excess  nitrogen  loading  from  agri-
cultural  sources  drives  eutrophication  and  hypoxic  'dead  zones'  in
numerous  aquatic  ecosystems,  and  nitrate  concentrations  frequently
surpass  safe  drinking  water  standards  in  affected  regions[2].  Globally,
synthetic N fertilizer use exceeded 100 Mt N yr−1 by the mid-2010s[3,4],
and  riverine  nitrogen  fluxes  to  the  ocean  are  now  more  than  double
pre-industrial  levels[5].  In  the  United  States,  agricultural  nonpoint
sources are a primary driver of stream and river impairments[6]. Despite
policy  efforts  to  reduce  nutrient  runoff,  water  quality  improvements
often  lag  due  to  legacy  nutrient  stores  in  soils  and  groundwater[7].
Extended  subsurface  residence  times  can  delay  measurable  water-
quality  responses  by  years  or  even  decades  after  intervention,
underscoring  the  necessity  of  sustained,  proactive  management
strategies[8,9].

Best  management practices (BMPs),  such as cover crops,  riparian
buffers,  constructed  wetlands,  and  precise  nutrient  management
(such as the 4R approach),  are widely recommended for mitigating
agricultural  nonpoint  source  (NPS)  pollution  at  its  source[10,11].
When effectively implemented, these BMPs can significantly reduce
nutrient  and  sediment  losses,  serving  as  the  foundation  for  water-
shed restoration efforts.  However,  observed water quality improve-
ments  from  BMPs  implementation  are  frequently  unsatisfactory[12].
In  many watersheds,  extensive BMP adoption over several  decades
has  yielded  minimal  or  no  observable  reductions  in  nutrient  loads.
Factors contributing to these unsatisfactory outcomes include insuf-
ficient  BMPs  coverage[13],  inadequate  maintenance[14],  lengthy  lag
times  before  observable  responses[7],  and  ineffective  placement  of
practices[15].  Specifically,  failing  to  strategically  target  BMPs  to

critical  pollution  source  areas  considerably  diminishes  their  overall
effectiveness[16].  These  limitations  highlight  the  challenges  asso-
ciated  with  converting  widespread  BMPs  implementation  into
tangible water quality improvements.

To  enhance  BMPs'  effectiveness,  strategic  spatial  planning  that
places  suitable  practices  in  optimal  watershed  locations  is  gaining
attention. Studies show that a small fraction of the landscape, often
less  than  20%,  can  generate  the  majority  of  runoff  and  nutrient
loss[17,18]. Targeting BMPs precisely within these critical source areas
significantly  enhances  the  cost-effectiveness  of  pollution  control
relative  to  uniform  or  random  implementation[19].  Various  spatial
optimization methods have thus been developed to identify econo-
mically  efficient  BMPs  placement  strategies  that  maximize  water
quality benefits under budgetary or land-use constraints[20]. By inte-
grating watershed simulation models  with optimization algorithms
(such  as  integer  programming  or  evolutionary  algorithms),  resear-
chers can systematically evaluate multiple BMP scenarios to identify
configurations that achieve the greatest nutrient load reduction per
unit  cost[20].  Optimizing  both  BMP  selection  and  spatial  arrange-
ment  consistently  yields  better  results  than  ad  hoc  or  evenly
distributed approaches[21].  Nonetheless,  designing these integrated
model–optimization  frameworks  is  inherently  complex,  requiring
accurate representation of nonlinear watershed processes and con-
sideration  of  multiple  objectives  (e.g.,  water  quality  improvements
vs  economic  costs)[22].  Uncertainties  in  model  predictions  and
spatial datasets further complicate the spatial optimization of BMPs,
making it a challenging yet critical research area.

To better align spatial optimization outcomes with practical nitro-
gen  management  objectives,  this  review  proposes  a  framework
specifically  designed  for  agricultural  nitrogen.  The  framework
explicitly  addresses  groundwater  transport  delays,  legacy  nitrogen
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accumulation,  and  socio-economic  barriers  to  implementation.  In
this  context,  this  review  examines  three  core  questions:  (1)  How
should  spatial  decision  units  and  coupled  surface–groundwater
models  be  designed  to  capture  subsurface  transport,  legacy  nitro-
gen  storage,  and  multi-year  lags  that  undermine  traditional  BMPs
optimization? (2) Which time-sensitive and uncertainty-aware objec-
tives (for example, time to standard, legacy drawdown rate, compli-
ance  probability),  and  which  computational  strategies  (surrogates,
adaptive  sampling,  scenario  ensembles,  parallel  computing)  allow
realistic  yet  tractable  optimization  for  nitrogen?  (3)  How  can  opti-
mization  be  made  implementable  by  embedding  farmer  adoption
probabilities,  monitoring-reporting-verification  triggers,  payment
and  risk-sharing  rules,  and  safeguards  for  yields  and  N2O  into  the
design  across  different  policy  regimes?  This  includes  introducing
novel optimization objectives that incorporate time lags and uncer-
tainties,  and  integrating  economic  and  behavioral  factors,  such  as
farmer adoption, into spatial optimization frameworks (Fig. 1).

 The standard framework and its core
contradiction with nitrogen

The  spatial  optimization  of  BMPs  within  a  watershed  constitutes  a
complex  interdisciplinary  systems  engineering  problem,  integrating
advanced hydrological modeling with optimization methodologies[23].
The primary goal is to identify the optimal spatial arrangement of BMPs
across  a  landscape  to  effectively  meet  management  objectives,  such
as  minimizing  nitrogen  loads,  reducing  implementation  costs,  or
balancing  these  competing  goals,  subject  to  practical  constraints,
including budget limitations,  land-use compatibility,  and policy direc-
tives.  Typically,  a  watershed BMPs optimization framework  comprises
five interconnected components (Fig. 2):

(1)  Watershed  simulation  models:  Process-based  models  (e.g.,
SWAT,  HSPF,  AnnAGNPS)  simulate  hydrological  and  water-quality
responses under varying land management scenarios.

(2)  Spatial  configuration  units:  discrete  spatial  elements  (sub-
watersheds, hydrologic response units,  fields,  or grid cells)  used for
BMP assignments.

(3)  BMP  options  and  associated  costs:  available  management
practices,  their  nutrient-reduction  efficiencies,  and  related  imple-
mentation or opportunity costs.

(4)  Optimization  algorithms:  multi-objective  optimization  tools
(often evolutionary algorithms) designed to identify Pareto-optimal
BMP  allocations  based  on  model  simulations  and  management
objectives.

(5) Objective functions: quantitative metrics evaluating outcomes
such as total nitrogen loads at watershed outlets, overall implemen-
tation costs, or combined economic and environmental indicators.

However, when applied specifically to agricultural nitrogen pollu-
tion, this conventional framework encounters significant challenges
due to nitrogen's distinctive biogeochemical behavior. Unlike many
other  pollutants,  nitrate  exhibits  high  water  solubility  and  typically
exists  as  an  anion  (negatively  charged)  in  soil  water,  resulting  in
minimal adsorption to negatively charged soil particles[24,25]. Conse-
quently,  nitrate  is  transported  primarily  by  vertical  leaching  into
groundwater  rather  than  via  surface  runoff  pathways,  unlike  pollu-
tants such as phosphorus and sediment. Rainfall and irrigation facili-
tate  the  downward  movement  of  nitrate  below  the  root  zone  into
shallow and deep aquifers,  forming substantial  long-term pollution
reservoirs[26].

This subsurface-driven transport pathway gives rise to two critical
challenges  for  nitrogen  management:  legacy  nitrogen  storage  and
prolonged response lags (Fig. 2). Historical over-application of ferti-
lizers and manure that exceed crop uptake has generated substan-
tial  nitrogen pools in soils and groundwater.  These legacy nitrogen
stores  continue  to  release  nitrate  into  surface  waters  long  after
reductions  in  on-field  nutrient  applications[27].  Thus,  past  agricul-
tural  practices  persist  as  long-term  sources  of  nitrogen  pollution,
causing  multi-year  to  decadal  delays  between  BMPs  implementa-
tion  and  observable  water-quality  improvements.  In  watersheds
with deeper groundwater systems, this nitrate residence can extend
across  multiple  decades,  significantly  delaying  measurable  respon-
ses to management interventions[7,9,28].

These  subsurface  and  legacy-driven  nitrogen  dynamics  funda-
mentally  conflict  with  assumptions  embedded  in  the  conventional
BMPs  optimization  framework,  which  was  initially  designed  prima-
rily  for  pollutants  transported  by  rapid  surface  runoff  processes.
Traditional framework components, ranging from spatial watershed
segmentation  to  the  selection  of  simulation  models  and  objective
functions,  typically  reflect  assumptions  centered  on  surface-level
pollutant  behavior[29].  This  critical  mismatch  partially  explains

 

Fig.  1  Conceptual  pathways  and  time  scales  of  agricultural  nitrogen
transport  and  a  four-layer  optimization  framework.  Upper  panel:
Nitrogen  originating  from  agricultural  lands  reaches  receiving  waters
through  multiple  pathways,  including  rapid  surface  runoff  (hours  to
days),  intermediate  shallow  subsurface  and  interflow  (days  to  weeks),
and slow groundwater flow (years to decades).  Legacy nitrogen stored
in  soils  and  aquifers  further  prolongs  the  impacts  on  water  quality.
Nitrogen-specific BMPs are strategically placed to intercept these flows,
including:  (1)  cover  crops  that  reduce  nitrate  leaching;  (2)  bioreactors
treating;  (3)  riparian  buffers  intercepting  lateral  flow;  and  (4)  precision
nitrogen  application  controlling  source  inputs.  Lower  panel:  The  com-
plexity of these spatio-temporal dynamics requires advanced modeling
and optimization approaches  structured across  four  integrated dimen-
sions: representation, objectives, computation, and implementation.
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persistently  elevated  nitrate  concentrations  in  agricultural  water-
sheds  despite  extensive  conservation  efforts[8].  Conventional
models  frequently  fail  to  adequately  represent  the  retention  and
delayed release of legacy nitrogen stored in soils and groundwater,
lacking  explicit  mechanisms  to  capture  these  slow,  subsurface
processes[30]. For instance, Ilampooranan et al.[31] demonstrated that
standard  SWAT  modeling  predicted  approximately  two  years  for
water quality recovery following BMPs implementation, whereas an
enhanced  'SWAT-LAG'  model  incorporating  groundwater  nitrogen
delays  projected  an  84-year  recovery  timeline.  This  stark  discre-
pancy  highlights  the  profound  implications  of  neglecting  legacy
nitrogen processes, leading to overly optimistic, unrealistic manage-
ment expectations.

Therefore,  applying  the  traditional  BMPs  spatial  optimization
framework  to  nitrogen  pollution  without  substantial  modification
risks  targeting  incorrect  processes,  unsuitable  locations,  and
inappropriate  temporal  scales.  Subsequent  sections  of  this  review

thoroughly  examine  each  component  of  the  conventional  frame-
work, outlining the necessary adaptations and innovations required
to  accurately  reflect  nitrogen's  unique  subsurface  and  temporal
characteristics  and  thus  achieve  realistic,  practical  nitrogen  pollu-
tion management outcomes (Table 1).

 The evolution of spatial heterogeneity and
hydrological pathways representation

The  standard  watershed  optimization  framework  initially  falls  short
for  nitrogen  management,  particularly  in  its  representation  of  spatial
heterogeneity  and  hydrological  pathways.  The  spatial  units  selected
for  optimization  and  the  simulation  models  evaluating  BMPs'  effec-
tiveness  were  originally  designed  for  surface  runoff  processes.
Consequently, they inadequately capture crucial subsurface pathways
and long-term dynamics central to nitrate pollution.
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Fig. 2  Spatial configuration framework for implementing best management practices (BMPs) under hydrologic and socio-economic uncertainty. Inputs
derived from the BMP data pool and the spatial–hydrological representation are integrated into a comprehensive workflow that combines multi-objective
optimization with modeling and simulation.  Key metrics,  including time-to-standard (TTS),  attainment probability,  and legacy nitrogen drawdown rate
(LDR) are calculated to define clear optimization objectives and constraints,  facilitating robust multi-scenario assessments.  The socio-economic module
embeds policy considerations, evaluates practical feasibility, estimates the likelihood of farmer adoption, analyzes dynamic costs, and addresses equity.
The resulting output provides implementable spatial BMP scenarios, clearly delineating spatial planning decisions and readiness for practical application.
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 Process-based spatial units for nitrogen
management
Defining spatial decision units is fundamental to BMPs optimization, as
this choice determines the granularity and accuracy with which BMPs
can  be  targeted.  Traditionally,  watershed  models  divide  landscapes
into sub-watersheds or hydrologic response units (HRUs). HRUs in the
SWAT  model,  for  example,  group  non-contiguous  land  areas  sharing
similar land use, soil types, and slopes[32,33]. This approach significantly
reduces  complexity,  effectively  modeling  pollutants  predominantly
transported  by  surface  runoff,  such  as  sediment  or  particulate  phos-
phorus,  since  surface  transport  closely  correlates  with  these  surface
characteristics[33].

However,  the  use  of  large,  non-contiguous  HRUs  poses  substan-
tial  problems for  nitrogen management.  Nitrate transport  primarily
occurs  through  vertical  leaching  and  lateral  groundwater  move-
ment,  processes  influenced by factors  that  vary  significantly  at  fine
spatial  scales,  including  soil  permeability,  tile  drainage  presence,
local fertilizer application, and groundwater depth[34,35].  Often, criti-
cal  nitrate  source  areas  differ  significantly  from  surface-runoff  or
erosion  hotspots[36,37].  Coarse  units,  such  as  HRUs,  tend  to  mask
nitrate  leaching  hotspots  through  spatial  averaging,  resulting  in
insufficient BMP allocation in genuinely critical areas[38].

Addressing these limitations, recent research advocates for more
refined, process-informed spatial delineations (Table 2). Approaches
include  employing  smaller,  contiguous  units  that  reflect  actual
hydrological  connectivity,  such  as  small  grid  cells  or  discrete  hills-
lope units following topographic flow paths. Another approach is to
delineate  units  by  landscape  position  (riparian  zones,  footslopes,
and  uplands),  as  this  significantly  influences  water  infiltration  and
surface  runoff[39].  Studies  have  demonstrated  improved  water
quality  outcomes  from  optimized  BMP  placements  using  these
refined spatial  units.  Qin et al.[39] showed that slope-position-based
delineation  significantly  improved  BMPs  targeting  effectiveness
compared  to  larger  sub-basin  approaches.  Similarly,  Maggioli  et

al.[40] found that high-resolution spatial targeting enhanced restora-
tion  outcomes  in  dryland  contexts.  Wu  et  al.[41] introduced  land-
scape  position  units  (LSUs)  within  a  SWAT+  model,  better  identify-
ing  nitrate  sources  overlooked  by  traditional  averaging  methods.
Thus,  shifting  towards  fine-scale  or  process-aligned  units,  despite
increased  complexity,  is  essential  for  accurately  addressing  nitrate
pollution.

 Beyond surface runoff: modeling subsurface and
legacy nitrogen
While  spatial  units  determine  BMP  placement  locations,  simulation
models  forecast  water  and  nitrogen  dynamics  following  BMP  imple-
mentation.  Watershed  models  differ  considerably  in  their  represen-
tation  of  these  processes,  particularly  regarding  subsurface  transport
pathways  and  lag  times  (Table  1).  Among  available  models,  SWAT  is
widely  employed  due  to  its  extensive  simulation  capabilities  for
agricultural  practices  and  its  relatively  detailed  nitrogen  cycling
module[42,43].  However,  standard  SWAT  relies  on  simplified  ground-
water  approximations  based  on  linear  reservoir  concepts,  thereby
inadequately  representing  deeper  groundwater  dynamics  critical  to
nitrogen transport.  In  these models,  nitrate  entering shallow ground-
water  typically  moves  simplistically  towards  streams or  deep aquifers
through  fixed,  exponential  recession  parameters,  omitting  explicit
groundwater  age,  aquifer  heterogeneity,  or  long-term  storage
dynamics[24,44].  These  simplifications  result  in  significant  underrepre-
sentation  of  subsurface  nitrate  pathways  and  time  scales  associated
with legacy nitrogen.

To  accurately  represent  these  processes,  recent  advances  in
modeling have moved in three primary directions.  First,  time-delay
approaches integrate legacy nitrogen modules directly into existing
watershed models. For instance, the SWAT-LAG framework employs
sequential  coupling,  in  which  SWAT  first  simulates  surface  runoff
and  soil  processes,  with  nitrate  leaching  calculated  as  boundary

 

Table 1  Comparison of standard vs nitrogen-tailored frameworks

Key aspects Standard BMPs optimization framework Proposed nitrogen-tailored framework

Target processes Primarily targets surface runoff, soil erosion, and particulate
transport (e.g., phosphorus, sediment)

Explicitly targets subsurface leaching, groundwater transport,
and legacy nitrogen release

Spatial units Uses aggregated Hydrologic Response Units (HRUs) that
often mask spatial connectivity

Uses process-informed units (e.g., grid cells, hillslopes) to capture
leaching hotspots and subsurface connectivity

Simulation models Relies on surface-focused watershed models (e.g., standard
SWAT) with simplified groundwater assumptions

Integrates coupled surface–groundwater models (e.g., SWAT-
MODFLOW) or explicit legacy nitrogen modules

Optimization objectives Focuses on static metrics: annual average load reduction and
initial implementation cost

Focuses on dynamic metrics, such as time-to-Standard (TTS),
legacy drawdown rate (LDR), and robustness under uncertainty

Implementation strategy Often assumes 100% adoption of theoretically optimal
placements

Embeds stochastic farmer adoption probabilities, MRV
milestones, and risk-sharing safeguards directly into the design

 

Table 2  Watershed models commonly used to optimize nitrogen-focused BMPs placement

Model Key N processes Groundwater and
legacy nitrogen Spatial unit Strengths for nitrogen-

BMPs studies Main limitations Ref.

SWAT/SWAT+ Hydrology; soil–plant
nitrogen cycling; leaching;
routing

GW linear reservoirs;
legacy implicit unless
extended

Subbasin–HRU; Rich BMPs library; widely
validated; suits multi-
objective search and
scenario analysis

HRU mixing masks CSAs;
deep GW/lag under-
represented; compute-
heavy

[100]

SWAT–MODFLOW/
GWSWEM

Two-way
surface–groundwater;
refined leaching and
transport

Explicit groundwater
lags and GW-
dominated N fluxes

Model-dependent;
many units

Best where legacy/GW
dominate; long-horizon
realism

High parameterization
and runtime burden

[47]

ELEMeNT-N/
legacy-N

Multi-pool nitrogen
accumulation, residence,
and release

Focus on soil/GW
residence times and
release

Sub-basin/grid Explains lagged recovery;
sets long-horizon targets

Needs an engineered
linkage to the BMP
modules

[101]

AnnAGNPS Event/daily
runoff–erosion–nutrient
export

Simplified
groundwater/lag
representation

Sub-watershed/
field

Fast scenario screening;
field-scale siting

Long-term nitrogen
cycling simplified; low
GW sensitivity

[102]
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inputs.  These  inputs  are  then  passed  to  the  LAG  module,  which
applies transit-time distributions (TTDs) to simulate the storage and
delayed release of  legacy nitrogen in stream networks[31].  Similarly,
the  ELEMenT-N  model  adopts  a  multi-compartmental  structure  to
explicitly  track  nitrogen  accumulation  and  depletion  across  soil,
shallow  groundwater,  and  deep  groundwater  zones  over  decadal
timescales[9,45].

Second,  physically  based  surface–groundwater  model  coupling
enables three-dimensional  simulations of  flow paths.  In  the SWAT–
MODFLOW  integration,  models  exchange  data  through  spatial
mapping  interfaces.  SWAT  calculates  vertical  soil  percolation  and
provides  recharge  estimates  (water  and  nitrogen  loads)  to  specific
MODFLOW  grid  cells.  In  turn,  MODFLOW  simulates  hydraulic  head
distributions and lateral groundwater flow, and passes back ground-
water–surface water  exchange fluxes (baseflow) to SWAT's  channel
routing  module[46].  This  bi-directional  data  exchange  explicitly
addresses  the  spatial  disconnection  between  nitrate  leaching
sources and their delayed impacts on receiving streams.

Third,  reactive  transport  modeling  approaches  integrate  sub-
surface  biogeochemical  processes.  Recent  model  developments,
such  as  SWAT–MODFLOW–RT3D,  add  a  reactive  transport  layer
where  RT3D  solves  multi-species  advection-dispersion-reaction
equations[47,48].  Within  this  coupled  framework,  MODFLOW  gene-
rates  groundwater  velocity  fields,  SWAT  provides  nitrogen  inputs,
and RT3D simulates spatially explicit  nitrogen transformations such
as denitrification within aquifers.

In  summary,  effectively  addressing  nitrogen  pollution  through
spatial  optimization  demands  substantial  advances  beyond  tradi-
tional  surface-focused  frameworks.  Adopting  refined  spatial  units
ensures accurate identification of nitrate hotspots, while integrated
or  enhanced simulation models  realistically  represent  nitrate's  sub-
surface  dynamics  and  storage.  Although  increased  computational
complexity and data requirements accompany these improvements,
they  are  critical  for  developing  realistic  and  practical  nitrogen
management strategies.

 Time-sensitive and robust optimization
objectives for nitrogen

The  subsurface  transport  and  legacy  nitrogen  dynamics  discussed
earlier  pose  significant  challenges  for  conventional  water  quality
management  objectives.  Traditional  frameworks  typically  assess  per-
formance  based  on  annual  average  reductions  in  nutrient  loads.
However, these static measures do not adequately capture the timing
and  pace  of  water-quality  recovery  in  groundwater-dominated  sys-
tems. In contrast, time-sensitive objectives (e.g., TTS) explicitly account
for  delayed  nitrogen  releases.  These  objectives  mathematically  pena-
lize  management  strategies  that  ignore  legacy  nitrogen  reservoirs,
compelling optimization algorithms to prioritize practices like denitri-
fying bioreactors  or  deep-rooted perennial  vegetation,  which directly
intercept  and  mitigate  subsurface  nitrate  pathways[20,31,47].  Conse-
quently,  effective  nitrogen  management  requires  moving  beyond
conventional load-reduction targets to explicitly incorporate temporal
dynamics and robustness against uncertainty (Table 3).

 Time-sensitive objectives
Effective  nitrogen  management  must  evolve  from  solely  focusing  on
load  reductions  to  explicitly  incorporating  temporal  considerations
into objectives, addressing questions of timing and durability of water
quality  improvements.  This  transition  involves  integrating  time-
sensitive metrics, such as time-to-standard (TTS), and the legacy nitro-
gen drawdown rate (LDR), explicitly into optimization frameworks.

Specifically,  TTS  quantifies  the  period  required  from  the  current
time until a water quality metric (e.g., nitrate concentration) consis-
tently  complies  with  regulatory  standards.  When  meeting  these
standards within a set planning horizon (e.g., 30 years) is unrealistic,
alternative metrics such as the duration and cumulative magnitude
of  standard  exceedances  can  serve  as  practical  surrogates[49,50].
These surrogate measures enable optimization approaches to com-
pare  and  evaluate  management  strategies  effectively,  even  when
immediate compliance with water quality standards is not feasible.

LDR  measures  how  rapidly  legacy  nitrogen  stores  are  reduced
under  interventions.  A  higher  LDR  indicates  more  effective  deple-
tion  of  accumulated  nitrogen  pools,  thereby  facilitating  sustained
improvements in water quality over time. Although directly measur-
ing legacy nitrogen reservoirs is challenging, LDR can be estimated
using  advanced  modeling  techniques  or  inferred  indirectly  from
groundwater  nitrate  concentration  trends  and  isotopic  tracer
analyses[51].

Several  practical  considerations  emerge  when  incorporating  TTS
and  LDR  into  optimization  frameworks.  First,  robust  estimation
methods  for  these  metrics  are  essential.  Specifically,  TTS  can  be
significantly  influenced  by  natural  hydrologic  variability,  such  as
sequences  of  particularly  wet  or  dry  years,  which  can  accelerate  or
delay  achieving  compliance  thresholds.  Techniques  such  as  flow
normalization  (which  adjusts  for  flow  variability  to  better  isolate
concentration  trends)  or  probabilistic  assessments  based  on  multi-
ple climate scenarios can improve the reliability of TTS estimates[52].
Outputs  from  these  analyses  may  include  distributions  or  confi-
dence  intervals  for  TTS,  guiding  optimization  toward  minimizing
median times or ensuring high probabilities of meeting water qua-
lity  standards  within  specified  durations.  Second,  validation  of
modeled  predictions  against  empirical  data  are  crucial.  If  a  model
predicts  achieving  compliance  within  a  specific  timeframe  (e.g.,  15
years),  it  must  be  grounded  in  realistic  assumptions  regarding  the
depletion  rate  of  groundwater  nitrate.  The  LDR  provides  a  mecha-
nistic check: predictions about TTS must align with the correspond-
ing rates of legacy nitrogen depletion, which can be independently
verified  through  groundwater  dating,  nitrate  flux  observations,
and tracer studies. Ascott et al.[51] highlighted that combining well-
monitoring  networks  and  tracer  studies  with  model  predictions
effectively  'ground-truths'  these  depletion  estimates,  reducing  the
risk of overly optimistic projections.

In summary, integrating TTS and LDR into the optimization frame-
works  is  essential,  rather  than  merely  adding  complexity.  This
integration  ensures  alignment  of  optimization  objectives  with  the
physical  reality  of  nitrate  pollution  dynamics,  where  temporal
considerations are critical to achieving meaningful and lasting water
quality outcomes.

 Robust objectives under uncertainty
Another key evolution in optimizing nitrogen management objectives
involves  explicitly  acknowledging  and  addressing  the  substantial
uncertainties surrounding future environmental, economic, and policy
conditions.  Nitrogen  mitigation  strategies  implemented  today  will
have  implications  spanning  decades,  during  which  factors  such  as
climate  change,  shifts  in  land-use  practices,  economic  developments,
and evolving policies could significantly alter their effectiveness.  Con-
sequently,  a  management  strategy optimized under  specific  assump-
tions  such  as  current  average  climate  conditions,  stable  crop  prices,
and static land-use patterns might underperform substantially if those
assumptions prove inaccurate. For instance, increased rainfall intensity
could  elevate  runoff  and  leaching,  or  crop  shifts  could  alter  nitrogen
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demand  patterns[34].  Thus,  there  is  a  growing  emphasis  on  transi-
tioning  from  traditional  single-scenario  optimization  to  robust
optimization.

Robust  optimization  aims  to  find  solutions  that  remain  effective
across  a  range  of  plausible  future  scenarios  rather  than  a  single
deterministic future. This approach can be operationalized through
several  methodologies.  One  common  strategy  involves  statistical
objectives, such as maximizing the average nitrogen load reduction
while  minimizing  variance  across  diverse  climate  and  socio-
economic  scenarios[53].  Alternatively,  optimization  may  employ
chance  constraints,  ensuring  targets  like  achieving  nitrate  concen-
tration  standards  by  a  specific  future  date  in  a  high  percentage  of
simulated  scenarios  (e.g.,  at  least  80%  by  2040).  Another  notable
approach  is  the  maximin  or  minimax  regret  formulation,  which
optimizes  performance  in  worst-case  scenarios  while  maintaining
acceptable performance under more favorable conditions[54].  These
methods  collectively  shift  the  optimization  focus  from  identifying
an  ideal  solution  for  a  single  assumed  future  toward  finding  solu-
tions  that  provide  satisfactory  outcomes  across  multiple  plausible
scenarios.

Implementing  robust,  multi-scenario  optimization  typically
requires  evaluating  candidate  BMP  placements  under  numerous
future conditions[55]. For example, a given BMP configuration might
be assessed under multiple climate projections, various agricultural
fertilization  rates,  and  different  economic  scenarios,  resulting  in
extensive scenario  analyses  for  each candidate solution.  Objectives
might  then  aim  to  minimize  costs  while  ensuring  that  nitrate
concentration targets  are  consistently  achieved across  most  scena-
rios,  such  as  meeting  reliability  thresholds  (e.g.,  90%  compliance).

Results  can  be  presented  using  probability  distributions  or  reliabi-
lity  curves,  providing  decision-makers  with  insights  into  the  per-
formance  and  robustness  of  each  solution  under  uncertainty[7,56].
Decision-makers  often  favor  solutions  that,  despite  slightly  higher
costs or lower median performance, significantly enhances the likeli-
hood of achieving targets under adverse conditions (reflecting risk-
averse preferences)[57].  Integrating these preferences into optimiza-
tion  prevents  the  selection  of  superficially  optimal  yet  practically
fragile solutions.

Technological  advancements  in  robust  optimization  methods
have  facilitated  this  evolution.  Many-objective  robust  decision-
making (MORDM) frameworks, for instance, explicitly manage multi-
ple  performance  metrics  across  diverse  scenarios,  leveraging
evolutionary  algorithms  to  identify  optimal  trade-offs[58,59].  These
methodologies  increasingly  couple  scenario  generators  with
optimization  engines,  demonstrating  feasibility  and  effectiveness
in  groundwater  and  watershed  management  contexts  (Table  4).
Recent  studies  by  Macasieb  et  al.[60] illustrate  successful  applica-
tions  of  surrogate-assisted  multi-scenario  optimization,  highlight-
ing  the  practicality  of  robust  optimization  strategies  in  BMPs
planning.

 Holistic multi-objective trade-offs in nitrogen
management
Beyond temporal and uncertainty considerations, an additional holistic
objective  is  to  account  for  trade-offs  across  nitrogen's  environ-
mental impacts. In addition to temporal factors (e.g., TTS and LDR) and
robustness  under  uncertainty,  an  essential  enhancement  of  nitrogen
optimization  frameworks  is  to  address  the  full  range  of

 

Table 3  Recent case studies in nitrogen non-point source pollution spatial optimization and their methodological evolution

Study paradigm Model Spatial units Optimization
objectives

Consider
legacy Key study metrics Relevance to

nitrogen-evolution Ref.

Traditional paradigm SWAT HRUs Minimize cost and TN
load

No TN reduction rate (%) Standard cost-load optimization [98]

Representation
evolution

SWAT Finer Units
vs HRUs

Model evaluation No Model calibrationa
performance

Finer units required to capture
N-leaching hotspots

[103]

Representation
evolution

Coupled
SWAT

Grid-based Model evaluation Yes Nitrate concentration
and flux

Coupled model needed for
subsurface N pathways

[48]

Decision evolution SWAT Sub-basins Quantify legacy N Yes Legacy N contribution
(%)

Case evidence for legacy N
dominance; highlights failure of
static metrics

[87]

Decision evolution SWAT Sub-basins Robust optimization No N load reduction (%) Evolution from static-optimal to
robust-optimal

[104]

Computation
evolution

Surrogate
SWAT

HRUs Minimize cost and TN
load

No TN reduction rate (%) Surrogate model used to
overcome computational
bottleneck

[72]

Socio-economic
evolution

Choice
experiment

Farm/contract
level

Behavioral analysis No Farmer acceptability Links technical optimum to
adoption probability and farmer
preference

[65]

 

Table 4  Optimization algorithms for nitrogen-focused BMPs design

Algorithm Typical objectives Strengths Limitations Application context Ref.

NSGA-II/NSGA-III Min TN load and cost;
constraints on
budget/area/compliance

Mature; diverse Pareto sets;
parallel-friendly

Many model calls; tuning
sensitive

Default workhorse; pair
with surrogates

[105,106]

Surrogate-assisted Min TN load and cost;
constraints on
budget/area/compliance

Orders-of-magnitude
speed-up; UQ possible

Extrapolation risk; needs
active learning

Focus sampling near the
Pareto front

[71]

Robust/chance-
constrained

Meet TN goals under uncertainty
(climate/params)

Low-regret; resilient to
extremes

Extra computation; risk
weighting choices matter

Sensitive watersheds;
regulatory certainty

[107]

MILP/MINLP Min cost for target reductions;
policy/fairness constraints

Global optima for
linear/convex; interpretable

Hard with strong
nonlinearity; needs
decomposition

Target-based planning;
layered with heuristics

[108]
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nitrogen-related  trade-offs.  Focusing  exclusively  on  nitrate  leaching
without considering other nitrogen pathways can inadvertently lead to
pollutant  swapping,  generating  unintended  adverse  environmental
outcomes[61].

A  critical  trade-off  arises  with  gaseous  nitrogen  emissions.  Many
BMPs,  such  as  cover  cropping  or  reduced  tillage,  are  implemented
to mitigate nitrate leaching, but can inadvertently create anaerobic
soil  conditions,  promoting  denitrification  and  increasing  nitrous
oxide (N2O) emissions[62]. Given that N2O is a potent greenhouse gas
with  a  global  warming  potential  substantially  higher  than  that  of
CO2,  optimizing  solely  for  water  quality  may  result  in  detrimental
climate impacts[11,63].

Equally  significant  is  the  economic  aspect.  Technical  solutions
may  appear  effective  in  theoretical  models  but  fail  if  economically
unviable  at  the  farm  level.  Previous  optimization  frameworks
typically  include  crop  yield  as  a  constraint,  yet  this  fails  to  reflect
farmers' practical decision-making processes adequately. Thus, farm
profitability should be explicitly integrated as a central optimization
objective[64].  An  environmental  strategy  that  compromises  farm
profitability will likely face low adoption rates[65].

Addressing  these  complexities  requires  transitioning  to  a  more
comprehensive  multi-objective  framework,  expanding  beyond
traditional  two-dimensional  optimization  (cost  and  nitrate  load
minimization)  to  explicitly  encompass  at  least  three  interrelated
objectives:  minimizing  nitrate  leaching  to  improve  water  quality,
minimizing  gaseous  nitrogen  emissions  (notably  N2O)  to  mitigate
climate  impacts,  and  maximizing  farm  profitability  to  ensure
economic viability.

Recent  research  has  begun  operationalizing  this  integrated
approach  by  combining  biophysical  process  models  with  multi-
objective  evolutionary  algorithms  (MOEAs)  to  explore  complex
trade-offs  comprehensively[66].  Such  models  produce  a  Pareto-
optimal frontier, offering stakeholders a variety of balanced options
without  presupposing  a  single  optimal  solution.  This  approach
allows decision-makers to align selected strategies with their priori-
ties or constraints, such as accepting slightly higher nitrate leaching
for substantially lower N2O emissions and stable farm income[67].

Incorporating this holistic view into nitrogen management frame-
works highlights  the need to integrate multiple nitrogen pathways
and  stakeholder  preferences.  Such  integration  ensures  strategies
are  technically  robust,  environmentally  sound,  economically  feasi-
ble, and practically implementable.

However,  adopting  robust,  time-sensitive  objectives  significantly
increases  computational  demands.  Evaluating  a  single  candidate
solution  often  involves  running  detailed  watershed  simulations
across  extended  periods  and  multiple  scenarios[68].  For  example,
if  evaluating  one  scenario  takes  10  min  for  a  30-year  simulation,
analyzing  100  scenarios  would  proportionally  increase  computa-
tional  time,  potentially  leading  to  prohibitive  computational
requirements  for  extensive  optimization  searches  involving  thou-
sands  of  candidate  solutions.  Such  exponential  increases,  driven
by  finer  spatial  resolutions  and  numerous  scenarios,  necessitate
computational  capacities  often  associated  with  supercomputing
resources.

To  feasibly  implement  the  advances  outlined  in  earlier  sections,
parallel  innovations  in  computational  strategies  is  critical.  Tradi-
tional  brute-force  search  approaches,  such  as  standard  multi-
objective evolutionary algorithms (e.g.,  NSGA-II),  become computa-
tionally  impractical  under  these  demanding  conditions[69].  Conse-
quently,  subsequent  sections  will  explore  emerging  solutions,
including  smarter  optimization  algorithms,  model  approximation
techniques,  surrogate  modeling,  adaptive  sampling  methods,  and

parallel  computing  approaches,  ensuring  computational  feasibility
alongside enhanced management effectiveness.

 Making BMPs optimization tractable

Incorporating greater physical realism (fine-scale spatial units, coupled
hydrological  models)  and  robust  decision-making  (multi-scenario
objectives)  into  the  optimization  framework  for  BMPs  substantially
increases  computational  complexity.  Over  the  past  two  decades,
heuristic  evolutionary  algorithms  (EAs),  such  as  NSGA-II,  have  been
extensively employed in environmental optimization problems due to
their ability to explore complex solution spaces[70], as shown in Table 4.
However,  these  algorithms  typically  require  a  vast  number  of  model
evaluations (often tens of thousands) to approximate the Pareto front
effectively. For instance, with each watershed model simulation taking
around 5  min,  conducting 10,000  evaluations  would  require  approxi-
mately 833 h (~35 d) of computation. While partial parallelization can
alleviate  some  computational  load,  this  approach  remains  highly
demanding.

As  model  complexity  and  the  number  of  scenarios  increase,
computational  costs  rise  exponentially.  For  example,  coupling
watershed  models  such  as  SWAT,  with  groundwater  models  like
MODFLOW  significantly  increases  individual  simulation  times,
extending  optimization  or  calibration  processes  to  days  or  even
weeks[46].  Recent studies frequently report computational demands
reaching  billions  of  model  time  steps,  requiring  high-performance
computing clusters for completion.

Addressing  this  computational  challenge  requires  shifting  from
brute-force searches to intelligent methods that maximize informa-
tion gain per model run. Several key strategies have emerged:

(1)  Surrogate-assisted  optimization  with  rigorous  validation:  Sur-
rogate  modeling  is  a  transformative  approach  that  uses  simplified,
rapidly  evaluable  models  to  approximate  a  complex  watershed
model  outcomes[71,72].  In  BMP  optimization  contexts,  surrogate
modeling  typically  follows  four  key  steps:  (i)  generating  a  space-
filling  experimental  design,  such  as  through  Latin  Hypercube
Sampling, within the decision space; (ii)  conducting a limited set of
high-fidelity watershed simulations at these selected design points;
(iii)  training  machine-learning  surrogate  models  (e.g.,  Random
Forests,  Gaussian  Process  regression,  or  deep  neural  networks)  on
the  simulated  data;  and  (iv)  rigorously  validating  surrogate  model
performance  using  an  independent  hold-out  test  dataset.  Recent
studies  emphasize  reliability  benchmarks,  such  as  Nash–Sutcliffe
Efficiency (NSE) values greater than 0.5 and coefficients of determi-
nation (R2)  exceeding 0.8,  to ensure accurate representation before
surrogate models are used within optimization loops[69].

(2)  Active learning and adaptive sampling:  Although static surro-
gate models are helpful, their predictive accuracy depends strongly
on the quality  of  initial  training data,  and can deteriorate in  poorly
sampled  regions.  To  overcome  this  limitation,  active  learning
methods  iteratively  enhance  surrogate  model  accuracy.  Instead  of
randomly  selecting  additional  sampling  points,  these  approaches
use  specific  infill  criteria,  such  as  expected  improvement  (EI),  to
strategically  select  new  points  in  regions  with  high  uncertainty  or
potential  optimal  solutions.  High-fidelity  simulations  are  then  con-
ducted  at  these  new  points,  and  the  surrogate  model  is  retrained
with  this  augmented  dataset.  This  iterative  adaptive  sampling
progressively  reduces  predictive  uncertainty,  particularly  near  the
Pareto front[73,74].

(3)  Parallel  and  high-performance  computing  (HPC):  Leveraging
parallel  computing  resources  significantly  reduces  optimization
times.  Many  watershed  models  are  suitable  for  parallel  execution
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across different parameter sets or scenarios. HPC clusters and cloud
computing  frameworks  enable  rapid  evaluations  by  distributing
simulations  across  multiple  processors.  Recent  advancements  have
demonstrated  significant  runtime  reductions  through  multi-layer
parallelization  techniques  that  dynamically  allocate  computational
resources to efficiently meet optimization demands[75−77].

(4) Search space reduction and intelligent initialization: Reducing
problem  complexity  through  informed  pre-selection  of  feasible
solution  spaces  enhances  computational  efficiency.  By  identifying
non-critical  areas  (e.g.,  regions  with  minimal  nitrogen  contribution
or  negligible  hydrological  connectivity),  these  can  be  excluded  or
assigned  lower  priority,  significantly  shrinking  the  decision  space.
Scenario  ensemble  compression  through  clustering  or  bounding
analyses  also  minimizes  redundant  computations  while  preserving
outcome diversity[78,79].

(5)  Integration  with  decision  analytics:  Incorporating  decision
science frameworks, such as robust decision-making (RDM) or dyna-
mic adaptive policy pathways, facilitates systematic scenario evalua-
tions and vulnerability analyses[80,81]. Recent methods that combine
surrogate  models  and  scenario  analytics  enable  comprehensive
uncertainty analysis integrated directly into optimization processes.
Such  integrated  approaches  deliver  robust,  adaptive  management
strategies that clearly outline performance trade-offs  under various
future conditions[82,83].

In  synthesis,  combining  surrogate  models,  adaptive  sampling,
parallel computing, and search-space pruning allows us to maintain
a high-fidelity representation of processes without making the opti-
mization  intractable[79,84,85].  These  techniques,  used  in  concert,  can
deliver  a  set  of  computationally  optimal  (or  at  least  feasible)  solu-
tions that honor the complexity of nitrogen cycling and the unpre-
dictability  of  the  future.  However,  even  a  perfectly  optimized  solu-
tion  from  a  technical  standpoint  does  not  guarantee  real-world
success.  The  human  element,  including  farmers'  willingness  to
adopt  practices,  policy  support,  and  economic  viability,  ultimately
determines  whether  an  optimal  plan  on  paper  results  in  tangible
water  quality  improvements.  Therefore,  a  crucial  final  step  is  to
explicitly  incorporate  socio-economic  feasibility  into  the  optimiza-
tion framework, thereby transforming a technically optimal solution
into a practically implementable one.

 Socio-economic feasibilities: from
technical optimum to implementable
optimum

Spatial configurations translate into public benefits only when they are
adopted,  financed,  and  maintained  at  the  farm  level  over  the  long
term.  However,  the  prolonged  lag  times  described  previously  often
create a disconnect between implementation actions and visible envi-
ronmental  outcomes.  To  address  the  temporal  trust  gap,  implemen-
tation frameworks should shift from relying solely on long-term water
quality  compliance  to  also  monitoring  intermediate  indicators  near
implementation  sites,  such  as  edge-of-field  nitrate  fluxes  identified
within  the  proposed  physical  framework.  Aligning  payments  with
these  verifiable  progress  signals  ensures  sustained  stakeholder
engagement and confidence throughout the critical lag period[56,65].

Without  such  intermediate  feedback,  policymakers,  implement-
ing  agencies,  and  farmers  may  downgrade  their  assessments  of
environmental  effectiveness,  diminishing  their  confidence  and
willingness  to  sustain  and  scale  up  BMP  investments[51,86].  To
counteract  this,  implementation-oriented  optimization  frameworks
should explicitly integrate intermediate, measurable indicators, such

as along-reach nitrate concentrations or fluxes, buffer strip connec-
tivity,  and  vegetation  cover  as  internal  design  parameters.  These
indicators must be systematically aligned with monitoring and veri-
fication  protocols,  incorporating  payment  milestones,  frequencies,
and  triggers  (e.g.,  quarterly  payments  linked  to  measured  nitrate
reductions  or  enhanced  buffer  connectivity)  within  the  optimiza-
tion process[56,87].  This alignment connects the technical robustness
outlined  in  previous  sections  with  policy  timelines  and  responsive
monitoring (Fig. 2).

 Institutional context shaping feasible BMP sets
Optimization  occurs  within  specific  institutional  and  policy  contexts
that shape both the feasible solution set and the appropriate objective
functions (Table 5).

In  the  United  States,  the  Clean  Water  Act  uses  Total  Maximum
Daily  Loads  (TMDLs)  for  watershed  nutrient  budgeting[88],  while
agricultural  NPS  controls  largely  depend  on  voluntary,  incentive-
based  programs  funded  by  the  federal  government  and  delivered
by agencies like USDA/NRCS under the Farm Bill[89]. Given the volun-
tary nature of these programs, optimization efforts shift from enforc-
ing  compliance  to  maximizing  expected  farmer  adoption.  Because
adoption  probabilities  vary  according  to  payment  levels,  transac-
tion  costs,  perceived  risks,  and  complexity  of  practices,  optimal
BMP  configurations  should  be  prioritized  based  on  their  expected
nutrient  reductions  (E[R]),  calculated  as  the  product  of  theoretical
removal  efficiency  (Rtheo)  and  site-specific  adoption  probability
(Padopt)[16,54].  Additionally,  risk-sharing  instruments  such  as  extreme
weather  exemptions,  minimum-payment  guarantees,  and  insu-
rance  mechanisms  serve  as  critical  parameters,  influencing
perceived  farmer  benefits  and  reshaping  the  cost-effectiveness  of
BMP portfolios[90,91].

In the European Union,  the Nitrates Directive mandates targeted
action  programs  within  designated  vulnerable  zones,  comple-
mented  by  basin-scale  water  quality  objectives  under  the  Water
Framework  Directive[92,93].  In  contrast  to  the  US  approach,  this  EU
regulatory framework mandates baseline performance standards for
farmers.  Additional  Agri-Environment-Climate  Measures  (AECMs)
financially incentivize actions exceeding these regulatory baselines,
effectively  defining  incremental  improvements  as  meaningful
units  of  optimization[94−96].  Consequently,  the  optimization  pro-
blem  includes  a  binding  regulatory  baseline,  where  baseline  BMPs
are  fixed  parameters  rather  than  decision  variables.  The  objective
thus becomes maximizing incremental ecological improvement per
unit of public expenditure above the mandatory baseline[16,54].

In  China,  the  River  Chief  System  aligns  water  quality  targets
directly  with  administrative  accountability,  requiring  local  govern-
ments to achieve compliance within their jurisdictions. Additionally,
eco-compensation  mechanisms  transfer  payments  from  down-
stream beneficiaries to upstream managers for transboundary rivers,
thereby  affecting  local  budgets  and  influencing  the  relative  cost-
effectiveness  of  management  actions  across  regions[97].  Further-
more, strict farmland protection policies constrain the conversion of
prime  cropland  to  non-agricultural  uses,  creating  rigid  spatial
constraints  on  BMPs  selection.  For  optimization,  this  implies:  (i)
imposing regional  constraints  on land-intensive or  land-conversion
measures  in  major  grain-producing  areas;  (ii)  explicitly  integrating
minimum  yield  or  income  guarantees  into  optimization  objectives
or  constraints  to  avoid  unacceptable  trade-offs  between  yield  and
water  quality;  and  (iii)  parameterizing  eco-compensation  rates  and
payment  schedules  as  location-specific  budget  factors  and  tempo-
ral cost weights to adjust overall cost-effectiveness[56,65,98].
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These  diverse  institutional  contexts  collectively  establish  distinct
boundary  conditions  for  the  optimization  of  best  management
practices  (BMPs).  Policy  frameworks,  including  voluntary  incentive
structures in the US, mandatory regulatory baselines in the EU, and
spatially  defined  yield  and  land-use  constraints  in  China,  critically
influence  the  feasibility  of  solution  sets.  Achieving  an  imple-
mentable optimum extends beyond physical modeling and requires
integrating  farmer  adoption  behavior,  socio-economic  factors,  and
verification  mechanisms  into  the  optimization  process  to  address
the varied institutional landscapes effectively.

 Integrating adoption, MRV, and safeguards into
optimization
To  operationalize  these  institutional  strategies,  socio-economic  con-
siderations  must  be  translated  from  qualitative  concepts  into  quanti-
tative parameters within the optimization framework.

First,  farmer  adoption  should  be  represented  as  a  probabilistic
variable  derived  from  empirically  estimated  utility  functions.  As
discussed above in the US institutional  context,  adoption decisions
are not binary but probabilistic. To quantify this, researchers increa-
singly  use  discrete  choice  experiments  (DCEs)  to  parameterize
farmer  decision-making  processes.  For  instance,  Schulze  et  al.[65]

utilized a mixed logit model to estimate the utility (Ui) farmers derive
from adopting a given BMP:

Ui = βpayment ×Xpayment +βrisk ×Xrisk +βsocial×Xsocial+εi (1)

Padopt =
eUi

1+eUi

where, β coefficients  represent  the  marginal  utility  of  key  attributes
such as payment rates (Xpayment),  perceived risk (Xrisk,  such as in result-
based  schemes),  and  administrative  or  social  support  (Xsocial).  The

resulting  probability  of  adoption  ( )  allows  the  opti-

mization model  to  calculate  the expected nutrient  reduction (E[R])  as
defined in  the preceding section,  effectively  filtering out  theoretically
optimal but practically infeasible solutions.

Second,  dynamic  social  processes  such as  peer  influence require
explicit  evolutionary  modeling.  Adoption  decisions  often  exhibit
interdependencies,  especially  in  rural  communities  where  trust,
imitation, and local norms strongly influence behavior. Recent appli-
cations  of  evolutionary  game  theory  (EGT)  demonstrate  effective
methods  for  simulating  these  diffusion  processes.  For  example,
Wang  &  Shang[99] developed  a  three-party  evolutionary  game
model  using  replicator  dynamics  to  quantify  how  participation
probabilities  (z)  evolve  (dz/dt),  based  on  comparative  payoffs
between  adopters  and  non-adopters  within  local  networks.

Incorporating  these  dynamic  adoption  probabilities  allows  opti-
mization  algorithms  to  prioritize  spatial  clusters  likely  to  sustain
adoption  through  positive  social  reinforcement,  rather  than  select-
ing isolated sites susceptible to disadoption.

Third,  monitoring,  reporting,  and  verification  (MRV)  protocols
must align with optimization objectives to reduce perceived risk. To
address  discouragement  resulting  from  delayed  environmental
outcomes,  optimization  designs  should  incorporate  intermediate
measurable  indicators,  such  as  edge-of-field  nitrate  flux  or  buffer
strip  connectivity.  Incorporating  these  indicators  into  optimization
frameworks  enables  milestone-based  payments  directly  linked  to
verifiable  intermediate  outcomes.  Mathematically,  this  integration
effectively  reduces  perceived  risks  (βrisk),  increasing  farmers'  adop-
tion probabilities (Padopt)[56,65].

Finally,  explicit  safeguards  are  necessary  to  prevent  unintended
outcomes  such  as  pollution  swapping  and  economic  losses.  Opti-
mization  solely  targeting  nitrate  reductions  might  inadvertently
elevate  nitrous  oxide  (N2O)  emissions  (e.g.,  incomplete  denitrifica-
tion within bioreactors) or reduce agricultural productivity[62]. There-
fore,  a  comprehensive  optimization  framework  should  integrate
these  considerations  as  binding  constraints  or  explicitly  conflicting
objectives in a multi-objective optimization procedure. This ensures
the  selected  BMP  configurations  simultaneously  address  water
quality  goals,  climate  impacts,  and  economic  viability  for
producers[64,67].

In summary, integrating these socio-economic dimensions funda-
mentally  reshapes  the definition of  the optimal  solution.  By  explic-
itly  embedding  institutional  boundary  conditions  and  behavioral
parameters  described  above,  the  optimization  framework  shifts
from identifying purely theoretical global optima toward practically
implementable  solutions.  This  ensures  that  limited  resources  are
prioritized  for  interventions  that  are  environmentally  necessary,
socially acceptable, and institutionally feasible.

 Conclusions

This review presents a comprehensive analysis of spatial  optimization
strategies  for  managing  agricultural  nonpoint-source  nitrogen  pollu-
tion.  Although  technical  advancements  such  as  refined  spatial  repre-
sentation,  explicit  modeling  of  groundwater  pathways  and  legacy
nitrogen  dynamics,  and  the  adoption  of  robust,  temporally-sensitive
optimization  objectives  are  essential,  these  measures  alone  are
insufficient. Without concurrent efforts to ensure near-term visibility of
outcomes,  integrate  stakeholder  behaviors,  and  translate  theoretical

 

Table 5  Institutional regimes and optimisation implications for nitrogen-focused BMPs spatial configuration

Regions Jurisdiction Binding baseline Contracting and
incentives

MRV footing
(milestones)

Implications for optimization objectives (left),
constraints (middle), and targeting (right)

United States Clean Water Act;
Farm Bill

Basin load budgets
via TMDLs; ag-NPS
controls voluntary
mainly[88]

Payments,
transaction costs,
practice complexity;
risk sharing via
exemptions/price
floors/insurance[65]

Near-field nitrate
(reach conc./flux),
outlet conc./flux,
buffer connectivity/
vegetation cover

Expected
abatement/
compliance
probability

Constraints:
MRV
feasibility and
risk-sharing
costs

Leaching-prone,
connectivity-strong
parcels

European
Union

Water
Framework
Directive;
Nitrates Directive

NVZ action
programmes;
basin-scale good
status[109]

Result-based/hybrid
contracts reduce
outcome-risk
premia[16]

Regulatory
monitoring enables
indicator-linked
staged payments

Risk-adjusted
incremental
benefit over
baseline

Baseline as
hard bound

Supra-baseline
measures with high
MRV sensitivity

China River Chief
System; eco-
compensation

Administrative
accountability;
land-conversion
limits in prime grain
belts[97]

Inter-jurisdiction
transfers; emphasis
on yield-neutral
measures[110]

Milestones aligned to
assessment windows;
near-field indicators
used to show interim
progress

Expected
abatement
with crop-
return
safeguard

Land-use
bounds

Precision nitrogen
and edge-of-field
denitrification in
connected,
leaching-prone
parcels
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solutions  into  implementable  programs,  even  the  most  advanced
optimization frameworks may not achieve sustained improvements in
water quality.

Incorporating groundwater transport and legacy nitrogen signifi-
cantly increases model complexity, often exceeding the capabilities
of  conventional  computational  methods.  We  emphasize  the  utility
of  surrogate-assisted,  scenario-rich  optimization  methods  that
explicitly incorporate compliance probabilities and temporal dimen-
sions, thereby restoring computational tractability. Moreover, it was
showed  that  socio-economic  considerations  fundamentally  rede-
fine  'optimal'  outcomes,  underscoring  the  importance  of  embed-
ding farmer  adoption behaviors,  transaction costs,  and risk-sharing
mechanisms directly into optimization frameworks. This integration
ensures limited resources target interventions that are both environ-
mentally beneficial and realistically adoptable.

Collectively,  these  advances  shift  nitrate  management  from  a
purely  theoretical  modeling  domain  toward  practical,  implemen-
table programs. Improved observability through standardized moni-
toring  and  intermediate  performance  indicators  aligns  incentives
with the inherently delayed responses of environmental systems to
nitrogen  interventions.  Robust  optimization  frameworks  mitigate
uncertainties  arising  from  future  climatic  and  land-use  changes,
ensuring  selected  strategies  maintain  their  efficacy  across  diverse
scenarios.  Advanced  computational  approaches,  such  as  surrogate
modeling,  parallel  processing,  and  intelligent  search  algorithms,
enable  the  exploration  of  complex  and  realistic  decision  spaces.  In
addition,  applying  a  socio-economic  perspective  that  incorporates
farmer  behavior  and  tailored  policy  instruments  connects  theoreti-
cal  optimization  with  practical  feasibility,  thereby  increasing  the
probability of sustained adoption.

We  advocate  a  clear  shift  in  emphasis  from  merely  identifying
theoretically optimal configurations toward ensuring practical imple-
mentation  and  measurable  environmental  outcomes.  Immediate
research priorities include:

(1)  Standardizing near-field MRV protocols  for  nitrogen,  allowing
consistent  tracking  of  intermediate  outcomes  (e.g.,  sub-catchment
or edge-of-field nitrate reductions),  fostering stakeholder trust,  and
enabling adaptive management through milestone-based incentive
schemes.

(2)  Integrating  adoption  probabilities  and  transaction  costs  into
optimization frameworks, involving interdisciplinary efforts to quan-
tify farmer preferences and constraints. This approach enhances the
practical  relevance  and  uptake  of  optimized  BMPs  recommenda-
tions.

(3)  Developing  and  evaluating  fast-slow  BMPs  portfolios  with
explicit  co-benefit  safeguards,  combining  rapid-action  measures
(e.g.,  edge-of-field  nitrate  interception)  and  long-term  soil  health
practices,  while  carefully  managing  trade-offs  related  to  green-
house gas emissions and farm profitability.

Ultimately, the success of these strategies must be measured not
solely  through  modeled  reductions  in  nitrogen  loads  but  by  tangi-
ble indicators of real-world progress. Key outcomes include reduced
uncertainty  in  watershed  nitrogen  budgets  through  enhanced
monitoring, increased farmer participation in effective best manage-
ment practices (BMPs) as a result of improved incentives and target-
ing,  and  shorter,  demonstrable  timelines  for  measurable  water
quality  improvements  in  pilot  programs.  Emphasizing  actionable
implementation,  continuous  learning,  and  adaptive  management,
and  establishing  iterative  feedback  loops  among  modeling,  policy
formulation,  and  monitoring,  can  create  a  proactive  and  flexible
pathway for more effective agricultural nitrogen management.
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