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chemicals: synergizing material metabolism and risk flow
by 'emiss-ome’
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Revised: 24 December 2025 Industrial chemicals are released throughout their life cycle (from upstream production to
downstream emission), causing pervasive pollution of new contaminants and posing
substantial risks to ecosystems and human health. The complex transfer and transformation
of these chemicals during industrial and environmental processes necessitate dynamic risk
assessment approaches. However, current methodologies remain predominantly static and
endpoint-oriented, emphasizing instantaneous risks after emission while overlooking
pollutant formation dynamics across the chemical life cycle, particularly for chemicals with
transformation potentials. This disconnection impedes effective contaminant source tracing,
identification of high-risk mixture components, and evaluation of cumulative life cycle risks.
Based on the concept of emiss-ome, we attempt to establish mechanistic linkages between
industrial chemicals, and end-of-life pollutants. We demonstrate how industrial metabolism
analysis, coupled with environmental fate and transport models, elucidates material flows
across the chemical life cycle, establishing quantitative source-pollutant relationships. To
identify key contaminants and address mixture toxicity, the application of adverse outcome
pathway frameworks are examined to reveal dominant toxicity pathways, enabling
identification of key toxicants, and risk evaluation of chemical mixtures. Ultimately, the
integration of chemical metabolism and risk flow is expected to establish a novel framework
to trace key toxicants back to their source chemicals and assess cumulative life cycle risks,
facilitating a paradigm shift from terminal risk identification toward proactive life cycle risk
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assessment and management.
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Highlights

+ Develop an 'emiss-ome'-based risk assessment framework for industrial chemicals, enabling dynamic characterization of chemical
risks across the life cycle.

+ Couple industrial metabolism with environmental process models to quantitatively link upstream chemical sources with
downstream environmental pollutants.

+ Integrate mixed-pollutant risks as a critical component to enhance the completeness and accuracy of life-cycle environmental risk
assessment.
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Industrial development serves as the cornerstone of economic
advancement; however, the escalating consumption of industrial
chemicals has precipitated severe environmental issues that funda-
mentally undermine sustainable development!'?. Since 2010, the
inventory of registered synthetic chemicals has surged from 150,000 to
over 350,000 compoundsPl. These substances are released through
value chains (from upstream production to downstream emissions)i*?],
posing persistent environmental exposure risks while generating
complex contaminant mixtures throughout their life cycle!®”. This
multi-pollutant synergy critically constrains accurate environmental
risk assessmentst®l,

In response to these challenges, China issued the Action Plan for
New Pollutants Treatment in 2022[%, which mandates life-cycle envi-
ronmental risk management with emphasis on source control.
Despite this policy imperative, current risk assessment methodolo-
gies remain static and endpoint-oriented!'%, targeting end-of-life
environmental emissions while neglecting pollutant formation
pathways during industrial and environmental transformation. This
methodological disconnect impedes source-downstream linkages,
and fundamentally constrains life-cycle chemical governancel''l.
Establishing quantitative connections between upstream industrial
inputs and downstream pollutants, therefore, constitutes the pivotal
scientific pathway toward holistic risk management.

The intricate distribution and transformation behaviors of indus-
trial chemicals during production and environmental cycling
present formidable barriers to establishing such source-emission
linkages!'2l. Within industrial processes, chemicals undergo complex
reactions yielding intermediates, products, by-products, and unin-
tended pollutants!'3l. These transformations operate as a 'black box'
due to poorly characterized material flows, hindering efforts to link
emissions to their sources. While the resulting intermediates and
by-products are discharged into environmental systems via waste-
water treatment plants (WWTPs, the primary defense designed
for contaminant reduction before effluent discharge), extensive
research confirms that WWTPs lack sufficient efficacy in removing
emerging contaminants'#1>. Moreover, residual trace pollutants

speciation, degradation, and recombination) exponentially compli-
cating the association between precursor chemicals and terminal
environmental pollutants('6],

Compounding these challenges, mixture pollution permeates
every life-cycle stage of industrial chemicals, introducing critical
uncertainties into the overall risk. Dynamic industrial processes and
environmental transformations generate transient contaminant
combinations with emergent propertiest’’l. While existing methods
capture instantaneous risks, they fail to identify high-risk compo-
nents within complex mixtures or elucidate cumulative risk pro-
gression across the chemical life cyclel'8l, Crucially, effective risk
management requires quantification of risk flux, tracking hazard
evolution from chemical synthesis through usage to environmental
release, to pinpoint critical risk substances and life cycle hotspots.
Without such dynamic profiling, targeted risk intervention remains
unattainable.

An emergent 'emiss-ome' paradigm has been previously
proposed, which offers a transformative framework to address these
limitations!'?l. This approach conceptualizes chemical flows from
industrial synthesis to environmental fate as a dynamic input-output
network, enabling systematic tracking of chemical-pollutant rela-
tionships and establishing continuous life-cycle risk assessment('9,
The present perspective aims to synthesize advances in elucidating
industrial-environmental pollutant linkages, examine critical know-
ledge gaps in complex transformation pathways, and propose an
integrated 'emiss-ome’ framework for dynamic risk assessment
(Fig. 1). The present objective is to catalyze a paradigm shift from
terminal risk identification toward proactive life-cycle risk
governance.

Industrial metabolism: establishing
dynamic linkages between inputs and
emissions

To systematically reveal the life cycle impacts of individual chemicals,
the first step is to clarify the dynamic linkages between inputs and
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Emiss-ome: Life cycle risk assessment and management
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Fig. 1 Integrated concepts and methodologies for life cycle risk assessment of industrial chemicals synergizing industrial-environmental metabolism and

key toxicant identification in mixtures.

output emissions during upstream industrial processes. Complex
chemical reactions and transformations within industrial systems
obscure relationships between input chemicals and emissions.
Mapping these connections requires deciphering the 'black box' of
material metabolism during industrial processing. Multiple analyti-
cal models and approaches have been developed to address this
challenge by revealing intrinsic substance relationships between
industrial inputs and outputs.

Material flow analysis (MFA) serves as a foundational methodo-
logy for tracking material movements within industrial systems.
Anchored in the law of conservation of matter, MFA establishes
input-output balances for individual processes or nodes to trace
substance pathways and identify flow directions2?l. For instance,
current research using dynamic MFA has systematically recon-
structed ethylene production material flows from naphtha, coal, and
ethane feedstocks!?'l. By disaggregating production into process-
based nodes and establishing precise input-output balances at each
node, it can systematically quantify material fluxes from raw mate-
rials and energy inputs through primary products to by-products.
However, conventional MFA typically focuses on linear flows of
single or limited substances. It encounters limitations when analyz-
ing multi-directional pathways, quantitative fluxes, and interactions
within complex systems involving feedstocks, intermediates,
primary products, by-products, and emissionst22:231,

To address these constraints, Input-Output Analysis (IOA) offers
a systematic framework for examining intricate multi-substance,
multi-node interconnections. Its core methodology constructs
matrices representing intersectoral transactions, capturing direct
and indirect dependencies across economic sectorsi?4l. When
applied to industrial systems, a physical input-output table (PIOT)
can be constructed to systematically characterize material flow
relationships between different sectors within the industrial

system[23l, The strength of this approach lies in the computational
derivation of the Leontief inverse matrix, enabling calculation of
‘total material requirements' and revealing input-output linkages
across complete inter-industry supply chains(26l,

A limitation persists, however, as conventional IOA relies on
aggregated industry-level statistics and cannot resolve detailed
material connections between specific process nodes within indus-
trial systems(27], Integrating MFA with I0A provides an effective solu-
tion: treating each process node as an independent sector and using
MFA flow data to construct high-resolution PIOTs[28l This hybrid
approach preserves MFA's process-level quantification accuracy
while leveraging I0A's matrix framework to uncover direct and indi-
rect material relationships across multiple pathways and nodes,
enabling comprehensive analysis of complex industrial material
flows[29. A demonstration exists in an integrated framework track-
ing material flows, environmental burdens, and industrial linkages.
In their work, MFA-derived flow data constructed a PIOT that quanti-
tatively mapped material interdependencies among all process
nodes in regional building material systems, identifying 'demolition’
as the key node driving material circulation3%, Nevertheless, while
MFA-IOA integration establishes macro-level associations between
industrial chemicals and known emissions, it still cannot fully cap-
ture potential chemical transformations during industrial processes,
limiting precise substance correlation.

To further capture and clarify potential chemical transformations
during industrial processes, Molecular Scale Models (MSMs) provide
a potential pathway to elucidate chemical transformations and
establish precise linkages for industrial chemicals. In this model, all
possible transformation pathways from reactants to products and
by-products are predicted based on the structures of chemicals and
known reaction rulesB'l. Next, kinetic parameters, such as reaction
activation energies, are determined using quantum chemical
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methods like density functional theory or by applying linear free
energy relationships (LFER)3233], These parameters are then used to
identify the dominant reaction pathways. Finally, the integration of
pathway and kinetic analysis enables the elucidation of chemical
bond cleavage and reorganization mechanisms, as well as the iden-
tification of potential transformation products3433],

A critical limitation, however, is MSMs' reliance on idealized reac-
tion conditions that fail to accurately predict outcomes under actual
operating parametersi3¢l. Bridging this gap, mechanistic models,
typified by the Intrinsic Kinetic Model, can utilize reaction pathways
derived from MSMs as a foundation. They provide a quantitative
description of how actual operating conditions, including tempera-
ture and pressure, affect reaction rates and product distributions
using physical kinetics and mathematical formulations37-39, For
instance, Chen et al. exemplifies this integration by connecting
idealized pathway predictions with real process simulationsB'l. They
first utilized MSMs and constructed a hydrocarbon catalytic crack-
ing network with 74 molecules and 469 reactions, revealing all
decane/hexene co-conversion pathways. The dominant pathways
were then identified using a modified LFER. Furthermore, by inte-
grating the intrinsic kinetic model and introducing catalyst acidity
(including Bronsted acid and Lewis acid) as a key parameter, they
developed a hybrid model capable of simultaneously reflecting
molecular conversion pathways and actual process conditions,
which enabled the prediction of the effects of different acid cata-
lysts on gasoline yield and compositionB'. This previous study
demonstrated both the capability of molecular-scale models to
deduce complex reaction pathways and their potential to bridge
idealized pathway predictions with actual process simulations
through integration with mechanistic models.

It should be noted that mechanistic models typically analyze
isolated reaction units, whereas actual industrial production
involves sequential/parallel reaction steps where inter-stage mate-
rial losses impact overall yieldsi371. Further integration with process
simulation software (e.g., Aspen Plus, CHEMCAD) enables system-
level simulation of complete industrial processes encompassing
reaction, separation, and recycling units. This quantifies material
flows and losses throughout production chains, clarifying compre-
hensive input-output relationships%4'l, Tripodi et al. operationa-
lized this for methanol production®?. They embedded methanol
synthesis kinetics into Aspen Plus' plug-flow reactor module, inte-
grating separation, recycle, and other operations to simulate the
complete process!*Z, This configuration enabled precise quantifica-
tion of concentrations and flows of CO/CO,/H, reactants, CH;OH
product, H,0 by-product, and unreacted feedstocks across reactors,
separators, and recycle streams.

Herein, we believe multi-model coupling provides a robust strat-
egy to resolve industrial process 'black boxes', and establish system-
atic chemical-emission linkages (Fig. 1). Specifically, the hierarchical
methodology is implemented as follows: First, integrating MFA and
IOA enables the quantification of material flows and inter-node
linkages at the macro level. Next, integrating MSMs reveals key
chemical reaction pathways and potential transformation products.
Furthermore, utilizing mechanistic models clarifies the quantitative
reaction-scale relationships between reaction rates and actual
process conditions. Finally, integrating with system-scale software
allows the systematic simulation of industrial processes, thereby
constructing a complete upstream industrial chemical metabolism
network. This hierarchical methodology provides foundational sup-
port for linking process-level industrial chemical associations and
life-cycle risk assessment.

Environmental process analysis:
elucidating contaminant fate and
exposure

Following industrial operations, chemical emissions are typically
discharged into WWTPs. Extensive research demonstrates that WWTPs
frequently fail to remove emerging organic contaminants, allowing
persistent and poorly degradable compounds to enter the environ-
ment, thereby posing risks to human health and ecosystems! 344,
Upon release, contaminants undergo transport and transformation
across multiple environmental media®!, further intensifying chal-
lenges in linking downstream pollutants to upstream industrial
sources!'. To overcome these challenges, research should explicitly
elucidate the environmental transport and transformation pathways of
contaminants, enabling the establishment of robust life cycle material
linkages that connect industrial emissions with downstream pollutants
(Fig. 1).

Environmental transport

Currently, multimedia environmental models (MEMs) have been
widely utilized to characterize chemical distribution and transport
across environmental media and regions!***], By integrating chemical
physicochemical properties with environmental parameters, these
models quantify partitioning, degradation, and diffusive/non-diffusive
behaviors, serving as crucial tools for contaminant source identification
and fate analysis!*®. Existing MEMs divide broadly into fugacity and
non-fugacity models.

Fugacity models utilize the thermodynamic concept of fugacity
to describe chemical migration tendencies between environmental
compartments9. The foundational equilibrium criterion (EQC)
model, derived from fugacity theory, simulates pollutant distribu-
tion among air, water, soil, and sediment, providing a simplified
yet universal theoretical framework for understanding chemical
transport®0l, Subsequently, various fugacity models have been deve-
loped and tailored to different spatial scales and applications>'l.

At regional scales, the quantitative water-air-sediment interac-
tion (QWASI) model targets lake/river environments>2l. Recognizing
fugacity equilibrium limitations for low-vapor-pressure chemicals,
Diamond et al. extended QWASI using an equivalent equilibrium
criterion3l. The multicompartment urban model (MUM) characte-
rizes semi-volatile organic compound (SVOC) transport across urban
compartments (air, soil, vegetation, surface water, sediment, imper-
vious surface films). For global scales, the Berkeley-Trent (BETR)
model incorporates GIS-derived hydrometeorological data to simu-
late interregional transport>3], requiring high-resolution climatic/
geographic inputs that limit applicability in data-scarce regions.
CliMoChem uses latitudinal zones with defined temperature gra-
dients to capture thermal influences but excludes ice/snow com-
partments, impairing polar-region accuracy®3l. Fugacity models
include biological modules simulating contaminant uptake/meta-
bolism in organisms®4, and WWTP modules analyzing WWTPs'
behaviorl>3,

Alternatively, non-fugacity models employ mass-transfer coeffi-
cients and chemical activity. SimpleBox uses concentration-based
'piston velocity' coefficients to assess neutral chemical transport
globally and continentally®®¢l. The multimedia activity model for
ionics (MAMI) introduces chemical activity, pH, and ionic strength to
model ionizable compound dissociation and transport under vari-
able acidity/salinity>].

Building on these frameworks, the Sino Evaluative SimpleBox-
MAMI (SESAMe) model incorporates China-specific parameters for
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regional multi-media transport simulation. However, its lack of
directional advective exchange mechanisms between regional and
continental scales prevent spatial pathway analysist®8l. Critically,
fugacity models excel for neutral/SVOC transport, while non-
fugacity approaches better accommodate ionic compounds.

Collectively, MEMs systematize post-release transport, spatial dis-
tribution, and equilibrium exposure, enabling quantitative links
between industrial emissions and environmental contaminants for
risk assessment. Given industrial emission diversity, including VOCs,
SVOCs, heavy metals, and ionics, a single MEM is difficult to univer-
sally capture transport behaviors of various synthetic chemicals.
Optimal model selection must therefore align with both emission
properties and regional environmental characteristics to maximize
predictive accuracy.

Environmental transformation

During environmental transport, contaminants undergo physical,
chemical, and biological transformations, generating transformation
products (TPs) with distinct structures and properties. This complexity
impedes contaminant source tracing®”, and complicates pollution cha-
racterization due to TPs' diversity, and the frequent lack of reference
standards®?!. Therefore, transformation models are applied to address
these challenges by simulating pathways and predicting TPs to
establish critical material linkages!'”.

Existing environmental transformation models can be catego-
rized into three types. The first biotransformation models employ
reaction rules to predict chemical metabolites. The classic rule-
based model EAWAG Biocatalysis/Biodegradation Database-Path-
way Prediction System (EAWAG BBD-PPS) predicts TPs based on
contaminant functional groups and a known reaction database,
thereby ensuring strong interpretabilityl®'l. However, rule-based
systems are prone to combinatorial explosion during multi-step
reaction prediction, resulting in an exponential increase in potential
pathways6'l. This challenge is more severe for multi-substituted
compounds, which exhibit high false positive outcomes. To over-
come these limitations, the enviPath integrates a machine learning
model that assigns a probability of occurrence to each potential
reaction!®2, This framework employs Bayesian updating to evaluate
multi-generation transformation pathways, thereby effectively
pruning redundant routes, and reducing false positive rates by
nearly an order of magnitudel®3. In addition, PathPred leverages
Kyoto Encyclopedia of Genes and Genomes (KEGG) enzymatic reac-
tion templates but remains limited by database coverage®’. The
Biochemical Network Integrated Computational Explorer (BNICE)
uses graph algorithms to predict novel pathways, yet its predic-
tions requires expert validation in the absence of experimental
confirmation[63l,

The second category comprises biotic and abiotic transforma-
tions. Integrated biotic-abiotic models incorporate photolysis,
hydrolysis, and reduction pathways. For instance, BioTransformer
combines rule-based and machine learning approaches to predict
transformations across eight categories (e.g., human metabolism,
microbial degradation), directly linking outputs to validation data-
bases like NORMAN Suspect List Exchangel®l. Furthermore, the
EPA's Chemical Transformation Simulator integrates multiple
reaction libraries, including PFAS-specific data, and ranks TPs by
literature-derived transformation rates to prioritize dominant
pathwaysl®7l. Based upon reaction rules, Catalogic software incor-
porates a two-tier screening mechanism using probabilities and
thresholds®®l, It adjusts reaction probabilities according to
molecular fragments, reactive sites, and environmental parameters,

and constrains major pathways using rate thresholds, improving
the plausibility of predictions. These integrated models go beyond
purely biotransformation models by not only covering more trans-
formation types but also considering how environmental condi-
tions affect pathway occurrence, thereby enhancing the environ-
mental relevance of their predictions.

The third category is the integrated computational and experi-
mental models, which combine predictions with empirical data to
enhance the accuracy of transformation pathway identification.
For instance, patRoon embeds transformation modules within
high-resolution mass spectrometry workflows, matching predicted
TPs against PubChem and NORMAN datasets for annotation/
validation[®. It bridges the gap between theoretical prediction and
experimental validation. Together, transformation modeling has
thus evolved from rule-based systems to integrated computational-
experimental frameworks requiring further development. Future
advances should incorporate multi-source experimental data,
mechanistic insights, and unified validation protocols to enhance
robustness.

Collectively, integrating industrial emission sources with environ-
mental transport/transformation processes enables complete life
cycle tracing of high-risk chemicals. These models collectively estab-
lish quantifiable linkages between industrial chemicals, their emis-
sions, and resulting environmental contaminants, offering holistic
insights into industrial chemical life cycles. Future progress will
hinge on developing next-generation, interoperable modeling
frameworks capable of dynamically coupling emission, transforma-
tion, and transport processes, ultimately delivering the life cycle-
level elucidation required for chemical management.

Chemical mixture risks: identifying key
toxicants based on toxicity pathways

Tracking chemical transport and transformation can determine the
types and quantities of chemicals released into the environment,
which serves as an essential basis for understanding environmental
risks throughout the life cycle of industrial chemicals. However, from
the effects perspective, since transient mixture risks arise from the co-
occurrence of multiple chemical contaminants at each life cycle stage,
effectively identifying cross-stage high-risk chemicals can ultimately
define the cumulative life cycle risks of industrial chemicals. Conse-
quently, efforts should additionally focus on systematically identifying
high-risk substances and elucidating cumulative risks from diverse
chemicals (including transformation products) across all life cycle
stages, so as to pinpoint life cycle risk hotspots and clarify targeted
management priorities. This process requires identifying key toxicants
within transient mixture pollution to enable risk-directed life cycle
chemical management.

Current identification of key toxicants in mixture pollution relies
primarily on the toxic unit (TU) approach, which quantifies relative
toxicity by dividing environmental concentrations by toxicity
thresholds70711. This method estimates toxic contributions and
identifies high-impact toxicants72l, However, it assumes all contami-
nants share similar mechanisms of action (MoA), neglecting poten-
tial MoA variations that may cause synergistic or antagonistic effects
among co-occurring chemicalsl’3], thereby potentially underestimat-
ing or misjudging mixture toxicity and compromising risk assess-
ment accuracy7475, Consequently, elucidating pollutant toxicity
pathways is critical for robust assessment of industrial chemical
mixture pollution.
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Advancing assessment through toxicity pathway
frameworks

The adverse outcome pathway (AOP) conceptualizes causal chains
from molecular initiating events (MIE) through key events (KEs) to
adverse outcomes (AO), linking molecular interactions to toxicological
effects”®. For instance, Knapen et al’”) integrated multiple AOPs
involving fatty acid uptake, synthesis, oxidation, and efflux to construct
an AOP network (AOPN) for hepatic steatosis, revealing how conta-
minants induce liver damage through distinct toxicity pathways.
Nevertheless, unknown probabilities of AO occurrence across diffe-
rent pathways limit the quantitative applicability of AOPs in risk
assessment!’879,

Quantitative AOPs (qAOPs) overcome this limitation by integrat-
ing experimental data with statistical models (e.g., linear regression,
Bayesian networks) to establish probabilistic relationships among
KEs, and identify dominant toxicity pathways contributing to
AQBO81, A demonstration exists in an AOPN initiated by reactive
oxygen species (ROS) production (MIE) leading to Daphnia magna
mortality (AO)#2l. Bayesian network modeling quantified individual
AOPs within this network, identifying the dominant pathway: ROS
overproduction causing oxidative DNA damage (KE9), DNA double-
strand breaks (KE10), apoptosis (KE11), and ultimately organism
death2, This quantitative approach established the mechanistic
basis for key toxicant identification.

Event-driven framework for toxicant
identification

Upon clarifying dominant toxicity pathways, the previously construc-
ted event-driven taxonomy (EDT) methodology could potentially link
pathways to bioassays by treating the latter as event drivers (EDs) that
trigger risks!®3. By comparing contaminant concentrations against
ED-specific toxicity thresholds, this framework quantifies risks and
identifies high-risk toxicants. For instance, Cheng et al. analyzed more
than 14,000 aquatic ecotoxicology publications and the AOP-Wiki
database using natural language processing (NLP), and thus estab-
lished linkages between toxicity pathways and bioassays, identifying
the corresponding EDs and mapping their spatial distribution across
Chinal®3l, This study revealed nationwide ED distributions, identifying
aryl hydrocarbon receptor (AhR), and antioxidant response element
(ARE) as dominant EDs in the Pearl River Delta. With these bioassays,
regional risks were calculated by combining concentrations of
contaminants with their toxicity thresholds, and polycyclic aromatic
hydrocarbons were identified as the high-risk toxicants in the region.
This EDT framework represents a paradigm shift that turns to

mechanism-driven toxicity pathway elucidation and enables high-risk
contaminant identification®, It should be noted that current limi-
tations in AOP data coverage, particularly regarding contaminant
interactions and pathway comprehensiveness, remain significant
barriers to risk assessment of mixtures. Future efforts should expand
toxicity pathway mechanisms through data integration to enhance
AOP's applicability in risk evaluation for mixtures, thereby streng-
thening the scientific foundation for holistic risk assessment!38%,

Since industrial chemicals generate transient risks at each life-
cycle stage, by dynamically analyzing and aggregating these phase-
specific risks, we can derive cumulative life cycle risk metrics to
comprehensively reveal chemical risk profiles and provide inte-
grated management insights (Fig. 1). First, combining AOPNs and
gAOP for mixture contaminants under transient exposure to clarify
toxicity pathway probabilities, enables quantification of transient
composite pollution risks. Subsequent comparison of risk variations
across stages elucidates industrial chemicals' dynamic behavior,
identifying life cycle risk hotspots and key contaminants. Synthesiz-
ing these outcomes with material flows traces pollutants back to
source chemicals, enabling life cycle risk control.

Future perspectives

Industrial chemical life cycle risk encompasses the dynamic evolution
of contaminants from initial synthesis through utilization to environ-
mental fate. Despite persistent knowledge gaps across life cycle stages,
this work establishes an integrated dual-flow framework that syn-
chronizes material tracking with risk profiling to enable scientifically
grounded life cycle governance of industrial chemicals (Fig. 1). Current
limitations and tentative solutions for enabling life cycle management
are systematically summarized in Table 1. Through material flow
analysis, we suggest reconstructing chemical transfer pathways across
production, use, and emission stages. This industrial metabolism net-
work quantifies source-to-receptor relationships while enabling back-
ward contamination tracing to specific chemical precursors. Comple-
mentarily, the risk flow perspective employs toxicity pathway analysis
to: (1) quantify stage-specific instantaneous hazards; (2) identify
mixture-critical toxicants; and (3) integrate cumulative risk trajectories
across life cycle phases.

The convergence of material and risk flows generates valuable
insights into dynamic risk propagation mechanisms. By mapping
toxicant pathways to source chemicals through established
industrial-environmental linkages, this framework fundamentally
transforms life cycle management, shifting from terminal mitigation

Table 1 Limitations, solutions, and challenges identified for enabling the life cycle management of industrial chemicals

Life cycle stage Current limitations

Tentative solutions Remaining challenges

Industrial metabolism « Complex industrial reactions and
transformations obstruct linkage of
source chemicals to terminal pollutants
» Models assume idealized conditions,
ignoring operational variability

« Coupled environmental
transport/transformation impedes
quantitative tracking of terminal

Environmental fate
and transport

* Multi-model integration to quantify material
flows across sector transformations

+ Coupling molecular-scale models with intrinsic
kinetics and process simulation to resolve
industrial 'black boxes'

« Application-specific multimedia models to
clarify chemical transport

+ Apply transformation models integrating

« Limited industrial reaction data
causes prediction-reality discrepancies
« Validation challenges in cross-scale
model integration

* No integrated frameworks for
simultaneous transport-
transformation modeling

pollutants
« Existing models treat transport and

reaction rules, machine learning, and
experimental data for environmental
metabolites

« Limited joint assessment of dynamic
environmental processes

transformation as separate processes

« Traditional key toxicant identification
ignores contaminant interactions, failing
to capture mixture effects

Risk of mixtures

+ Adverse Outcome Pathway (AOP) network
construction for toxicity pathway elucidation
* Quantitative AOP for key event relationships
and dominant pathway probability

+ Event-driven taxonomy (EDT) for high-risk

« Limited AOP data (incomplete
pathway coverage and lack of
quantitative interaction data)

+ Constrained cumulative risk
evaluation for complex mixtures

toxicant identification
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to proactive prevention. It enables precision interventions at critical
control points (e.g., process engineering or emission treatment)
where strategic actions maximize risk reduction. Furthermore, this
integrated paradigm redirects regulatory interventions upstream
through sustainable feedstock transitions and a priori molecular
design. Simultaneously, it facilitates a strategic transition from
reactive measures to proactive prevention by dynamically tracking
chemical fate and risks across technological, process, and ecological
scales. Achieving this requires cross-sector collaboration among
industrial ecology, green and environmental chemistry, ecotoxico-
logy, and data science. We therefore urgently advocate establishing
interdisciplinary frameworks featuring harmonized terminology and
standardized research outputs to systematically enhance life cycle
risk assessment and management.
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