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Revised: 18 December 2025 Nitrous oxide (N,O) is a potent greenhouse gas, yet its in situ emission strengths and driving

mechanisms across elevation gradients and land-use types in arid ecosystems remain poorly

constrained. In the arid zone of northwestern China (NW China), recent climate change has

Published online: 23 January 2026 |ed to warmer and wetter soil conditions, likely driving shifts in N,O emissions. Hence, a field
campaign was conducted around the Xinjiang Tianshan Mountains in summer 2023, to
constrain N,O emission and its driving factors along an elevation gradient of 313-2,901 m.
The studied sites covered soils under different vegetation types, including forest, grassland,
cropland, and bareland. Across the four ecosystem types, N,O emissions differed markedly,
with croplands showing the highest fluxes (mean 181.32 ug N m=2 h™"), followed by forests
(4.66 pg N m=2 h™") and grasslands (2.69 pg N m=2 h™"), whereas barelands contributed only
negligible emissions. Results suggested that forest soils at low elevation were the main
contributors of N,O emissions (up to 10.96 ng N m=2 h~') among natural vegetation. As for
the grassland soils, N,O emissions were significantly enhanced with increasing soil moisture
along elevation, reaching 11.09 ug N m=2 h=" at 2,901 m. Edaphic factors and functional gene
abundances suggested that, despite the accumulation of soil carbon and nitrogen nutrients
at higher elevation, soil N,O emission was mainly associated with the potential contributions
of N-cycling microbial communities; both nitrifiers (ammonia-oxidizing archaea) and
denitrifiers that responded strongly to the rise in soil moisture likely contributed to N,O
emission in grassland soils, whereas the temperature decline with elevation may have
constrained the denitrifier community in forest soils. Overall, the study of N,O emissions
along the elevation gradient provides a natural proxy for predicting N,O emissions under
climate change. Warmer and wetter climatic conditions in this arid region could transform
alpine grassland soils into a significant source of N,O. At the regional scale, assessing the role
of arid ecosystems in climate change feedbacks requires integrated analysis of both
anthropogenic management practices and climate sensitivity.
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Highlights

+ Along the elevation gradient, grassland N,O emissions rise whereas forest emissions decline, revealing opposite ecosystem
responses to climatic gradients.

« Different responses of N,O emissions to the elevation gradient reflect divergent regulation by soil N-cycling microorganisms in
grassland and forest.

+ Managed soil contributes the most to N,O emissions in the Xinjiang Arid Zone, but climate change is likely to enhance natural-
soil-derived emissions.
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Introduction function and substantially influence terrestrial N,O emissions'4151.

Nitrous oxide (N,O) is a potent greenhouse gas with a global warming
potential approximately 298 times that of carbon dioxide over a 100-
year horizon and is also involved in the depletion of stratospheric
ozonel'?. Globally, soils are the dominant source of atmospheric N,O,
contributing more than 60% of total emissions, primarily through
microbial-mediated nitrification and denitrification processest#.
Understanding the environmental and biological drivers of N,O fluxes
is therefore critical for constraining greenhouse gas budgets and
predicting their responses to future climate change.

Arid and semi-arid ecosystems, which account for approximately
40% of the Earth's terrestrial surface, have historically been over-
looked in global N,O assessments compared with temperate and
humid ecosystemsl®l. The weak contribution of N,O emissions from
the arid zone could mainly be attributed to the suppression of
microbial processes and the limited decomposition rate under high
temperatures and low water availability!é”l. However, due to the
growth of the human population, anthropogenic activities have
exerted stronger impacts on soil nutrient cycling®, including in soils
under natural vegetationl®. For instance, Pan et al. synthesized
global evidence showing that fertilizer use in croplands is the
primary anthropogenic source of nitrogenous gases and a major
contributor to atmospheric and aquatic nitrogen pollutiont. Xu
et al. revealed that nitrogen fertilization can enhance the release of
native soil nitrogen, resulting in additional N,O emissions and
greater environmental nitrogen loading!'"l.

Soil N,O emission is affected by multiple edaphic and climatic
factors, including soil temperature, moisture, and nutrient
availability, which jointly regulate microbial nitrification and
denitrificationl'2., In dry climates, soil water availability appears to be
the most important driver of microbial activity and also a major
factor governing the spatial heterogeneity of nitrogen (N)
transformations’:'3l, In particular, soil moisture has been identified
as a critical regulator of N,O production, with intermediate water-
filled pore space providing optimal conditions for nitrification and
denitrification”). For example, a global meta-analysis revealed that
altered precipitation regimes drive strong shifts in denitrifier

Further, pathway partitioning studies show that nitrifiers can
account for 34.2% of total N,O on average in semi-arid grasslands,
and > 75% immediately after wetting or fertilization pulses in
dryland croplands, underscoring their prominent role in arid envi-
ronmentsl'®. Soil N,O production is primarily mediated by micro-
bial nitrification and denitrification processes, in which several key
functional genes play essential roles: amoA encodes the ammonia
monooxygenase that drives the first step of nitrification, nirk and
nirS encode nitrite reductases that catalyze the reduction of NO,™ to
NO during denitrification, and nosZ encodes nitrous oxide reduc-
tase, the only enzyme capable of reducing N,O to N,3.. These gene-
controlled pathways jointly determine the balance between N,O
production and consumption across soils with contrasting moisture
and oxygen conditions. Moreover, under the highly aerobic and
water-limited conditions typical of arid soils, ammonia-oxidizing
archaea (AOA) and bacteria (AOB) can still actively produce N,O via
nitrification and nitrifier denitrification. These microorganisms show
remarkable tolerance to desiccation and elevated temperatures,
allowing them to sustain activity even when denitrification is
strongly suppressed by drought!'7l, Recent research has shown that
AOA and AOB exhibit distinct nitrogen source preferences: AOA
favor ammonia, and many p-AOB (f-proteobacterial ammonia-
oxidizing bacteria) prefer urea, which contributes to their ecological
niche differentiation and variable roles in nitrification-driven N,O
emissions!'8l. Meanwhile, land-use conversion, such as steppe to
cropland, has been shown to increase the spatial heterogeneity of
soil functional genes and to reshape microbial nutrient cycling
processes, emphasizing the importance of anthropogenic manage-
ment in regulating N,O fluxes!'9),

In addition to soil water balance, temperature exerts key regula-
tory effects on enzymatic activities and the composition and func-
tioning of microbial communities in natural soils. It is demonstrated
that denitrifier-related N,O emission potentials are strongly con-
strained by temperature across global forest soils2, while studies in
alpine and temperate grasslands have similarly reported tempera-
ture-sensitive N,O responses, with asymmetric warming markedly
enhancing emissions during the nongrowing season2'l. As climate
change intensifies across northern arid regions, it is increasingly
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crucial to elucidate how natural soil N,O emissions respond to these
environmental changes. Elevation gradients provide a natural
framework for investigating the effects of climatic variation, particu-
larly shifts in temperature and precipitation, on soil biogeochemical
processes. In humid and temperate regions, previous studies have
shown that N,O emissions typically decline with elevation owing to
reduced microbial activity under cooler conditions?2. However,
such elevational patterns may behave differently in arid landscapes
where the combined influence of warming, soil moisture con-
straints, and altered rainfall regimes can modify nitrification-denitri-
fication dynamics!'2.

Beyond climatic controls, vegetation and land-use types may
further modulate the elevational effects by altering soil organic
matter inputs, plant-microbe interactions, and nutrient transforma-
tion pathways. Forests, grasslands, croplands, and barren lands
differ substantially in soil carbon availability, nitrogen cycling strate-
gies, and microbial community composition, all of which can
interact with elevation-induced microclimatic changes('9. Such
ecosystem-specific differences have been widely reported. It is
demonstrated that converting natural steppe to cropland signifi-
cantly reshapes soil microbial functional gene profiles, particularly
nitrifier and denitrifier gene abundances, thereby modifying nitro-
gen transformation pathways and increasing the spatial hetero-
geneity of microbial nutrient cycling processes!’?l. A global meta-
analysis has demonstrated that cropland systems, compared with
natural vegetation, exhibit fundamentally different carbon and
nitrogen turnover dynamics. These differences include increased
inorganic nitrogen availability, altered microbial community compo-
sition, and significantly higher N,O emission potentialsi®l. These
findings highlight that vegetation and land-use differences can
strongly mediate how soils respond to climatic gradients. Along
mountain gradients, increasing elevation generally results in cooler
and wetter conditions that slow organic matter decomposition and
nitrogen mineralization, thereby promoting the accumulation of soil
organic carbon and total nitrogen(23], Despite these potential inter-
actions, empirical evidence remains limited regarding how eleva-
tion and land use jointly shape N,O emissions in arid ecosystems.

In this study, field measurements of N,O fluxes, soil physicoche-
mical properties, and nitrogen-cycling functional genes were con-
ducted across forest, grassland, cropland, and barren land along a
pronounced elevation gradient in the arid region of Xinjiang, China.
This study aims to examine how N,O fluxes vary with elevation and
land-use type, to identify the key environmental and microbial
drivers at different elevations, and to evaluate whether the relative
importance of abiotic and biotic controls shifts along the gradient. It
was anticipated that lower elevations, characterized by warmer and
drier conditions, would result in higher N,O fluxes in forest soils but
lower fluxes in grasslands due to water limitation. The hypothesis
further posited that changes in the abundance and functional
potential of nitrogen-cycling microbial communities would mediate
the effects of elevation on N,O emissions, and that land-use type
would influence both the magnitude of emissions and the relative
contributions of environmental and microbial regulation. Address-
ing these questions aims to provide new insights into the complex
interactions governing N,O emissions in arid ecosystems undergo-
ing climatic change.

Materials and methods

Study area

This study was conducted in the arid zone around the Tianshan
Mountains, Xinjiang, China (43.408°-45.965° N, 81.050°-86.997° E),
located in northwestern China at elevations ranging from 310 to

3,180 m above sea level. The region is characterized by abundant land
resources and diverse geomorphological features, including vast pied-
mont alluvial plains and undulating low mountain hills, supporting a
variety of vegetation types. The climate is classified as a temperate
continental arid climate, with long, cold winters and short, relatively
cool summers. During 2006-2020, the region experienced a mean
annual temperature of 7 °C, with July being the warmest month
(mean = 11.2 °C)?4. Mean annual precipitation is only 150-500 mm, far
below that of humid regions in China, and shows a spatial gradient,
highest in the central part of the study area, intermediate in the west,
and lowest in the east. Precipitation is also seasonally skewed, with
most falling in spring and summer.

To investigate the influence of vegetation type and elevation on
soil N,O emissions, a field campaign was conducted in July 2023
to evaluate growing-season emission rates. The sampling sites
included grassland (G1-G5), forest (F1-F6), barren land (B1 and B2),
and cropland (C1 and C2) (Supplementary Table S1). Sampling sites
were distributed along the Yizhao Highway and Duku Highway to
capture an elevation gradient; as a result of regional topographic
features, most medium- and high-elevation sites (G2—-G5, F5, and
F6) were distributed along the southern flank of the Tianshan Moun-
tains (Fig. 1). The studied high-elevation grasslands were mainly
characterized as alpine meadow (G5) and alpine steppe (G1-G4),
while the high-elevation forest sites were spruce forests. The low-
elevation sites were distributed along the economic belt at the
northern flank of the Tianshan Mountains near Urumg;i, including
planted forests (Populus euphratica), forage grasslands (Kraschenin-
nikovia ceratoides and Stipa purpurea), and cotton fields. For compar-
ison, sampling sites were classified into three elevation categories:
low-elevation (LE, < 1,000 m), medium-elevation (ME, 1,000—2,000
m), and high-elevation (HE, 2,000-3,000 m). In situ N,O flux
measurements were conducted at 15 sites representing different
vegetation types, and corresponding soil samples were collected for
physicochemical and microbial analyses. Forest stands were absent
from the mid-elevation zone due to the natural vegetation distribu-
tion in the Tianshan region, leading to the absence of ME forest
plots.

Field measurements and sampling

At each site, three parallel sampling points were established, and at
each point, a pre-buried soil ring (inner diameter: 20 cm) was installed
to ensure an airtight fit with the smart chamber (LI-COR Biosciences,
Lincoln, NE, USA) during measurements. To ensure robust flux esti-
mation and account for fine-scale spatial variability, gas flux measure-
ments at each sampling point were conducted with three to six
replicate chamber runs. The chamber was connected to a portable N,O
gas analyzer (LI-7820, LI-COR Biosciences, Lincoln, NE, USA) for
parameter configuration and in situ flux determination. The analyzer
employs Optical Feedback-Cavity Enhanced Absorption Spectroscopy
(OF-CEAS) with a measurement rate of 1 Hz, a response time of <2's,
and a precision of 0.40 ppb at 330 ppb with 1 s averaging. The
deadband for mixing was set to 30 s, followed by a 180 s measurement
period, and each measurement was replicated three times. Fluxes were
calculated using the SoilFluxPro software. All flux measurements were
conducted between 11:00 and 16:00 under stable, rain-free conditions.
The measurement campaign was conducted within one week, ensur-
ing comparability among different sites.

During flux measurements, soil temperature (ST, °C) and volume-
tric water content (VWC, %, v/v) at 10 cm depth were continuously
recorded adjacent to the chamber using a temperature-moisture
logger (TOMST, Czech Republic). In addition, all soil samples were
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Fig. 1 Spatial distribution of sampling sites across different land-use types in Xinjiang, China. Land-cover data were derived from the GlobeLand30

dataset.

collected from the surface layer (3-10 cm depth) after carefully
removing surface litter and debris. Samples were sieved through a
2 mm mesh, with one subsample stored at 4 °C for subsequent soil
physicochemical analyses and another stored at —20 °C for later
quantification of nitrogen-cycling functional gene abundances.

Soil parameters

Fresh soil equivalent to 8 g dry weight was added to 40 mL of 1 M KCI
solution, and the mixture was shaken at room temperature for 2 h. The
resulting suspension was centrifuged and filtered, and the concen-
trations of NH,* and NO;™~ in the KCl extracts were determined using a
UV-visible spectrophotometer (UV-6100, China). The pH of the same
KCl extract (soil-to-solution ratio 1:5, 1T M KCl) was measured using a
potentiometric method (PHS-3E, China) after calibration with standard
buffer solutions at pH 4.00, 6.86, and 9.18.

Water-filled pore space (WFPS, %) was calculated from the
measured volumetric soil moisture (VWC, cm3 cm~3), together with a
bulk density (BD) of 1.30 g cm~3 reported in a recent study from
Xinjiang[?®, and a particle density (PD) of 2.65 g cm3, using the
formula:

VwcC
1-(BD/PD)

Soil DNA was extracted from an appropriate amount of homoge-
nized soil sample, and the abundances of the functional genes AOA,
AOB, nirS, nirK, and nosZ were quantified by quantitative real-time
PCR (qPCR) using the ChamQ SYBR Color gPCR MasterMix (2x)
(Vazyme, China) on a QuantStudio™ 5 Real-Time PCR System
(Applied Biosystems, USA). The gqPCR amplification program con-
sisted of an initial pre-denaturation step, followed by denaturation,
annealing, and extension, for a total of 40 cycles. Detailed informa-
tion on the target functional genes, primer sequences, and amplifi-
cation conditions is provided in Supplementary Table S2.

WFPS = % 100% (€))

Statistical analyses

All experimental data were plotted using Origin 2021 (OriginLab
Corporation, USA). Before analyzing the effects of land use on soil
physicochemical properties, the Shapiro-Wilk test was used to assess
data normality. When these assumptions were met, a one-way ANOVA
was used to test significant differences among groups; otherwise, the
non-parametric Kruskal-Wallis test was applied. The relationship
between N,O fluxes and their potential driving factors (e.g., soil
temperature, WFPS, and inorganic nitrogen) was examined using
regression fitting with the 'Simple Fit' plug-in in Origin. Principal com-
ponent analysis (PCA) was performed using the 'Principal Component
Analysis' plug-in in Origin 2021 to identify the significant environ-
mental and soil variables associated with variations in N,O fluxes along
elevation gradients. In addition, a random forest regression model was
implemented in R (version 4.3.0) using the 'randomForest' package to
evaluate the relative importance of abiotic and biotic predictors. The
model was trained with 1,000 trees, and variable importance was
assessed using the percentage increase in mean squared error
(%IncMSE). Functional gene abundances (amoA, AOB, nirK, nirS, and
nosZ) were log-transformed prior to analysis.

Results

Variation of edaphic factors and N,O emissions
from the low elevation

A distinct difference in soil N,O fluxes was observed among soils under
different vegetation types (Fig. 2a). Overall, soils under natural vege-
tation exhibited low N,O fluxes (~1.64 to 18.41 ug N m=2 h™"), whereas
cropland soils showed higher fluxes by two orders of magnitude
(mean = 181.32 ug N m=2 h™"). Accordingly, cropland soils showed the
greatest water availability and the lowest temperatures (Fig. 2b, c)
under management practices. Together with the relatively high
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Fig. 2 Effects of different land-use types on soil physicochemical properties. Different lowercase letters indicate significant differences among land-use

types (p < 0.05).

inorganic N supply (not significant; Fig. 2e, f), cropland soils are likely to
provide favourable conditions for N,O production processes such as
anaerobic denitrification. By contrast, barelands released the lowest
N,O fluxes of 1.61 ug N m=2 h~!, showing negative values under
extremely dry conditions despite accumulation of NH,* and NO;~
(Fig. 2a—c & h).

In grassland soils, N,O fluxes varied in a range of -0.13 to
8.65 pg N m=2 h-' (mean flux: 2.69 pg N m=2 h-1; Fig. 2a). In forest
soils, the fluxes were generally higher (4.66 pg N m=2 h~') and varied
over a broader range (-0.32 to 1841 ug N m=2 h-1). Comparing
these two ecosystem types, it was found that forest soils had higher
water contents at the low-elevation sites (Fig. 2c), but somewhat
lower N supplies, mainly reflected in total N content and NO;~
concentration (Fig. 2f, h). Despite a higher N,O emission potential
(on average) than bare soils, forest and grassland soils generally had
lower inorganic N concentrations but higher total N contents. As a
result, particularly for the forest soils, C/N ratios were close to 20,
among the lowest of all soil types.

N,O emission from grassland soils along the
elevation gradient

In situ N,O emissions from grassland soils showed a clear increasing
trend with elevation (Fig. 3a). At the low-elevation site (LE, G1), the
mean flux was 3.54 ug N m=2 h~', whereas at mid-elevation sites (ME,

G2-G4), fluxes gradually increased from 1.83 to 5.22 ug N m=2 h='. The
highest values occurred at the high-elevation site (HE, G5), where the
mean flux reached 11.09 ug N m=2 h™'. Similarly, soil temperature
declined gradually along the elevation gradient, while soil WFPS
increased markedly at the highest site (G5), exceeding 60% (Fig. 3c).
Linear regression analysis indicated that N,O fluxes were positively
correlated with soil WFPS (R? = 0.58, p < 0.001; Supplementary Fig. S1b)
and were negatively correlated with soil temperature (R? = 0.07, p =
0.68, Supplementary Fig. S1a). For inorganic N substrates (Fig. 3e), the
elevation increase stimulated the concentrations of both NH,* and
NOs~, reaching their highest at the G4 site (1,983 m), but these
concentrations dramatically dropped when elevation increased fur-
ther at the G5 site (2,901 m). In contrast, the soil NH,*/NO3™ ratio in
grassland sites showed no significant variation along the elevational
gradient (Supplementary Fig. S2a).

Soil chemical properties in the grassland exhibited an apparent
variation along the elevation gradient from 541 to 2,901 m (Table 1).
Soil pH gradually decreased from 7.37 + 0.07 at the low-elevation
(LE) site to 6.84 + 0.15 at the mid-elevation (ME) site and further to
5.60 £ 0.16 at the high-elevation (HE) site (p < 0.05). Total carbon
contents increased markedly at ME to 42.88 + 4.34 g kg~', which
was significantly higher than 24.06 + 1.60 g kg~' at LE and 24.31 +
1.91 g kg at HE (p < 0.05). Total nitrogen contents showed a simi-
lar trend, reaching 3.85 + 0.53 g kg~' at ME, significantly greater
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than 0.47 + 0.04 g kg~" at LE and 0.87 + 0.08 g kg~" at HE (p < 0.05).
In contrast, the C/N ratio was lowest at ME (11.57 £ 0.68), while it
was higher at the LE (52.63 + 6.77) and HE (28.20 + 1.24) (p < 0.05).
Although NH,* and NO;~ concentrations did not differ significantly
among elevations, they showed an increasing trend from LE to ME,
followed by a decreasing trend at higher elevations.

N,O emission from forest soils along the
elevation gradient

In situ N,O emission from the forest soils exhibited an elevation pattern
opposite to that observed in grasslands (Fig. 3b). At low-elevation sites
(LE, F1-F4), mean fluxes were generally higher, ranging from 1.35 to
10.21 pg N m=2 h™', with the maximum observed at F1. By contrast,
fluxes at high-elevation sites (HE, F5-F6) declined sharply to below
1.00 ug N m=2 h™! (means of 0.63 and 0.14 pg N m=2 h~’, respectively).
Statistical analysis revealed that the N,O fluxes at F1 were significantly
greater than those at all other sites (p < 0.05), whereas no difference
was detected among sites F2-F6. In forest soils, both soil temperature
and WFPS exhibited trends along the elevation gradient similar to

those in the grassland soils, i.e., temperature decreased and moisture
increased with increasing elevation (Fig. 3d). However, unlike in
grasslands where N,O fluxes closely followed changes in soil moisture,
forest N,O emissions showed a stronger consistency with temperature
variations (Supplementary Fig. S1b; R? = 0.46, p < 0.001).

With increasing elevation, forest soil pH decreased significantly
from 7.64 + 0.06 at LE to 6.55 + 0.07 at HE (p < 0.05). In contrast to
grasslands, where total carbon and nitrogen contents peaked at ME,
forest soils exhibited dramatic increases in carbon and nitrogen
availability at the HE sites above 2,000 m (p < 0.05). However, the
C/N ratio in forest soils dropped from 23.24 + 3.20 at LE to 10.61 +
0.51 at HE (p < 0.05). Accordingly, both NH,* and NOs~ concentra-
tions in forest soils were much higher at the HE sites, and exceeded
those in grassland soils at comparable elevations.

Functional gene abundance for soil N cycling

At low-elevation sites, the abundances of significant nitrogen-cycling
functional genes across vegetation cover types showed an overall
pattern similar to that of N,O fluxes (Fig. 4). Overall, cropland soils
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Table 1 Soil chemical properties of the high-elevation (HE, control), medium-elevation (ME), and low-elevation (LE, climate change treatment) sites
Variable Type ME HE
pH Grassland 7.37 £0.07° 6.84 +0.152 5.60 £ 0.16°
Forest 7.64 +0.06 — 6.55 +0.07°
TC(gkg™) Grassland 24.06 + 1.60° 42.88 + 4.34 2431+1.912
Forest 27.50 +3.37° — 90.45 + 11.42°
TN (g kg™ Grassland 0.47 +0.04° 3.85+0.532 0.87 +0.08°
Forest 1.42+0.27° — 8.57 £ 1.00°
C/N Grassland 52,63 +6.772 11.57 £ 0.68° 28.20 £ 1.24°
Forest 23.24 £3.2° — 10.61+0.51°
NH4*-N (mg kg™ Grassland 0.47 £ 0.06° 4.31+3.37° 0.68 + 0.06°
Forest 0.91 +0.26° — 4.29 +2.34°
NO;~-N (mg kg™") Grassland 6.05+ 1.812 7.15 +2.552 2.07 +1.26°
Forest 2.68+1.120 — 9.19 £ 2,632

Values are means + standard deviations (SE). Significant effects (p < 0.05) are shown in bold. Different lowercase letters (a, b, ¢) within the same row indicate significant
differences among elevation treatments (LE, ME, HE) at p < 0.05, while the same letter indicates no significant difference. ME data are unavailable because forest stands
are mainly absent in the mid-elevation zone of the Tianshan region, where vegetation transitions from low-elevation artificial forests to shrublands and grasslands. TN,

total nitrogen; TC, total carbon.
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Fig. 4 Abundances of nitrogen-cycling functional genes in soils under different land-use types. (a) amoA genes of AOA and AOB. (b) nirK and nirS genes.
(€) nosZ genes. (d) Ratio of nosZ to (nirK + nirS). Different letters indicate significant differences (p < 0.05).

exhibited the highest gene abundances, followed by forest and
grassland, while bareland soils had the lowest values (p < 0.05). In
forest and grassland soils, the gene abundance of AOA exceeded that
of AOB, indicating the importance of archaeal nitrifiers in arid natural
ecosystems. Among denitrifying functional genes, soils with vegeta-
tion (cropland, grassland, and forest) exhibited minor differences; the
nosZ/(nirK + nirS) ratios in forest soils were highest on average, though
not statistically significant.

The abundance of nitrogen functional genes in grassland soils
showed clear variation along the elevation gradient (Fig. 5a). The

abundance of AOA increased steadily from low to high elevation
and reached its maximum at the high-elevation sites (p < 0.05).
However, AOB abundance increased significantly from low to
medium elevation and then declined at higher elevations. For
denitrifying gene abundances, nirK showed an elevation-depen-
dent trend of increase which was consistent with AOA (p < 0.05),
whereas nirS exhibited slight significant variation (Fig. 5¢); the nosZ
displayed an opposite pattern, being more abundance at the low
elevation (Fig. 5e), resulting in higher nosZ/(nirK + nirS) ratios at the
low elevation than those at higher elevations (Fig. 5g). In contrast to
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significant differences among sites (p < 0.05).

grasslands, slight variation across elevations was detected in both
nitrifying and denitrifying functional gene abundances in the forest
(Fig. 5b, f). Both nirK and nirS showed a decline from low to high
elevations, which was significant for the nirS abundance (Fig. 5d). In
addition, the AOA abundance was significantly lower in forest soils
than in grassland soils.

Contrasting drivers of N,O emissions along the
elevation gradient

PCA revealed distinct sets of variables associated with N,O emissions at
low and high elevations. In grasslands (Fig. 6a), PC1 and PC2 explained
35.7% and 29.4% of the variance, with high-elevation samples aligning
with higher WFPS and nirK abundance and lower soil pH. These PCA
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patterns are supported by the regression results in Supplementary Fig.
S1, where WFPS showed a significant positive relationship with N,O
fluxes (R? = 0.58, p < 0.001), while soil temperature and inorganic
N exhibited weak associations, consistent with their minor PCA
contributions. Random forest results (Supplementary Fig. S3a) also
identified denitrification genes (nirK + nirS) and WFPS among the
highest-ranking predictors, further corroborating their strong PCA
loadings. In forest soils (Fig. 6b), PC1 and PC2 accounted for 42.6% and
20.4% of the variance, with clear separation between low- and high-
elevation sites along PC1, which was dominated by temperature- and
organic nutrient-related variables (TC, TN). This pattern aligns with
Supplementary Fig. STa, where soil temperature showed a significant
relationship with N,O fluxes in forests (R = 0.46, p < 0.001), and with
the random forest analysis (Supplementary Fig. S3b), in which ele-
vation, temperature, and TC/TN were the most influential predictors,
whereas WFPS and inorganic N contributed weakly in both analyses.
These convergent lines of evidence collectively validate the PCA inter-
pretation that grassland N,O variability is more closely associated with
moisture-related factors, whereas forest N,O variation aligns primarily
with temperature-related gradients.

Table 2 Summary of mean N,O fluxes from previous studies in Xinjiang, China

Discussion

Soil N,0 emission under different vegetation
from the low elevation

Based on in situ flux measurements, the study demonstrated that
vegetation types strongly affect soil N,O emissions from the arid zone
of Xinjiang Province, NW China (Fig. 2a). Among all emission sources,
cropland soils (cotton field) stood out as the major hotspots of N,O
emissions, with an average flux of 181.32 pg Nm™2h~" and a maximum
of 733.53 ug N m=2 h7". These flux magnitudes are generally com-
parable to those previously reported for irrigated cotton systems in
northern Xinjiang (Table 2)?%?7) Beyond Xinjiang, irrigated cotton
systems in other parts of China also exhibit substantial N,O losses. For
example, mean N,O fluxes ranging from 5.8 to 373.0 ug N m=2 h',
corresponding to an annual emission of 2.6 kg N ha™' yr~, have been
reported for irrigated cotton fields in northern China, with the highest
emissions occurring shortly after N fertilization?.. Other studies have
demonstrated that in arid northwestern China, the use of mulched drip
irrigation combined with biochar application reduced cumulative
growing-season N,O emissions from cotton fields by approximately
29%-38% compared with conventional furrow irrigation under high

Experimental site

. 2 -1
Type Latitude Longitude Altitude (m) Experiment date N20 flux (kg N m™*h™) Ref.
Natural land Grassland 42°52.76' 83°41.90' 2,468 2013-2017 1.34 [36]
Grassland 42°53' 83°42.5' 2,468 2017-2019 2.91 [21]
Grassland 42°49.22' 84°22.52' 2,390 2014 0.99 [37]
Grassland - - < 1,000 2023 3.54 This work
- - 1,000-2,000 3.59
- - > 2,000 11.09
Forest 41°48.35' 86°04.37' 918 2019 7.90 [38]
Forest - - < 1,000 2023 4.38 This work
- - > 2,000 0.45
Bareland 44°30' 82°36' 387 2016 0.046 [39]
Bareland - - < 1,000 2023 1.80 This work
Cropland Cotton 37°01.10" 80°43.80" 1,367 2016 9.86 [40]
Cotton 43°56' 87°28' 599 2012 110.02 [41]
Corn 43°57.72' 87°30.08' 584 2013 87.84 [42]
Cotton 44°33' 85°56' 369 2021-2022 21.83 [43]
Cotton 44°18.48' 86°03.75' 476 2021 94.76 [44]
Cotton - - < 1,000 2023 181.32 This work
Wuetal. | Volume2 | 2026 | 010 page9of13


https://doi.org/10.48130/nc-0025-0022
https://doi.org/10.48130/nc-0025-0022
https://doi.org/10.48130/nc-0025-0022
https://doi.org/10.48130/nc-0025-0022
https://doi.org/10.48130/nc-0025-0022

Nitrogen
Cycling

https://doi.org/10.48130/nc-0025-0022

nitrogen input. This approach also maintained higher yields and water
use efficiency®. The strong N,O emission strengths could be attri-
buted to the relatively high inorganic NO;~ content and soil WFPS,
which likely support active nitrification and denitrification (Fig. 2).
Other studies from this arid region have also found that intensive
irrigation and fertilization jointly enhance N,O emissions, with transient
surges in N,O fluxes after irrigation and fertilization events?%7],
Compared with other northern agricultural regions of China, such
as winter wheat-summer maize systems in the North China Plain
(0.3-30.7 kg N ha™" yr';5%) and rainfed maize fields in northeast China
(1.8-2.8 kg N ha™" yr~';B"), the studied cropland soils from the Xinjiang
arid region reveal a comparable emission potential despite generally
lower inorganic-nitrogen concentrations (Table 1), highlighting the
importance of wetting-induced pulse emissions of N,O.

Compared with agricultural soils, natural vegetation-covered soils
generally showed marginal emissions below 5 pg N m=2 h7', in
accordance with fluxes reported from natural soils in the Xinjiang
region (Table 2). In the grassland and bareland, soils were signifi-
cantly drier with a mean soil WFPS of around 20%, likely promoting
mineralization processes and the accumulation of inorganic N
(Fig. 2e & f)°l. However, water scarcity appears to be the primary
limiting factor for N,O fluxes, which can be attributed to the sup-
pression of microbial activities (denitrifiers) for N,O productionB32,
On the other hand, the studied forest soils from the low elevation
were derived from four sites, showing a significant variability in N,O
fluxes (0.28-15.49 ng N m=2 h="). All forest sites in low elevation
were situated along the northern piedmont of the Tianshan Moun-
tains and primarily consisted of secondary shelterbelts or managed
plantations established for windbreak and sand stabilization (Fig. 1).
Their management legacy, including occasional irrigation and fertil-
ization, together with the spatial heterogeneity of soil physicoche-
mical properties, likely contributed to the elevated and variable N,O
emissions observed relative to the adjacent grasslands. Among
these sites, F1 exhibited the highest N,O flux, coinciding with
enriched nitrate concentrations, higher soil temperature, and lower
water-filled pore space (Fig. 3d, f). Such a combination of warm and
moderately dry conditions is conducive to nitrification-driven N,O
formation, as accelerated ammonium oxidation and nitrite turnover
can occur in well-aerated soils with limited moisturel®33]. However,
this explanation is only partly supported by molecular evidence. The
abundances of AOA and AOB were both low at the F1 site, suggest-
ing limited microbial nitrification potential. Because functional gene
abundance reflects only potential rather than instantaneous activity,
biological drivers alone cannot fully explain the observed flux
heterogeneity. Recent evidence from arid ecosystems indicates that
abiotic or nitrite-mediated chemical reactions can represent an
important alternative pathway for N,O formation under warm, dry
conditions. Recent studies in arid ecosystems have shown that
under prolonged dry conditions, abiotic reactions involving nitrite
(NO,7) can contribute substantially to N,O formation, complement-
ing microbial pathways. For example, Homyak et al.34l demon-
strated that in dryland soils of California, chemical nitrosation and
nitrite decomposition produced rapid pulses of nitrogen oxides
even in the absence of significant microbial activity. In a subse-
quent mechanistic study, Homyak et al.3%! further showed that soil
acidity and organic matter enhanced abiotic gas formation, confirm-
ing that nitrite-mediated chemical denitrification can be an impor-
tant source of N,O in warm and dry environments. These results
indicate that abiotic nitrite reactions under dry and warm condi-
tions may substantially contribute to N,O emissions, which could
help explain the remarkably high flux observed at site F1 among
low-elevation forest soils.

Variations of N,O emission in grassland soils
along the elevation gradient
Across the elevation gradient (541-2,901 m), N,O emissions from
grassland soils showed a clear increasing trend (Fig. 3a). This pattern
was accompanied by increasing soil moisture, as indicated by higher
WEFPS, and a concurrent decline in soil temperature with increasing
elevation (Fig. 3c). These results suggest that anaerobic processes,
such as denitrification, contribute to enhanced N,O emissionst*”). The
variation of denitrifying gene abundance supports the hypothesis, as
nirK strongly increased from low to medium and then to high eleva-
tions (Fig. 5¢). In addition, the decrease in soil pH was accompanied by
a decline in nosZ gene abundance (on average), indicating that N,O
reduction was suppressed®?. Consistent with these observations,
multiple lines of evidence indicate that enhanced soil moisture con-
ditions and denitrification-related microbial activity play a central role
in shaping N,O flux patterns along the elevational gradient. Together,
these pieces of evidence converge to indicate that incomplete deni-
trification dominates N,O production in high-elevation grassland soils,
consistent with previous subalpine grassland studies showing that
increased moisture availability enhances denitrification under high-
elevation climatic conditions!**!. However, the soil inorganic N content
seems weakly related to N,O emission strength (Fig. 6a). At the G4 site,
exceptionally high NH,® and NO5;~ concentrations in the soil were
observed, likely influenced by light grazing from surrounding areas.
This may point to the relative importance of soil WFPS on N,O
emissions rather than substrate N availability during the growing
season, as reported in work from alpine steppe and alpine
meadows*’8l. On the other hand, grazing can significantly influence
soil microbial communities for N cycling. A recent meta-analysis
demonstrated that heavy grazing reduced N,O emissions by sup-
pressing amoA and nirS abundances, thereby lowering both nitrifica-
tion and denitrification potentials, whereas moderate grazing had
weaker or neutral effects*”). As for the site G4, grazing may stand out
as a factor contributing to the explanation of weak N,O emission
potential, but further investigation is needed to explore the mecha-
nism based on more sample coverage and longer observations.
Commonly, the elevation gradient in mountain ecosystems leads
to a wetter but colder climate, slowing organic matter decomposi-
tion but enhancing leaching processes due to increased precipita-
tion driven by orographic uplift>%. As a consequence, the release of
organic acids and leaching of cations would result in a drop of soil
pH, as observed in the study (Table 1). Accordingly, soil AOA abun-
dance increased dramatically, and the relative importance of AOB
decreased (Fig. 5a), suggesting the sensitivity of soil microorga-
nisms to the shift towards a wetter climate at higher elevations. This
pattern aligns well with a study conducted from 1,800 to 4,100 m in
the Gongga Mountains of the Xizang region®'l. It was found that
declines in soil pH and biodiversity contributed most to the prefe-
rence for AOA over AOB in soils along an elevation gradient. Hence,
although the direct contribution of nitrification to N,O may be
minor, the dominant role of ammonia-oxidizing archaea in provid-
ing nitrate as a substrate for denitrification is supported by func-
tional gene analysis (Fig. 6a).

Comparison of N,O emissions in forest soils from
low and high elevations

The in situ observations of N,O fluxes from forest soils revealed a
significant decrease from low to high elevation (Fig. 3b), with a pattern
opposite to that observed in grasslands. Along this elevational gra-
dient, soil temperature declined markedly, while soil WFPS increased
(Fig. 3d). In addition, soil total carbon and nitrogen contents both
increased notably at high elevations (Table 1), suggesting enhanced
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organic-matter accumulation under cooler conditions®??l. Overall, the
responses of soil edaphic properties to elevational climatic gradients in
forest soils were largely comparable to those observed in grasslands,
except for the relatively low soil WFPS in the high-elevation spruce
forests. The statistical analysis shows that high-elevation samples are
clearly separated from low-elevation ones, indicating distinct regula-
tory mechanisms between the two groups. In these spruce soils (F5
and F6 sites), the extremely low N,O fluxes compared with the
grassland soils from similar elevations may not be explained by the
high inorganic N contents (Fig. 3f), but rather attributed to the dry soil
condition. Spruce forests are a dominant forest type in the medium
and high elevation zones of Xinjiang Arid Zone, usually inhabiting
sloping terrains with limited water availability®?. Under the special
geotopographical conditions, spruce forests in this region are com-
monly susceptible to drought®3l. Therefore, inorganic N compounds
accumulated due to limited leaching but were not utilized in N cycling
processes, including denitrification.

The PCA result (Fig. 6b) shows that PC1 clearly separates high-
elevation forest soils from low-elevation soils, indicating a shift in
the dominant regulatory mechanisms along the elevation gradient.
This separation suggests that temperature-associated factors, rather
than moisture or nutrient availability, play a central role in driving
differences in forest N,O emissions. This temperature-centric control
is further supported by regression and random forest analyses,
which together indicate a significant positive relationship between
soil temperature and forest N,O fluxes and consistently identify soil
temperature as a dominant predictor. In contrast, WFPS exerts only
a weak and statistically non-significant influence and ranks low in
importance. The difference in N,O emissions between forest and
grassland soils may reflect distinct microbial regulatory mecha-
nisms. Compared with the grassland from the high elevation (G5),
soil WFPS in the relatively steep forest floorsi>4 was generally low
(29.82% to 44.12%) and might not support the anaerobic denitrifica-
tion process®>L. More importantly, denitrifying functional gene
abundances (mainly nirK and nirS) significantly decreased from low
to high elevations (Fig. 5d), whereas amoA gene abundances (AOA
and AOB; Fig. 5b) showed little difference. This pattern suggests that
the potential size of the denitrifying community decreased with
elevation, despite the increase in soil WFPS from 29.82% to 46.25%.
Recent research has consistently highlighted the strong tempera-
ture sensitivity of denitrifying microbial communities in forest soils.
While short-term N,O pulses in forest soils are triggered by nitrogen
inputs, annual cumulative emissions are primarily controlled by
temperature-driven shifts in denitrifier community composition
rather than by substrate availability®®l. Similarly, Buckeridge et al.
observed that both nirK and nirS responded markedly to short and
long-term warming, leading to pronounced changes in potential
N,O production rates>”l, At the global scale, Yu et al. demonstrated
that mean annual temperature, rather than precipitation, was the
best predictor of forest soil N,O emissions, in contrast to the mois-
ture-dominated regulation observed in grassland ecosystems[>8l,
Together, these studies indicate that denitrification processes in
forest soils are more thermally constrained, with enzymatic reduc-
tion reactions exhibiting stronger temperature dependence than
those in moisture-limited grasslands. This helps explain the sharper
decline in N,O fluxes with cooling observed in the high elevation
forests of the Tianshan Mountains.

Conclusions and implications

Field observational campaign demonstrated that vegetation type and
elevation jointly control natural-soil derived N,O emissions in the arid

zone of Xinjiang, northwestern China. Along the elevation gradient
from 541 to 2,901 m, N,O emissions from grassland soils increased
significantly to 11.09 ug N m= h~', driven by rising soil moisture and
incomplete denitrification under relatively low pH. By contrast, the N,O
emission from forest soils was most pronounced at the low-elevation
sites, likely favoring nitrification or even abiotic production of N,O
under warm and dry conditions. The microbial organisms in grassland
and forest soils responded differently to the climatic drivers with
increasing elevation, providing key explanations for the different
contributions of N,O emissions from soils under various vegetation
types. The analysis of N,O emissions along an elevation gradient
provides an important basis for predicting N,O emissions from natural
soils under projected climate change in northern China (warmer and
wetter conditions), highlighting that grassland N,0 emissions could be
a potential hotspot in future scenarios.

Nevertheless, N,O contributions from natural soils in the Xinjiang
Arid Zone are generally much smaller than those from managed
cropland systems, as revealed by regional measurements across low
elevations. These strong emissions were primarily linked to a
coupled effect of irrigation and fertilization during dry-wet transi-
tions in the region. The relatively significant contribution of soil N,O
emissions from planted forests (10.96 g N m=2 h=") in the study also
provides an important warning about the further broadening of
desert oases for human habitation, as greenhouse gas emissions
from land-use change should not be overlooked. While these find-
ings provide valuable insights into the spatial patterns of N,O emis-
sions in arid ecosystems, the flux measurements were derived from
a single field campaign, which may introduce limited temporal
uncertainty. Incorporating synchronized or multi-period measure-
ments in subsequent research would improve constraints on short-
term and seasonal N,O dynamics. Moreover, advancing toward a
more integrated assessment of soil N cycling under both climatic
and anthropogenic influences remains an important direction for
future investigation.
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