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Abstract

Agricultural nitrogen pollution from nonpoint sources remains a pervasive issue globally,
despite widespread adoption of best management practices (BMPs). A critical limitation
arises because traditional BMPs planning and modeling frameworks predominantly empha-
size surface runoff processes, often overlooking groundwater transport, legacy nitrogen
accumulation, and multi-year delays before measurable water quality improvements occur.
Building upon established optimization methods, this review introduces a nitrogen-specific
spatial optimization framework. Recent advances are integrated by emphasizing three key
dimensions: (1) detailed representation of subsurface nitrogen transport and legacy effects;
(2) dynamic and time-sensitive optimization objectives; and (3) practical implementation
constraints, including farmer adoption behaviors and institutional feasibility. Specifically, the
adoption of process-informed spatial decision units and integrated watershed models that
explicitly represent subsurface nitrate transport pathways and legacy nitrogen depletion is
advocated. To effectively manage inherent delays and uncertainties, it is recommended
to incorporate dynamic optimization objectives, such as time to achieve water quality
standards and rates of legacy nitrogen reduction, alongside traditional cost-effectiveness
measures. These objectives should be evaluated across multiple plausible future scenarios.
To preserve computational feasibility while maintaining process accuracy, surrogate
modeling, and scenario-based optimization methods are advised, with techniques such as
adaptive sampling and parallel computation. The proposed framework integrates socio-
economic considerations, incorporates farmer adoption probabilities and transaction costs,
and establishes monitoring and verification processes linked to results-based incentives,
such as milestone payments tied to measurable nitrate reductions or buffer strip effec-
tiveness. These measures are further supported by risk-sharing arrangements. Collectively,
these components bridge the gap between theoretical solutions and practical implemen-
tation, transforming nitrate management from a modeling exercise into actionable
programs. The present approach guides policymakers toward strategies that are environ-
mentally optimal yet practically implementable, emphasizing enhanced near-field nitrate
monitoring, integrating stakeholder adoption directly into solution design, and combining
immediate nutrient reduction actions with long-term soil health practices, under clearly
defined environmental and economic safeguards.
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Highlights

+ Process-aware units and coupled surface—-groundwater models capture subsurface transport, legacy nitrogen, and delays.
+ Objectives include time-to-standard, legacy drawdown rate, and compliance probabilities.
« Surrogate-assisted, scenario-based optimization with active learning maintains computational efficiency.

+ Implementation considers adoption rates, transaction costs, and monitoring criteria, ensuring balanced portfolios of BMP

configurations.
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Diffuse nitrogen pollution from agricultural runoff remains a pervasive
global threat to water quality!"l. Excess nitrogen loading from agri-
cultural sources drives eutrophication and hypoxic 'dead zones' in
numerous aquatic ecosystems, and nitrate concentrations frequently
surpass safe drinking water standards in affected regions!?. Globally,
synthetic N fertilizer use exceeded 100 Mt N yr~! by the mid-2010s54,
and riverine nitrogen fluxes to the ocean are now more than double
pre-industrial levels®!. In the United States, agricultural nonpoint
sources are a primary driver of stream and river impairments®. Despite
policy efforts to reduce nutrient runoff, water quality improvements
often lag due to legacy nutrient stores in soils and groundwater!,
Extended subsurface residence times can delay measurable water-
quality responses by years or even decades after intervention,
underscoring the necessity of sustained, proactive management
strategies®?.

Best management practices (BMPs), such as cover crops, riparian
buffers, constructed wetlands, and precise nutrient management
(such as the 4R approach), are widely recommended for mitigating
agricultural nonpoint source (NPS) pollution at its sourcel'®'1,
When effectively implemented, these BMPs can significantly reduce
nutrient and sediment losses, serving as the foundation for water-
shed restoration efforts. However, observed water quality improve-
ments from BMPs implementation are frequently unsatisfactory!'2.
In many watersheds, extensive BMP adoption over several decades
has yielded minimal or no observable reductions in nutrient loads.
Factors contributing to these unsatisfactory outcomes include insuf-
ficient BMPs coveragel'3, inadequate maintenancel'¥, lengthy lag
times before observable responsest”, and ineffective placement of
practices!’>l. Specifically, failing to strategically target BMPs to

effectiveness!'®l. These limitations highlight the challenges asso-
ciated with converting widespread BMPs implementation into
tangible water quality improvements.

To enhance BMPs' effectiveness, strategic spatial planning that
places suitable practices in optimal watershed locations is gaining
attention. Studies show that a small fraction of the landscape, often
less than 20%, can generate the majority of runoff and nutrient
lossl'7.18l, Targeting BMPs precisely within these critical source areas
significantly enhances the cost-effectiveness of pollution control
relative to uniform or random implementation!'. Various spatial
optimization methods have thus been developed to identify econo-
mically efficient BMPs placement strategies that maximize water
quality benefits under budgetary or land-use constraints!2, By inte-
grating watershed simulation models with optimization algorithms
(such as integer programming or evolutionary algorithms), resear-
chers can systematically evaluate multiple BMP scenarios to identify
configurations that achieve the greatest nutrient load reduction per
unit cost%. Optimizing both BMP selection and spatial arrange-
ment consistently yields better results than ad hoc or evenly
distributed approachesi2'l. Nonetheless, designing these integrated
model-optimization frameworks is inherently complex, requiring
accurate representation of nonlinear watershed processes and con-
sideration of multiple objectives (e.g., water quality improvements
vs economic costs)i22. Uncertainties in model predictions and
spatial datasets further complicate the spatial optimization of BMPs,
making it a challenging yet critical research area.

To better align spatial optimization outcomes with practical nitro-
gen management objectives, this review proposes a framework
specifically designed for agricultural nitrogen. The framework
explicitly addresses groundwater transport delays, legacy nitrogen
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accumulation, and socio-economic barriers to implementation. In
this context, this review examines three core questions: (1) How
should spatial decision units and coupled surface-groundwater
models be designed to capture subsurface transport, legacy nitro-
gen storage, and multi-year lags that undermine traditional BMPs
optimization? (2) Which time-sensitive and uncertainty-aware objec-
tives (for example, time to standard, legacy drawdown rate, compli-
ance probability), and which computational strategies (surrogates,
adaptive sampling, scenario ensembles, parallel computing) allow
realistic yet tractable optimization for nitrogen? (3) How can opti-
mization be made implementable by embedding farmer adoption
probabilities, monitoring-reporting-verification triggers, payment
and risk-sharing rules, and safeguards for yields and N,O into the
design across different policy regimes? This includes introducing
novel optimization objectives that incorporate time lags and uncer-
tainties, and integrating economic and behavioral factors, such as
farmer adoption, into spatial optimization frameworks (Fig. 1).
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Fig. 1 Conceptual pathways and time scales of agricultural nitrogen
transport and a four-layer optimization framework. Upper panel:
Nitrogen originating from agricultural lands reaches receiving waters
through multiple pathways, including rapid surface runoff (hours to
days), intermediate shallow subsurface and interflow (days to weeks),
and slow groundwater flow (years to decades). Legacy nitrogen stored
in soils and aquifers further prolongs the impacts on water quality.
Nitrogen-specific BMPs are strategically placed to intercept these flows,
including: (1) cover crops that reduce nitrate leaching; (2) bioreactors
treating; (3) riparian buffers intercepting lateral flow; and (4) precision
nitrogen application controlling source inputs. Lower panel: The com-
plexity of these spatio-temporal dynamics requires advanced modeling
and optimization approaches structured across four integrated dimen-
sions: representation, objectives, computation, and implementation.

The standard framework and its core
contradiction with nitrogen

The spatial optimization of BMPs within a watershed constitutes a
complex interdisciplinary systems engineering problem, integrating
advanced hydrological modeling with optimization methodologies!?3.,
The primary goal is to identify the optimal spatial arrangement of BMPs
across a landscape to effectively meet management objectives, such
as minimizing nitrogen loads, reducing implementation costs, or
balancing these competing goals, subject to practical constraints,
including budget limitations, land-use compatibility, and policy direc-
tives. Typically, a watershed BMPs optimization framework comprises
five interconnected components (Fig. 2):

(1) Watershed simulation models: Process-based models (e.g.,
SWAT, HSPF, AnnAGNPS) simulate hydrological and water-quality
responses under varying land management scenarios.

(2) Spatial configuration units: discrete spatial elements (sub-
watersheds, hydrologic response units, fields, or grid cells) used for
BMP assignments.

(3) BMP options and associated costs: available management
practices, their nutrient-reduction efficiencies, and related imple-
mentation or opportunity costs.

(4) Optimization algorithms: multi-objective optimization tools
(often evolutionary algorithms) designed to identify Pareto-optimal
BMP allocations based on model simulations and management
objectives.

(5) Objective functions: quantitative metrics evaluating outcomes
such as total nitrogen loads at watershed outlets, overall implemen-
tation costs, or combined economic and environmental indicators.

However, when applied specifically to agricultural nitrogen pollu-
tion, this conventional framework encounters significant challenges
due to nitrogen's distinctive biogeochemical behavior. Unlike many
other pollutants, nitrate exhibits high water solubility and typically
exists as an anion (negatively charged) in soil water, resulting in
minimal adsorption to negatively charged soil particles?423l, Conse-
quently, nitrate is transported primarily by vertical leaching into
groundwater rather than via surface runoff pathways, unlike pollu-
tants such as phosphorus and sediment. Rainfall and irrigation facili-
tate the downward movement of nitrate below the root zone into
shallow and deep aquifers, forming substantial long-term pollution
reservoirs2l,

This subsurface-driven transport pathway gives rise to two critical
challenges for nitrogen management: legacy nitrogen storage and
prolonged response lags (Fig. 2). Historical over-application of ferti-
lizers and manure that exceed crop uptake has generated substan-
tial nitrogen pools in soils and groundwater. These legacy nitrogen
stores continue to release nitrate into surface waters long after
reductions in on-field nutrient applications!?’l. Thus, past agricul-
tural practices persist as long-term sources of nitrogen pollution,
causing multi-year to decadal delays between BMPs implementa-
tion and observable water-quality improvements. In watersheds
with deeper groundwater systems, this nitrate residence can extend
across multiple decades, significantly delaying measurable respon-
ses to management interventions!”.9.28],

These subsurface and legacy-driven nitrogen dynamics funda-
mentally conflict with assumptions embedded in the conventional
BMPs optimization framework, which was initially designed prima-
rily for pollutants transported by rapid surface runoff processes.
Traditional framework components, ranging from spatial watershed
segmentation to the selection of simulation models and objective
functions, typically reflect assumptions centered on surface-level
pollutant behavior?, This critical mismatch partially explains
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Fig. 2 Spatial configuration framework for implementing best management practices (BMPs) under hydrologic and socio-economic uncertainty. Inputs
derived from the BMP data pool and the spatial-hydrological representation are integrated into a comprehensive workflow that combines multi-objective
optimization with modeling and simulation. Key metrics, including time-to-standard (TTS), attainment probability, and legacy nitrogen drawdown rate
(LDR) are calculated to define clear optimization objectives and constraints, facilitating robust multi-scenario assessments. The socio-economic module
embeds policy considerations, evaluates practical feasibility, estimates the likelihood of farmer adoption, analyzes dynamic costs, and addresses equity.
The resulting output provides implementable spatial BMP scenarios, clearly delineating spatial planning decisions and readiness for practical application.

persistently elevated nitrate concentrations in agricultural water-
sheds despite extensive conservation efforts®l. Conventional
models frequently fail to adequately represent the retention and
delayed release of legacy nitrogen stored in soils and groundwater,
lacking explicit mechanisms to capture these slow, subsurface
processes30l, For instance, llampooranan et al.l?"l demonstrated that
standard SWAT modeling predicted approximately two years for
water quality recovery following BMPs implementation, whereas an
enhanced 'SWAT-LAG' model incorporating groundwater nitrogen
delays projected an 84-year recovery timeline. This stark discre-
pancy highlights the profound implications of neglecting legacy
nitrogen processes, leading to overly optimistic, unrealistic manage-
ment expectations.

Therefore, applying the traditional BMPs spatial optimization
framework to nitrogen pollution without substantial modification
risks targeting incorrect processes, unsuitable locations, and
inappropriate temporal scales. Subsequent sections of this review

thoroughly examine each component of the conventional frame-
work, outlining the necessary adaptations and innovations required
to accurately reflect nitrogen's unique subsurface and temporal
characteristics and thus achieve realistic, practical nitrogen pollu-
tion management outcomes (Table 1).

The evolution of spatial heterogeneity and
hydrological pathways representation

The standard watershed optimization framework initially falls short
for nitrogen management, particularly in its representation of spatial
heterogeneity and hydrological pathways. The spatial units selected
for optimization and the simulation models evaluating BMPs' effec-
tiveness were originally designed for surface runoff processes.
Consequently, they inadequately capture crucial subsurface pathways
and long-term dynamics central to nitrate pollution.
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Table 1 Comparison of standard vs nitrogen-tailored frameworks

Key aspects

Standard BMPs optimization framework

Proposed nitrogen-tailored framework

Target processes
transport (e.g., phosphorus, sediment)
Spatial units
often mask spatial connectivity
Simulation models
SWAT) with simplified groundwater assumptions
Optimization objectives
initial implementation cost
Implementation strategy
placements

Primarily targets surface runoff, soil erosion, and particulate
Uses aggregated Hydrologic Response Units (HRUs) that
Relies on surface-focused watershed models (e.g., standard
Focuses on static metrics: annual average load reduction and

Often assumes 100% adoption of theoretically optimal

Explicitly targets subsurface leaching, groundwater transport,
and legacy nitrogen release

Uses process-informed units (e.g., grid cells, hillslopes) to capture
leaching hotspots and subsurface connectivity

Integrates coupled surface-groundwater models (e.g., SWAT-
MODFLOW) or explicit legacy nitrogen modules

Focuses on dynamic metrics, such as time-to-Standard (TTS),
legacy drawdown rate (LDR), and robustness under uncertainty
Embeds stochastic farmer adoption probabilities, MRV
milestones, and risk-sharing safeguards directly into the design

Process-based spatial units for nitrogen
management

Defining spatial decision units is fundamental to BMPs optimization, as
this choice determines the granularity and accuracy with which BMPs
can be targeted. Traditionally, watershed models divide landscapes
into sub-watersheds or hydrologic response units (HRUs). HRUs in the
SWAT model, for example, group non-contiguous land areas sharing
similar land use, soil types, and slopes>2*3!, This approach significantly
reduces complexity, effectively modeling pollutants predominantly
transported by surface runoff, such as sediment or particulate phos-
phorus, since surface transport closely correlates with these surface
characteristics®3.

However, the use of large, non-contiguous HRUs poses substan-
tial problems for nitrogen management. Nitrate transport primarily
occurs through vertical leaching and lateral groundwater move-
ment, processes influenced by factors that vary significantly at fine
spatial scales, including soil permeability, tile drainage presence,
local fertilizer application, and groundwater depth3433, Often, criti-
cal nitrate source areas differ significantly from surface-runoff or
erosion hotspots3637], Coarse units, such as HRUs, tend to mask
nitrate leaching hotspots through spatial averaging, resulting in
insufficient BMP allocation in genuinely critical areast8l.

Addressing these limitations, recent research advocates for more
refined, process-informed spatial delineations (Table 2). Approaches
include employing smaller, contiguous units that reflect actual
hydrological connectivity, such as small grid cells or discrete hills-
lope units following topographic flow paths. Another approach is to
delineate units by landscape position (riparian zones, footslopes,
and uplands), as this significantly influences water infiltration and
surface runoff39, Studies have demonstrated improved water
quality outcomes from optimized BMP placements using these
refined spatial units. Qin et al.B% showed that slope-position-based
delineation significantly improved BMPs targeting effectiveness
compared to larger sub-basin approaches. Similarly, Maggioli et

al.l*% found that high-resolution spatial targeting enhanced restora-
tion outcomes in dryland contexts. Wu et al.[*!l introduced land-
scape position units (LSUs) within a SWAT+ model, better identify-
ing nitrate sources overlooked by traditional averaging methods.
Thus, shifting towards fine-scale or process-aligned units, despite
increased complexity, is essential for accurately addressing nitrate
pollution.

Beyond surface runoff: modeling subsurface and
legacy nitrogen

While spatial units determine BMP placement locations, simulation
models forecast water and nitrogen dynamics following BMP imple-
mentation. Watershed models differ considerably in their represen-
tation of these processes, particularly regarding subsurface transport
pathways and lag times (Table 1). Among available models, SWAT is
widely employed due to its extensive simulation capabilities for
agricultural practices and its relatively detailed nitrogen cycling
module*>#3], However, standard SWAT relies on simplified ground-
water approximations based on linear reservoir concepts, thereby
inadequately representing deeper groundwater dynamics critical to
nitrogen transport. In these models, nitrate entering shallow ground-
water typically moves simplistically towards streams or deep aquifers
through fixed, exponential recession parameters, omitting explicit
groundwater age, aquifer heterogeneity, or long-term storage
dynamics?*#4, These simplifications result in significant underrepre-
sentation of subsurface nitrate pathways and time scales associated
with legacy nitrogen.

To accurately represent these processes, recent advances in
modeling have moved in three primary directions. First, time-delay
approaches integrate legacy nitrogen modules directly into existing
watershed models. For instance, the SWAT-LAG framework employs
sequential coupling, in which SWAT first simulates surface runoff
and soil processes, with nitrate leaching calculated as boundary

Table 2 Watershed models commonly used to optimize nitrogen-focused BMPs placement

Model Key N processes Glzzgzg‘:\’iattf);ae?ld Spatial unit Streng;nh;sf:trur:;iter:gen- Main limitations Ref.
SWAT/SWAT+ Hydrology; soil-plant GW linear reservoirs;  Subbasin-HRU; Rich BMPs library; widely ~ HRU mixing masks CSAs; [100]
nitrogen cycling; leaching;  legacy implicit unless validated; suits multi- deep GW/lag under-
routing extended objective search and represented; compute-
scenario analysis heavy
SWAT-MODFLOW/  Two-way Explicit groundwater Model-dependent; Best where legacy/GW High parameterization [47]
GWSWEM surface-groundwater; lags and GW- many units dominate; long-horizon and runtime burden
refined leaching and dominated N fluxes realism
transport
ELEMeNT-N/ Multi-pool nitrogen Focus on soil/GW Sub-basin/grid Explains lagged recovery; Needs an engineered [101]
legacy-N accumulation, residence, residence times and sets long-horizon targets  linkage to the BMP
and release release modules
AnnAGNPS Event/daily Simplified Sub-watershed/ Fast scenario screening; Long-term nitrogen [102]

runoff-erosion—-nutrient
export

groundwater/lag
representation

field

field-scale siting

cycling simplified; low
GW sensitivity
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inputs. These inputs are then passed to the LAG module, which
applies transit-time distributions (TTDs) to simulate the storage and
delayed release of legacy nitrogen in stream networks?'l. Similarly,
the ELEMenT-N model adopts a multi-compartmental structure to
explicitly track nitrogen accumulation and depletion across soil,
shallow groundwater, and deep groundwater zones over decadal
timescales®#°],

Second, physically based surface-groundwater model coupling
enables three-dimensional simulations of flow paths. In the SWAT-
MODFLOW integration, models exchange data through spatial
mapping interfaces. SWAT calculates vertical soil percolation and
provides recharge estimates (water and nitrogen loads) to specific
MODFLOW grid cells. In turn, MODFLOW simulates hydraulic head
distributions and lateral groundwater flow, and passes back ground-
water-surface water exchange fluxes (baseflow) to SWAT's channel
routing modulel®dl, This bi-directional data exchange explicitly
addresses the spatial disconnection between nitrate leaching
sources and their delayed impacts on receiving streams.

Third, reactive transport modeling approaches integrate sub-
surface biogeochemical processes. Recent model developments,
such as SWAT-MODFLOW-RT3D, add a reactive transport layer
where RT3D solves multi-species advection-dispersion-reaction
equations!*748], Within this coupled framework, MODFLOW gene-
rates groundwater velocity fields, SWAT provides nitrogen inputs,
and RT3D simulates spatially explicit nitrogen transformations such
as denitrification within aquifers.

In summary, effectively addressing nitrogen pollution through
spatial optimization demands substantial advances beyond tradi-
tional surface-focused frameworks. Adopting refined spatial units
ensures accurate identification of nitrate hotspots, while integrated
or enhanced simulation models realistically represent nitrate's sub-
surface dynamics and storage. Although increased computational
complexity and data requirements accompany these improvements,
they are critical for developing realistic and practical nitrogen
management strategies.

Time-sensitive and robust optimization
objectives for nitrogen

The subsurface transport and legacy nitrogen dynamics discussed
earlier pose significant challenges for conventional water quality
management objectives. Traditional frameworks typically assess per-
formance based on annual average reductions in nutrient loads.
However, these static measures do not adequately capture the timing
and pace of water-quality recovery in groundwater-dominated sys-
tems. In contrast, time-sensitive objectives (e.g., TTS) explicitly account
for delayed nitrogen releases. These objectives mathematically pena-
lize management strategies that ignore legacy nitrogen reservoirs,
compelling optimization algorithms to prioritize practices like denitri-
fying bioreactors or deep-rooted perennial vegetation, which directly
intercept and mitigate subsurface nitrate pathways?%3'#1. Conse-
quently, effective nitrogen management requires moving beyond
conventional load-reduction targets to explicitly incorporate temporal
dynamics and robustness against uncertainty (Table 3).

Time-sensitive objectives

Effective nitrogen management must evolve from solely focusing on
load reductions to explicitly incorporating temporal considerations
into objectives, addressing questions of timing and durability of water
quality improvements. This transition involves integrating time-
sensitive metrics, such as time-to-standard (TTS), and the legacy nitro-
gen drawdown rate (LDR), explicitly into optimization frameworks.

Specifically, TTS quantifies the period required from the current
time until a water quality metric (e.g., nitrate concentration) consis-
tently complies with regulatory standards. When meeting these
standards within a set planning horizon (e.g., 30 years) is unrealistic,
alternative metrics such as the duration and cumulative magnitude
of standard exceedances can serve as practical surrogates!#9:59],
These surrogate measures enable optimization approaches to com-
pare and evaluate management strategies effectively, even when
immediate compliance with water quality standards is not feasible.

LDR measures how rapidly legacy nitrogen stores are reduced
under interventions. A higher LDR indicates more effective deple-
tion of accumulated nitrogen pools, thereby facilitating sustained
improvements in water quality over time. Although directly measur-
ing legacy nitrogen reservoirs is challenging, LDR can be estimated
using advanced modeling techniques or inferred indirectly from
groundwater nitrate concentration trends and isotopic tracer
analysesl,

Several practical considerations emerge when incorporating TTS
and LDR into optimization frameworks. First, robust estimation
methods for these metrics are essential. Specifically, TTS can be
significantly influenced by natural hydrologic variability, such as
sequences of particularly wet or dry years, which can accelerate or
delay achieving compliance thresholds. Techniques such as flow
normalization (which adjusts for flow variability to better isolate
concentration trends) or probabilistic assessments based on multi-
ple climate scenarios can improve the reliability of TTS estimates(52.,
Outputs from these analyses may include distributions or confi-
dence intervals for TTS, guiding optimization toward minimizing
median times or ensuring high probabilities of meeting water qua-
lity standards within specified durations. Second, validation of
modeled predictions against empirical data are crucial. If a model
predicts achieving compliance within a specific timeframe (e.g., 15
years), it must be grounded in realistic assumptions regarding the
depletion rate of groundwater nitrate. The LDR provides a mecha-
nistic check: predictions about TTS must align with the correspond-
ing rates of legacy nitrogen depletion, which can be independently
verified through groundwater dating, nitrate flux observations,
and tracer studies. Ascott et al."l highlighted that combining well-
monitoring networks and tracer studies with model predictions
effectively 'ground-truths' these depletion estimates, reducing the
risk of overly optimistic projections.

In summary, integrating TTS and LDR into the optimization frame-
works is essential, rather than merely adding complexity. This
integration ensures alignment of optimization objectives with the
physical reality of nitrate pollution dynamics, where temporal
considerations are critical to achieving meaningful and lasting water
quality outcomes.

Robust objectives under uncertainty

Another key evolution in optimizing nitrogen management objectives
involves explicitly acknowledging and addressing the substantial
uncertainties surrounding future environmental, economic, and policy
conditions. Nitrogen mitigation strategies implemented today will
have implications spanning decades, during which factors such as
climate change, shifts in land-use practices, economic developments,
and evolving policies could significantly alter their effectiveness. Con-
sequently, a management strategy optimized under specific assump-
tions such as current average climate conditions, stable crop prices,
and static land-use patterns might underperform substantially if those
assumptions prove inaccurate. For instance, increased rainfall intensity
could elevate runoff and leaching, or crop shifts could alter nitrogen
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Table 3 Recent case studies in nitrogen non-point source pollution spatial optimization and their methodological evolution
Study paradigm Model Spatial units oglt::j?clfia\;elgn Clc:;s;g:r Key study metrics nitr':)egI:‘r:?envc:I:‘:i - Ref.
Traditional paradigm SWAT HRUs |Mir:jimize costand TN No TN reduction rate (%) Standard cost-load optimization  [98]
oa
Representation SWAT Finer Units ~ Model evaluation No Model calibrationa Finer units required to capture ~ [103]
evolution vs HRUs performance N-leaching hotspots
Representation Coupled Grid-based  Model evaluation Yes Nitrate concentration Coupled model needed for [48]
evolution SWAT and flux subsurface N pathways
Decision evolution SWAT Sub-basins  Quantify legacy N Yes Legacy N contribution Case evidence for legacy N [87]
(%) dominance; highlights failure of
static metrics
Decision evolution SWAT Sub-basins  Robust optimization No N load reduction (%) Evolution from static-optimal to  [104]
robust-optimal
Computation Surrogate HRUs Minimize cost and TN No TN reduction rate (%) Surrogate model used to [72]
evolution SWAT load overcome computational
bottleneck
Socio-economic Choice Farm/contract Behavioral analysis No Farmer acceptability Links technical optimum to [65]
evolution experiment level adoption probability and farmer
preference

demand patterns®¥. Thus, there is a growing emphasis on transi-
tioning from traditional single-scenario optimization to robust
optimization.

Robust optimization aims to find solutions that remain effective
across a range of plausible future scenarios rather than a single
deterministic future. This approach can be operationalized through
several methodologies. One common strategy involves statistical
objectives, such as maximizing the average nitrogen load reduction
while minimizing variance across diverse climate and socio-
economic scenarios®3], Alternatively, optimization may employ
chance constraints, ensuring targets like achieving nitrate concen-
tration standards by a specific future date in a high percentage of
simulated scenarios (e.g., at least 80% by 2040). Another notable
approach is the maximin or minimax regret formulation, which
optimizes performance in worst-case scenarios while maintaining
acceptable performance under more favorable conditions!>4. These
methods collectively shift the optimization focus from identifying
an ideal solution for a single assumed future toward finding solu-
tions that provide satisfactory outcomes across multiple plausible
scenarios.

Implementing robust, multi-scenario optimization typically
requires evaluating candidate BMP placements under numerous
future conditions(>3l. For example, a given BMP configuration might
be assessed under multiple climate projections, various agricultural
fertilization rates, and different economic scenarios, resulting in
extensive scenario analyses for each candidate solution. Objectives
might then aim to minimize costs while ensuring that nitrate
concentration targets are consistently achieved across most scena-

Results can be presented using probability distributions or reliabi-
lity curves, providing decision-makers with insights into the per-
formance and robustness of each solution under uncertainty!’:>6l,
Decision-makers often favor solutions that, despite slightly higher
costs or lower median performance, significantly enhances the likeli-
hood of achieving targets under adverse conditions (reflecting risk-
averse preferences)i®’., Integrating these preferences into optimiza-
tion prevents the selection of superficially optimal yet practically
fragile solutions.

Technological advancements in robust optimization methods
have facilitated this evolution. Many-objective robust decision-
making (MORDM) frameworks, for instance, explicitly manage multi-
ple performance metrics across diverse scenarios, leveraging
evolutionary algorithms to identify optimal trade-offsl5859, These
methodologies increasingly couple scenario generators with
optimization engines, demonstrating feasibility and effectiveness
in groundwater and watershed management contexts (Table 4).
Recent studies by Macasieb et al.l5% illustrate successful applica-
tions of surrogate-assisted multi-scenario optimization, highlight-
ing the practicality of robust optimization strategies in BMPs
planning.

Holistic multi-objective trade-offs in nitrogen
management

Beyond temporal and uncertainty considerations, an additional holistic
objective is to account for trade-offs across nitrogen's environ-
mental impacts. In addition to temporal factors (e.g., TTS and LDR) and
robustness under uncertainty, an essential enhancement of nitrogen

rios, such as meeting reliability thresholds (e.g., 90% compliance). optimization frameworks is to address the full range of
Table 4 Optimization algorithms for nitrogen-focused BMPs design
Algorithm Typical objectives Strengths Limitations Application context Ref.
NSGA-II/NSGA-IIl Min TN load and cost; Mature; diverse Pareto sets; Many model calls; tuning  Default workhorse; pair [105,106]
constraints on parallel-friendly sensitive with surrogates
budget/area/compliance
Surrogate-assisted Min TN load and cost; Orders-of-magnitude Extrapolation risk; needs ~ Focus sampling near the [71]
constraints on speed-up; UQ possible active learning Pareto front
budget/area/compliance
Robust/chance- Meet TN goals under uncertainty Low-regret; resilient to Extra computation; risk Sensitive watersheds; [107]
constrained (climate/params) extremes weighting choices matter regulatory certainty
MILP/MINLP Min cost for target reductions; Global optima for Hard with strong Target-based planning; [108]

policy/fairness constraints

linear/convex; interpretable

nonlinearity; needs
decomposition

layered with heuristics
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nitrogen-related trade-offs. Focusing exclusively on nitrate leaching
without considering other nitrogen pathways can inadvertently lead to
pollutant swapping, generating unintended adverse environmental
outcomes®",

A critical trade-off arises with gaseous nitrogen emissions. Many
BMPs, such as cover cropping or reduced tillage, are implemented
to mitigate nitrate leaching, but can inadvertently create anaerobic
soil conditions, promoting denitrification and increasing nitrous
oxide (N,0) emissions(62. Given that N,O is a potent greenhouse gas
with a global warming potential substantially higher than that of
CO,, optimizing solely for water quality may result in detrimental
climate impacts!'1.63,

Equally significant is the economic aspect. Technical solutions
may appear effective in theoretical models but fail if economically
unviable at the farm level. Previous optimization frameworks
typically include crop yield as a constraint, yet this fails to reflect
farmers' practical decision-making processes adequately. Thus, farm
profitability should be explicitly integrated as a central optimization
objectivel®¥. An environmental strategy that compromises farm
profitability will likely face low adoption rates©3l,

Addressing these complexities requires transitioning to a more
comprehensive multi-objective framework, expanding beyond
traditional two-dimensional optimization (cost and nitrate load
minimization) to explicitly encompass at least three interrelated
objectives: minimizing nitrate leaching to improve water quality,
minimizing gaseous nitrogen emissions (notably N,O) to mitigate
climate impacts, and maximizing farm profitability to ensure
economic viability.

Recent research has begun operationalizing this integrated
approach by combining biophysical process models with multi-
objective evolutionary algorithms (MOEAs) to explore complex
trade-offs comprehensivelyl®l. Such models produce a Pareto-
optimal frontier, offering stakeholders a variety of balanced options
without presupposing a single optimal solution. This approach
allows decision-makers to align selected strategies with their priori-
ties or constraints, such as accepting slightly higher nitrate leaching
for substantially lower N,O emissions and stable farm incomel®7],

Incorporating this holistic view into nitrogen management frame-
works highlights the need to integrate multiple nitrogen pathways
and stakeholder preferences. Such integration ensures strategies
are technically robust, environmentally sound, economically feasi-
ble, and practically implementable.

However, adopting robust, time-sensitive objectives significantly
increases computational demands. Evaluating a single candidate
solution often involves running detailed watershed simulations
across extended periods and multiple scenarios®8l. For example,
if evaluating one scenario takes 10 min for a 30-year simulation,
analyzing 100 scenarios would proportionally increase computa-
tional time, potentially leading to prohibitive computational
requirements for extensive optimization searches involving thou-
sands of candidate solutions. Such exponential increases, driven
by finer spatial resolutions and numerous scenarios, necessitate
computational capacities often associated with supercomputing
resources.

To feasibly implement the advances outlined in earlier sections,
parallel innovations in computational strategies is critical. Tradi-
tional brute-force search approaches, such as standard multi-
objective evolutionary algorithms (e.g., NSGA-Il), become computa-
tionally impractical under these demanding conditions(®. Conse-
quently, subsequent sections will explore emerging solutions,
including smarter optimization algorithms, model approximation
techniques, surrogate modeling, adaptive sampling methods, and

parallel computing approaches, ensuring computational feasibility
alongside enhanced management effectiveness.

Making BMPs optimization tractable

Incorporating greater physical realism (fine-scale spatial units, coupled
hydrological models) and robust decision-making (multi-scenario
objectives) into the optimization framework for BMPs substantially
increases computational complexity. Over the past two decades,
heuristic evolutionary algorithms (EAs), such as NSGA-Il, have been
extensively employed in environmental optimization problems due to
their ability to explore complex solution spaces’?, as shown in Table 4.
However, these algorithms typically require a vast number of model
evaluations (often tens of thousands) to approximate the Pareto front
effectively. For instance, with each watershed model simulation taking
around 5 min, conducting 10,000 evaluations would require approxi-
mately 833 h (~35 d) of computation. While partial parallelization can
alleviate some computational load, this approach remains highly
demanding.

As model complexity and the number of scenarios increase,
computational costs rise exponentially. For example, coupling
watershed models such as SWAT, with groundwater models like
MODFLOW significantly increases individual simulation times,
extending optimization or calibration processes to days or even
weeks 6, Recent studies frequently report computational demands
reaching billions of model time steps, requiring high-performance
computing clusters for completion.

Addressing this computational challenge requires shifting from
brute-force searches to intelligent methods that maximize informa-
tion gain per model run. Several key strategies have emerged:

(1) Surrogate-assisted optimization with rigorous validation: Sur-
rogate modeling is a transformative approach that uses simplified,
rapidly evaluable models to approximate a complex watershed
model outcomes”'72l. In BMP optimization contexts, surrogate
modeling typically follows four key steps: (i) generating a space-
filling experimental design, such as through Latin Hypercube
Sampling, within the decision space; (ii) conducting a limited set of
high-fidelity watershed simulations at these selected design points;
(iii) training machine-learning surrogate models (e.g., Random
Forests, Gaussian Process regression, or deep neural networks) on
the simulated data; and (iv) rigorously validating surrogate model
performance using an independent hold-out test dataset. Recent
studies emphasize reliability benchmarks, such as Nash-Sutcliffe
Efficiency (NSE) values greater than 0.5 and coefficients of determi-
nation (R2) exceeding 0.8, to ensure accurate representation before
surrogate models are used within optimization loops[®9l.

(2) Active learning and adaptive sampling: Although static surro-
gate models are helpful, their predictive accuracy depends strongly
on the quality of initial training data, and can deteriorate in poorly
sampled regions. To overcome this limitation, active learning
methods iteratively enhance surrogate model accuracy. Instead of
randomly selecting additional sampling points, these approaches
use specific infill criteria, such as expected improvement (El), to
strategically select new points in regions with high uncertainty or
potential optimal solutions. High-fidelity simulations are then con-
ducted at these new points, and the surrogate model is retrained
with this augmented dataset. This iterative adaptive sampling
progressively reduces predictive uncertainty, particularly near the
Pareto front(73.74],

(3) Parallel and high-performance computing (HPC): Leveraging
parallel computing resources significantly reduces optimization
times. Many watershed models are suitable for parallel execution
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across different parameter sets or scenarios. HPC clusters and cloud
computing frameworks enable rapid evaluations by distributing
simulations across multiple processors. Recent advancements have
demonstrated significant runtime reductions through multi-layer
parallelization techniques that dynamically allocate computational
resources to efficiently meet optimization demandst’>-771,

(4) Search space reduction and intelligent initialization: Reducing
problem complexity through informed pre-selection of feasible
solution spaces enhances computational efficiency. By identifying
non-critical areas (e.g., regions with minimal nitrogen contribution
or negligible hydrological connectivity), these can be excluded or
assigned lower priority, significantly shrinking the decision space.
Scenario ensemble compression through clustering or bounding
analyses also minimizes redundant computations while preserving
outcome diversity7879],

(5) Integration with decision analytics: Incorporating decision
science frameworks, such as robust decision-making (RDM) or dyna-
mic adaptive policy pathways, facilitates systematic scenario evalua-
tions and vulnerability analyses881l, Recent methods that combine
surrogate models and scenario analytics enable comprehensive
uncertainty analysis integrated directly into optimization processes.
Such integrated approaches deliver robust, adaptive management
strategies that clearly outline performance trade-offs under various
future conditions!82:831,

In synthesis, combining surrogate models, adaptive sampling,
parallel computing, and search-space pruning allows us to maintain
a high-fidelity representation of processes without making the opti-
mization intractablel798485], These techniques, used in concert, can
deliver a set of computationally optimal (or at least feasible) solu-
tions that honor the complexity of nitrogen cycling and the unpre-
dictability of the future. However, even a perfectly optimized solu-
tion from a technical standpoint does not guarantee real-world
success. The human element, including farmers' willingness to
adopt practices, policy support, and economic viability, ultimately
determines whether an optimal plan on paper results in tangible
water quality improvements. Therefore, a crucial final step is to
explicitly incorporate socio-economic feasibility into the optimiza-
tion framework, thereby transforming a technically optimal solution
into a practically implementable one.

Socio-economic feasibilities: from
technical optimum to implementable
optimum

Spatial configurations translate into public benefits only when they are
adopted, financed, and maintained at the farm level over the long
term. However, the prolonged lag times described previously often
create a disconnect between implementation actions and visible envi-
ronmental outcomes. To address the temporal trust gap, implemen-
tation frameworks should shift from relying solely on long-term water
quality compliance to also monitoring intermediate indicators near
implementation sites, such as edge-of-field nitrate fluxes identified
within the proposed physical framework. Aligning payments with
these verifiable progress signals ensures sustained stakeholder
engagement and confidence throughout the critical lag period®%%%!,
Without such intermediate feedback, policymakers, implement-
ing agencies, and farmers may downgrade their assessments of
environmental effectiveness, diminishing their confidence and
willingness to sustain and scale up BMP investmentsl®'86l, To
counteract this, implementation-oriented optimization frameworks
should explicitly integrate intermediate, measurable indicators, such

as along-reach nitrate concentrations or fluxes, buffer strip connec-
tivity, and vegetation cover as internal design parameters. These
indicators must be systematically aligned with monitoring and veri-
fication protocols, incorporating payment milestones, frequencies,
and triggers (e.g., quarterly payments linked to measured nitrate
reductions or enhanced buffer connectivity) within the optimiza-
tion process!>%87], This alignment connects the technical robustness
outlined in previous sections with policy timelines and responsive
monitoring (Fig. 2).

Institutional context shaping feasible BMP sets
Optimization occurs within specific institutional and policy contexts
that shape both the feasible solution set and the appropriate objective
functions (Table 5).

In the United States, the Clean Water Act uses Total Maximum
Daily Loads (TMDLs) for watershed nutrient budgeting!®8], while
agricultural NPS controls largely depend on voluntary, incentive-
based programs funded by the federal government and delivered
by agencies like USDA/NRCS under the Farm Bill89. Given the volun-
tary nature of these programs, optimization efforts shift from enforc-
ing compliance to maximizing expected farmer adoption. Because
adoption probabilities vary according to payment levels, transac-
tion costs, perceived risks, and complexity of practices, optimal
BMP configurations should be prioritized based on their expected
nutrient reductions (E[R]), calculated as the product of theoretical
removal efficiency (Rye.,) and site-specific adoption probability
(Pagopnt'®>4. Additionally, risk-sharing instruments such as extreme
weather exemptions, minimum-payment guarantees, and insu-
rance mechanisms serve as critical parameters, influencing
perceived farmer benefits and reshaping the cost-effectiveness of
BMP portfolios!®0.21],

In the European Union, the Nitrates Directive mandates targeted
action programs within designated vulnerable zones, comple-
mented by basin-scale water quality objectives under the Water
Framework Directivel®293, In contrast to the US approach, this EU
regulatory framework mandates baseline performance standards for
farmers. Additional Agri-Environment-Climate Measures (AECMs)
financially incentivize actions exceeding these regulatory baselines,
effectively defining incremental improvements as meaningful
units of optimization®4-%I, Consequently, the optimization pro-
blem includes a binding regulatory baseline, where baseline BMPs
are fixed parameters rather than decision variables. The objective
thus becomes maximizing incremental ecological improvement per
unit of public expenditure above the mandatory baselinel'6:54,

In China, the River Chief System aligns water quality targets
directly with administrative accountability, requiring local govern-
ments to achieve compliance within their jurisdictions. Additionally,
eco-compensation mechanisms transfer payments from down-
stream beneficiaries to upstream managers for transboundary rivers,
thereby affecting local budgets and influencing the relative cost-
effectiveness of management actions across regions®’l. Further-
more, strict farmland protection policies constrain the conversion of
prime cropland to non-agricultural uses, creating rigid spatial
constraints on BMPs selection. For optimization, this implies: (i)
imposing regional constraints on land-intensive or land-conversion
measures in major grain-producing areas; (ii) explicitly integrating
minimum yield or income guarantees into optimization objectives
or constraints to avoid unacceptable trade-offs between yield and
water quality; and (iii) parameterizing eco-compensation rates and
payment schedules as location-specific budget factors and tempo-
ral cost weights to adjust overall cost-effectiveness56:65.98],
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Table 5 Institutional regimes and optimisation implications for nitrogen-focused BMPs spatial configuration

. T AT q Contracting and MRV footing Implications for optimization objectives (left),
Regions Jurisdiction Binding baseline incentives (milestones) constraints (middle), and targeting (right)
United States  Clean Water Act; Basin load budgets  Payments, Near-field nitrate Expected Constraints:  Leaching-prone,

Farm Bill via TMDLs; ag-NPS  transaction costs, (reach conc./flux), abatement/ MRV connectivity-strong
controls voluntary  practice complexity; outlet conc./flux, compliance feasibility and  parcels
mainly!®®! risk sharing via buffer connectivity/  probability risk-sharing
exemptions/price vegetation cover costs
floors/insurance!®”
European Water NVZ action Result-based/hybrid Regulatory Risk-adjusted Baseline as Supra-baseline
Union Framework programmes; contracts reduce monitoring enables  incremental hard bound measures with high
Directive; basin-scale good outcome-risk indicator-linked benefit over MRYV sensitivity
Nitrates Directive status!'%” premial'® staged payments baseline
China River Chief Administrative Inter-jurisdiction Milestones aligned to  Expected Land-use Precision nitrogen
System; eco- accountability; transfers; emphasis  assessment windows; abatement bounds and edge-of-field
compensation land-conversion on yield-neutral near-field indicators  with crop- denitrification in
limits in prime grain  measures!''"! used to show interim  return connected,
belts!®”) progress safeguard leaching-prone
parcels

These diverse institutional contexts collectively establish distinct
boundary conditions for the optimization of best management
practices (BMPs). Policy frameworks, including voluntary incentive
structures in the US, mandatory regulatory baselines in the EU, and
spatially defined yield and land-use constraints in China, critically
influence the feasibility of solution sets. Achieving an imple-
mentable optimum extends beyond physical modeling and requires
integrating farmer adoption behavior, socio-economic factors, and
verification mechanisms into the optimization process to address
the varied institutional landscapes effectively.

Integrating adoption, MRV, and safeguards into
optimization

To operationalize these institutional strategies, socio-economic con-
siderations must be translated from qualitative concepts into quanti-
tative parameters within the optimization framework.

First, farmer adoption should be represented as a probabilistic
variable derived from empirically estimated utility functions. As
discussed above in the US institutional context, adoption decisions
are not binary but probabilistic. To quantify this, researchers increa-
singly use discrete choice experiments (DCEs) to parameterize
farmer decision-making processes. For instance, Schulze et al.l%]
utilized a mixed logit model to estimate the utility (U) farmers derive
from adopting a given BMP:

U[ = Bpuyment X Xpayment +,Bri.sk X Xn'sk +,Bsm:iul X chial t & (1)
where, B coefficients represent the marginal utility of key attributes
such as payment rates (X,gymen¢), Perceived risk (X, such as in result-
based schemes), and administrative or social support (X,,,) The

eli
——) allows the opti-
1+eli

mization model to calculate the expected nutrient reduction (E[R]) as
defined in the preceding section, effectively filtering out theoretically
optimal but practically infeasible solutions.

Second, dynamic social processes such as peer influence require
explicit evolutionary modeling. Adoption decisions often exhibit
interdependencies, especially in rural communities where trust,
imitation, and local norms strongly influence behavior. Recent appli-
cations of evolutionary game theory (EGT) demonstrate effective
methods for simulating these diffusion processes. For example,
Wang & Shang®! developed a three-party evolutionary game
model using replicator dynamics to quantify how participation
probabilities (z) evolve (dz/dt), based on comparative payoffs
between adopters and non-adopters within local networks.

resulting probability of adoption (P, =

Incorporating these dynamic adoption probabilities allows opti-
mization algorithms to prioritize spatial clusters likely to sustain
adoption through positive social reinforcement, rather than select-
ing isolated sites susceptible to disadoption.

Third, monitoring, reporting, and verification (MRV) protocols
must align with optimization objectives to reduce perceived risk. To
address discouragement resulting from delayed environmental
outcomes, optimization designs should incorporate intermediate
measurable indicators, such as edge-of-field nitrate flux or buffer
strip connectivity. Incorporating these indicators into optimization
frameworks enables milestone-based payments directly linked to
verifiable intermediate outcomes. Mathematically, this integration
effectively reduces perceived risks (5,y), increasing farmers' adop-
tion probabilities (Pggep) L.

Finally, explicit safeguards are necessary to prevent unintended
outcomes such as pollution swapping and economic losses. Opti-
mization solely targeting nitrate reductions might inadvertently
elevate nitrous oxide (N,O) emissions (e.g., incomplete denitrifica-
tion within bioreactors) or reduce agricultural productivity©2, There-
fore, a comprehensive optimization framework should integrate
these considerations as binding constraints or explicitly conflicting
objectives in a multi-objective optimization procedure. This ensures
the selected BMP configurations simultaneously address water
quality goals, climate impacts, and economic viability for
producers(6467],

In summary, integrating these socio-economic dimensions funda-
mentally reshapes the definition of the optimal solution. By explic-
itly embedding institutional boundary conditions and behavioral
parameters described above, the optimization framework shifts
from identifying purely theoretical global optima toward practically
implementable solutions. This ensures that limited resources are
prioritized for interventions that are environmentally necessary,
socially acceptable, and institutionally feasible.

Conclusions

This review presents a comprehensive analysis of spatial optimization
strategies for managing agricultural nonpoint-source nitrogen pollu-
tion. Although technical advancements such as refined spatial repre-
sentation, explicit modeling of groundwater pathways and legacy
nitrogen dynamics, and the adoption of robust, temporally-sensitive
optimization objectives are essential, these measures alone are
insufficient. Without concurrent efforts to ensure near-term visibility of
outcomes, integrate stakeholder behaviors, and translate theoretical
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solutions into implementable programs, even the most advanced
optimization frameworks may not achieve sustained improvements in
water quality.

Incorporating groundwater transport and legacy nitrogen signifi-
cantly increases model complexity, often exceeding the capabilities
of conventional computational methods. We emphasize the utility
of surrogate-assisted, scenario-rich optimization methods that
explicitly incorporate compliance probabilities and temporal dimen-
sions, thereby restoring computational tractability. Moreover, it was
showed that socio-economic considerations fundamentally rede-
fine 'optimal' outcomes, underscoring the importance of embed-
ding farmer adoption behaviors, transaction costs, and risk-sharing
mechanisms directly into optimization frameworks. This integration
ensures limited resources target interventions that are both environ-
mentally beneficial and realistically adoptable.

Collectively, these advances shift nitrate management from a
purely theoretical modeling domain toward practical, implemen-
table programs. Improved observability through standardized moni-
toring and intermediate performance indicators aligns incentives
with the inherently delayed responses of environmental systems to
nitrogen interventions. Robust optimization frameworks mitigate
uncertainties arising from future climatic and land-use changes,
ensuring selected strategies maintain their efficacy across diverse
scenarios. Advanced computational approaches, such as surrogate
modeling, parallel processing, and intelligent search algorithms,
enable the exploration of complex and realistic decision spaces. In
addition, applying a socio-economic perspective that incorporates
farmer behavior and tailored policy instruments connects theoreti-
cal optimization with practical feasibility, thereby increasing the
probability of sustained adoption.

We advocate a clear shift in emphasis from merely identifying
theoretically optimal configurations toward ensuring practical imple-
mentation and measurable environmental outcomes. Immediate
research priorities include:

(1) Standardizing near-field MRV protocols for nitrogen, allowing
consistent tracking of intermediate outcomes (e.g., sub-catchment
or edge-of-field nitrate reductions), fostering stakeholder trust, and
enabling adaptive management through milestone-based incentive
schemes.

(2) Integrating adoption probabilities and transaction costs into
optimization frameworks, involving interdisciplinary efforts to quan-
tify farmer preferences and constraints. This approach enhances the
practical relevance and uptake of optimized BMPs recommenda-
tions.

(3) Developing and evaluating fast-slow BMPs portfolios with
explicit co-benefit safeguards, combining rapid-action measures
(e.g., edge-of-field nitrate interception) and long-term soil health
practices, while carefully managing trade-offs related to green-
house gas emissions and farm profitability.

Ultimately, the success of these strategies must be measured not
solely through modeled reductions in nitrogen loads but by tangi-
ble indicators of real-world progress. Key outcomes include reduced
uncertainty in watershed nitrogen budgets through enhanced
monitoring, increased farmer participation in effective best manage-
ment practices (BMPs) as a result of improved incentives and target-
ing, and shorter, demonstrable timelines for measurable water
quality improvements in pilot programs. Emphasizing actionable
implementation, continuous learning, and adaptive management,
and establishing iterative feedback loops among modeling, policy
formulation, and monitoring, can create a proactive and flexible
pathway for more effective agricultural nitrogen management.
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