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Abstract
Industrial  chemicals  are  released  throughout  their  life  cycle  (from  upstream  production  to

downstream  emission),  causing  pervasive  pollution  of  new  contaminants  and  posing

substantial risks to ecosystems and human health. The complex transfer and transformation

of  these  chemicals  during  industrial  and  environmental  processes  necessitate  dynamic  risk

assessment  approaches.  However,  current  methodologies  remain predominantly  static  and

endpoint-oriented,  emphasizing  instantaneous  risks  after  emission  while  overlooking

pollutant  formation  dynamics  across  the  chemical  life  cycle,  particularly  for  chemicals  with

transformation potentials. This disconnection impedes effective contaminant source tracing,

identification of high-risk mixture components, and evaluation of cumulative life cycle risks.

Based on the concept of emiss-ome, we attempt to establish mechanistic linkages between

industrial  chemicals,  and end-of-life pollutants.  We demonstrate how industrial  metabolism

analysis,  coupled  with  environmental  fate  and  transport  models,  elucidates  material  flows

across  the  chemical  life  cycle,  establishing  quantitative  source-pollutant  relationships.  To

identify key contaminants and address mixture toxicity, the application of adverse outcome

pathway  frameworks  are  examined  to  reveal  dominant  toxicity  pathways,  enabling

identification  of  key  toxicants,  and  risk  evaluation  of  chemical  mixtures.  Ultimately,  the

integration of chemical metabolism and risk flow is expected to establish a novel framework

to  trace  key  toxicants  back  to  their  source  chemicals  and  assess  cumulative  life  cycle  risks,

facilitating a  paradigm shift  from terminal  risk  identification toward proactive  life  cycle  risk

assessment and management.
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Highlights
•  Develop an 'emiss-ome'-based risk assessment framework for industrial chemicals, enabling dynamic characterization of chemical

risks across the life cycle.

•  Couple  industrial  metabolism  with  environmental  process  models  to  quantitatively  link  upstream  chemical  sources  with

downstream environmental pollutants.

•  Integrate mixed-pollutant risks as a critical component to enhance the completeness and accuracy of life-cycle environmental risk

assessment.
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Graphical abstract

 
 Introduction

Industrial  development  serves  as  the  cornerstone  of  economic
advancement;  however,  the  escalating  consumption  of  industrial
chemicals  has  precipitated  severe  environmental  issues  that  funda-
mentally  undermine  sustainable  development[1,2].  Since  2010,  the
inventory of registered synthetic chemicals has surged from 150,000 to
over  350,000  compounds[3].  These  substances  are  released  through
value chains (from upstream production to downstream emissions)[4,5],
posing  persistent  environmental  exposure  risks  while  generating
complex  contaminant  mixtures  throughout  their  life  cycle[6,7].  This
multi-pollutant  synergy  critically  constrains  accurate  environmental
risk assessments[8].

In  response to  these  challenges,  China  issued the Action  Plan  for
New Pollutants Treatment in 2022[9],  which mandates life-cycle envi-
ronmental  risk  management  with  emphasis  on  source  control.
Despite  this  policy  imperative,  current  risk  assessment  methodolo-
gies  remain  static  and  endpoint-oriented[10],  targeting  end-of-life
environmental  emissions  while  neglecting  pollutant  formation
pathways  during industrial  and environmental  transformation.  This
methodological  disconnect  impedes  source-downstream  linkages,
and  fundamentally  constrains  life-cycle  chemical  governance[11].
Establishing  quantitative  connections  between  upstream  industrial
inputs and downstream pollutants, therefore, constitutes the pivotal
scientific pathway toward holistic risk management.

The intricate  distribution and transformation behaviors  of  indus-
trial  chemicals  during  production  and  environmental  cycling
present  formidable  barriers  to  establishing  such  source-emission
linkages[12]. Within industrial processes, chemicals undergo complex
reactions  yielding  intermediates,  products,  by-products,  and  unin-
tended pollutants[13]. These transformations operate as a 'black box'
due to poorly characterized material  flows, hindering efforts to link
emissions  to  their  sources.  While  the  resulting  intermediates  and
by-products  are  discharged  into  environmental  systems  via  waste-
water  treatment  plants  (WWTPs,  the  primary  defense  designed
for  contaminant  reduction  before  effluent  discharge),  extensive
research  confirms  that  WWTPs  lack  sufficient  efficacy  in  removing
emerging  contaminants[14,15].  Moreover,  residual  trace  pollutants

subsequently  undergo  further  environmental  transformations  (e.g.,
speciation,  degradation,  and  recombination)  exponentially  compli-
cating  the  association  between  precursor  chemicals  and  terminal
environmental pollutants[16].

Compounding  these  challenges,  mixture  pollution  permeates
every  life-cycle  stage  of  industrial  chemicals,  introducing  critical
uncertainties into the overall risk. Dynamic industrial processes and
environmental  transformations  generate  transient  contaminant
combinations with emergent properties[17].  While existing methods
capture  instantaneous  risks,  they  fail  to  identify  high-risk  compo-
nents  within  complex  mixtures  or  elucidate  cumulative  risk  pro-
gression  across  the  chemical  life  cycle[18].  Crucially,  effective  risk
management  requires  quantification  of  risk  flux,  tracking  hazard
evolution from chemical synthesis through usage to environmental
release,  to  pinpoint  critical  risk  substances  and  life  cycle  hotspots.
Without  such  dynamic  profiling,  targeted  risk  intervention  remains
unattainable.

An  emergent  'emiss-ome'  paradigm  has  been  previously
proposed, which offers a transformative framework to address these
limitations[19].  This  approach  conceptualizes  chemical  flows  from
industrial synthesis to environmental fate as a dynamic input-output
network,  enabling  systematic  tracking  of  chemical-pollutant  rela-
tionships  and  establishing  continuous  life-cycle  risk  assessment[19].
The present perspective aims to synthesize advances in elucidating
industrial-environmental  pollutant  linkages,  examine  critical  know-
ledge  gaps  in  complex  transformation  pathways,  and  propose  an
integrated  'emiss-ome'  framework  for  dynamic  risk  assessment
(Fig.  1).  The  present  objective  is  to  catalyze  a  paradigm  shift  from
terminal  risk  identification  toward  proactive  life-cycle  risk
governance.

 Industrial metabolism: establishing
dynamic linkages between inputs and
emissions

To systematically  reveal  the life  cycle impacts  of  individual  chemicals,
the  first  step  is  to  clarify  the  dynamic  linkages  between  inputs  and
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output  emissions  during  upstream  industrial  processes.  Complex
chemical  reactions  and  transformations  within  industrial  systems
obscure  relationships  between  input  chemicals  and  emissions.
Mapping  these  connections  requires  deciphering  the  'black  box'  of
material  metabolism  during  industrial  processing.  Multiple  analyti-
cal  models  and  approaches  have  been  developed  to  address  this
challenge  by  revealing  intrinsic  substance  relationships  between
industrial inputs and outputs.

Material  flow  analysis  (MFA)  serves  as  a  foundational  methodo-
logy  for  tracking  material  movements  within  industrial  systems.
Anchored  in  the  law  of  conservation  of  matter,  MFA  establishes
input-output  balances  for  individual  processes  or  nodes  to  trace
substance  pathways  and  identify  flow  directions[20].  For  instance,
current  research  using  dynamic  MFA  has  systematically  recon-
structed ethylene production material flows from naphtha, coal, and
ethane  feedstocks[21].  By  disaggregating  production  into  process-
based nodes and establishing precise input-output balances at each
node,  it  can systematically  quantify  material  fluxes  from raw mate-
rials  and  energy  inputs  through  primary  products  to  by-products.
However,  conventional  MFA  typically  focuses  on  linear  flows  of
single or limited substances.  It  encounters limitations when analyz-
ing multi-directional pathways, quantitative fluxes, and interactions
within  complex  systems  involving  feedstocks,  intermediates,
primary products, by-products, and emissions[22,23].

To  address  these  constraints,  Input-Output  Analysis  (IOA)  offers
a  systematic  framework  for  examining  intricate  multi-substance,
multi-node  interconnections.  Its  core  methodology  constructs
matrices  representing  intersectoral  transactions,  capturing  direct
and  indirect  dependencies  across  economic  sectors[24].  When
applied  to  industrial  systems,  a  physical  input-output  table  (PIOT)
can  be  constructed  to  systematically  characterize  material  flow
relationships  between  different  sectors  within  the  industrial

system[25].  The  strength  of  this  approach  lies  in  the  computational
derivation  of  the  Leontief  inverse  matrix,  enabling  calculation  of
'total  material  requirements'  and  revealing  input-output  linkages
across complete inter-industry supply chains[26].

A  limitation  persists,  however,  as  conventional  IOA  relies  on
aggregated  industry-level  statistics  and  cannot  resolve  detailed
material  connections between specific  process nodes within indus-
trial systems[27]. Integrating MFA with IOA provides an effective solu-
tion: treating each process node as an independent sector and using
MFA  flow  data  to  construct  high-resolution  PIOTs[28].  This  hybrid
approach  preserves  MFA's  process-level  quantification  accuracy
while leveraging IOA's matrix framework to uncover direct and indi-
rect  material  relationships  across  multiple  pathways  and  nodes,
enabling  comprehensive  analysis  of  complex  industrial  material
flows[29].  A  demonstration  exists  in  an  integrated  framework  track-
ing  material  flows,  environmental  burdens,  and  industrial  linkages.
In their work, MFA-derived flow data constructed a PIOT that quanti-
tatively  mapped  material  interdependencies  among  all  process
nodes in regional building material systems, identifying 'demolition'
as  the  key  node  driving  material  circulation[30].  Nevertheless,  while
MFA-IOA  integration  establishes  macro-level  associations  between
industrial  chemicals  and  known  emissions,  it  still  cannot  fully  cap-
ture potential chemical transformations during industrial processes,
limiting precise substance correlation.

To further capture and clarify potential  chemical  transformations
during industrial processes, Molecular Scale Models (MSMs) provide
a  potential  pathway  to  elucidate  chemical  transformations  and
establish precise  linkages for  industrial  chemicals.  In  this  model,  all
possible  transformation  pathways  from  reactants  to  products  and
by-products are predicted based on the structures of chemicals and
known  reaction  rules[31].  Next,  kinetic  parameters,  such  as  reaction
activation  energies,  are  determined  using  quantum  chemical

 

Fig. 1  Integrated concepts and methodologies for life cycle risk assessment of industrial chemicals synergizing industrial-environmental metabolism and
key toxicant identification in mixtures.
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methods  like  density  functional  theory  or  by  applying  linear  free
energy relationships (LFER)[32,33]. These parameters are then used to
identify the dominant reaction pathways. Finally,  the integration of
pathway  and  kinetic  analysis  enables  the  elucidation  of  chemical
bond cleavage and reorganization mechanisms, as well as the iden-
tification of potential transformation products[34,35].

A critical limitation, however, is MSMs' reliance on idealized reac-
tion conditions that fail to accurately predict outcomes under actual
operating  parameters[36].  Bridging  this  gap,  mechanistic  models,
typified by the Intrinsic Kinetic Model, can utilize reaction pathways
derived  from  MSMs  as  a  foundation.  They  provide  a  quantitative
description of how actual operating conditions, including tempera-
ture  and  pressure,  affect  reaction  rates  and  product  distributions
using  physical  kinetics  and  mathematical  formulations[37−39].  For
instance,  Chen  et  al.  exemplifies  this  integration  by  connecting
idealized pathway predictions with real process simulations[31]. They
first  utilized  MSMs  and  constructed  a  hydrocarbon  catalytic  crack-
ing  network  with  74  molecules  and  469  reactions,  revealing  all
decane/hexene  co-conversion  pathways.  The  dominant  pathways
were  then  identified  using  a  modified  LFER.  Furthermore,  by  inte-
grating  the  intrinsic  kinetic  model  and  introducing  catalyst  acidity
(including  Bronsted  acid  and  Lewis  acid)  as  a  key  parameter,  they
developed  a  hybrid  model  capable  of  simultaneously  reflecting
molecular  conversion  pathways  and  actual  process  conditions,
which  enabled  the  prediction  of  the  effects  of  different  acid  cata-
lysts  on  gasoline  yield  and  composition[31].  This  previous  study
demonstrated  both  the  capability  of  molecular-scale  models  to
deduce  complex  reaction  pathways  and  their  potential  to  bridge
idealized  pathway  predictions  with  actual  process  simulations
through integration with mechanistic models.

It  should  be  noted  that  mechanistic  models  typically  analyze
isolated  reaction  units,  whereas  actual  industrial  production
involves  sequential/parallel  reaction  steps  where  inter-stage  mate-
rial  losses  impact  overall  yields[37].  Further  integration with  process
simulation  software  (e.g.,  Aspen  Plus,  CHEMCAD)  enables  system-
level  simulation  of  complete  industrial  processes  encompassing
reaction,  separation,  and  recycling  units.  This  quantifies  material
flows  and  losses  throughout  production  chains,  clarifying  compre-
hensive  input-output  relationships[40,41].  Tripodi  et  al.  operationa-
lized  this  for  methanol  production[42].  They  embedded  methanol
synthesis  kinetics  into  Aspen  Plus'  plug-flow  reactor  module,  inte-
grating  separation,  recycle,  and  other  operations  to  simulate  the
complete process[42].  This configuration enabled precise quantifica-
tion  of  concentrations  and  flows  of  CO/CO2/H2 reactants,  CH3OH
product, H2O by-product, and unreacted feedstocks across reactors,
separators, and recycle streams.

Herein,  we believe multi-model coupling provides a robust strat-
egy to resolve industrial process 'black boxes', and establish system-
atic chemical-emission linkages (Fig. 1). Specifically, the hierarchical
methodology is implemented as follows: First, integrating MFA and
IOA  enables  the  quantification  of  material  flows  and  inter-node
linkages  at  the  macro  level.  Next,  integrating  MSMs  reveals  key
chemical reaction pathways and potential transformation products.
Furthermore,  utilizing mechanistic  models  clarifies  the  quantitative
reaction-scale  relationships  between  reaction  rates  and  actual
process  conditions.  Finally,  integrating  with  system-scale  software
allows  the  systematic  simulation  of  industrial  processes,  thereby
constructing  a  complete  upstream  industrial  chemical  metabolism
network. This hierarchical methodology provides foundational sup-
port  for  linking  process-level  industrial  chemical  associations  and
life-cycle risk assessment.

 Environmental process analysis:
elucidating contaminant fate and
exposure

Following  industrial  operations,  chemical  emissions  are  typically
discharged into WWTPs. Extensive research demonstrates that WWTPs
frequently  fail  to  remove  emerging  organic  contaminants,  allowing
persistent  and  poorly  degradable  compounds  to  enter  the  environ-
ment,  thereby  posing  risks  to  human  health  and  ecosystems[43,44].
Upon  release,  contaminants  undergo  transport  and  transformation
across  multiple  environmental  media[45],  further  intensifying  chal-
lenges  in  linking  downstream  pollutants  to  upstream  industrial
sources[19].  To  overcome  these  challenges,  research  should  explicitly
elucidate the environmental transport and transformation pathways of
contaminants, enabling the establishment of robust life cycle material
linkages that connect industrial emissions with downstream pollutants
(Fig. 1).

 Environmental transport
Currently,  multimedia  environmental  models  (MEMs)  have  been
widely  utilized  to  characterize  chemical  distribution  and  transport
across environmental media and regions[46,47]. By integrating chemical
physicochemical  properties  with  environmental  parameters,  these
models quantify partitioning, degradation, and diffusive/non-diffusive
behaviors, serving as crucial tools for contaminant source identification
and  fate  analysis[48].  Existing  MEMs  divide  broadly  into  fugacity  and
non-fugacity models.

Fugacity  models  utilize  the  thermodynamic  concept  of  fugacity
to describe chemical  migration tendencies between environmental
compartments[49].  The  foundational  equilibrium  criterion  (EQC)
model,  derived  from  fugacity  theory,  simulates  pollutant  distribu-
tion  among  air,  water,  soil,  and  sediment,  providing  a  simplified
yet  universal  theoretical  framework  for  understanding  chemical
transport[50]. Subsequently, various fugacity models have been deve-
loped and tailored to different spatial scales and applications[51].

At  regional  scales,  the  quantitative  water-air-sediment  interac-
tion (QWASI) model targets lake/river environments[52]. Recognizing
fugacity  equilibrium  limitations  for  low-vapor-pressure  chemicals,
Diamond  et  al.  extended  QWASI  using  an  equivalent  equilibrium
criterion[53].  The  multicompartment  urban  model  (MUM)  characte-
rizes semi-volatile organic compound (SVOC) transport across urban
compartments (air, soil, vegetation, surface water, sediment, imper-
vious  surface  films).  For  global  scales,  the  Berkeley-Trent  (BETR)
model incorporates GIS-derived hydrometeorological  data to simu-
late  interregional  transport[53],  requiring  high-resolution  climatic/
geographic  inputs  that  limit  applicability  in  data-scarce  regions.
CliMoChem  uses  latitudinal  zones  with  defined  temperature  gra-
dients  to  capture  thermal  influences  but  excludes  ice/snow  com-
partments,  impairing  polar-region  accuracy[53].  Fugacity  models
include  biological  modules  simulating  contaminant  uptake/meta-
bolism  in  organisms[54],  and  WWTP  modules  analyzing  WWTPs'
behavior[55].

Alternatively,  non-fugacity  models  employ  mass-transfer  coeffi-
cients  and  chemical  activity.  SimpleBox  uses  concentration-based
'piston  velocity'  coefficients  to  assess  neutral  chemical  transport
globally  and  continentally[56].  The  multimedia  activity  model  for
ionics (MAMI) introduces chemical activity, pH, and ionic strength to
model  ionizable  compound  dissociation  and  transport  under  vari-
able acidity/salinity[57].

Building  on  these  frameworks,  the  Sino  Evaluative  SimpleBox-
MAMI  (SESAMe)  model  incorporates  China-specific  parameters  for
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regional  multi-media  transport  simulation.  However,  its  lack  of
directional  advective  exchange  mechanisms  between  regional  and
continental  scales  prevent  spatial  pathway  analysis[58].  Critically,
fugacity  models  excel  for  neutral/SVOC  transport,  while  non-
fugacity approaches better accommodate ionic compounds.

Collectively, MEMs systematize post-release transport, spatial dis-
tribution,  and  equilibrium  exposure,  enabling  quantitative  links
between  industrial  emissions  and  environmental  contaminants  for
risk assessment. Given industrial emission diversity, including VOCs,
SVOCs, heavy metals, and ionics, a single MEM is difficult to univer-
sally  capture  transport  behaviors  of  various  synthetic  chemicals.
Optimal  model  selection  must  therefore  align  with  both  emission
properties  and  regional  environmental  characteristics  to  maximize
predictive accuracy.

 Environmental transformation
During  environmental  transport,  contaminants  undergo  physical,
chemical,  and  biological  transformations,  generating  transformation
products (TPs) with distinct structures and properties. This complexity
impedes contaminant source tracing[59], and complicates pollution cha-
racterization  due  to  TPs'  diversity,  and  the  frequent  lack  of  reference
standards[60].  Therefore, transformation models are applied to address
these  challenges  by  simulating  pathways  and  predicting  TPs  to
establish critical material linkages[17].

Existing  environmental  transformation  models  can  be  catego-
rized  into  three  types.  The  first  biotransformation  models  employ
reaction  rules  to  predict  chemical  metabolites.  The  classic  rule-
based  model  EAWAG  Biocatalysis/Biodegradation  Database-Path-
way  Prediction  System  (EAWAG  BBD-PPS)  predicts  TPs  based  on
contaminant  functional  groups  and  a  known  reaction  database,
thereby  ensuring  strong  interpretability[61].  However,  rule-based
systems  are  prone  to  combinatorial  explosion  during  multi-step
reaction prediction, resulting in an exponential increase in potential
pathways[61].  This  challenge  is  more  severe  for  multi-substituted
compounds,  which  exhibit  high  false  positive  outcomes.  To  over-
come these limitations,  the enviPath integrates a machine learning
model  that  assigns  a  probability  of  occurrence  to  each  potential
reaction[62].  This framework employs Bayesian updating to evaluate
multi-generation  transformation  pathways,  thereby  effectively
pruning  redundant  routes,  and  reducing  false  positive  rates  by
nearly  an  order  of  magnitude[63].  In  addition,  PathPred  leverages
Kyoto Encyclopedia of Genes and Genomes (KEGG) enzymatic reac-
tion  templates  but  remains  limited  by  database  coverage[64].  The
Biochemical  Network  Integrated  Computational  Explorer  (BNICE)
uses  graph  algorithms  to  predict  novel  pathways,  yet  its  predic-
tions  requires  expert  validation  in  the  absence  of  experimental
confirmation[65].

The  second  category  comprises  biotic  and  abiotic  transforma-
tions.  Integrated  biotic-abiotic  models  incorporate  photolysis,
hydrolysis,  and  reduction  pathways.  For  instance,  BioTransformer
combines  rule-based  and  machine  learning  approaches  to  predict
transformations  across  eight  categories  (e.g.,  human  metabolism,
microbial  degradation),  directly  linking  outputs  to  validation  data-
bases  like  NORMAN  Suspect  List  Exchange[66].  Furthermore,  the
EPA's  Chemical  Transformation  Simulator  integrates  multiple
reaction  libraries,  including  PFAS-specific  data,  and  ranks  TPs  by
literature-derived  transformation  rates  to  prioritize  dominant
pathways[67].  Based  upon  reaction  rules,  Catalogic  software  incor-
porates  a  two-tier  screening  mechanism  using  probabilities  and
thresholds[68].  It  adjusts  reaction  probabilities  according  to
molecular fragments,  reactive sites,  and environmental parameters,

and  constrains  major  pathways  using  rate  thresholds,  improving
the  plausibility  of  predictions.  These  integrated  models  go  beyond
purely  biotransformation  models  by  not  only  covering  more  trans-
formation  types  but  also  considering  how  environmental  condi-
tions  affect  pathway  occurrence,  thereby  enhancing  the  environ-
mental relevance of their predictions.

The  third  category  is  the  integrated  computational  and  experi-
mental  models,  which  combine  predictions  with  empirical  data  to
enhance  the  accuracy  of  transformation  pathway  identification.
For  instance,  patRoon  embeds  transformation  modules  within
high-resolution  mass  spectrometry  workflows,  matching  predicted
TPs  against  PubChem  and  NORMAN  datasets  for  annotation/
validation[69]. It bridges the gap between theoretical prediction and
experimental  validation.  Together,  transformation  modeling  has
thus evolved from rule-based systems to integrated computational-
experimental  frameworks  requiring  further  development.  Future
advances  should  incorporate  multi-source  experimental  data,
mechanistic  insights,  and  unified  validation  protocols  to  enhance
robustness.

Collectively, integrating industrial emission sources with environ-
mental  transport/transformation  processes  enables  complete  life
cycle tracing of high-risk chemicals. These models collectively estab-
lish  quantifiable  linkages  between  industrial  chemicals,  their  emis-
sions,  and  resulting  environmental  contaminants,  offering  holistic
insights  into  industrial  chemical  life  cycles.  Future  progress  will
hinge  on  developing  next-generation,  interoperable  modeling
frameworks  capable  of  dynamically  coupling  emission,  transforma-
tion,  and  transport  processes,  ultimately  delivering  the  life  cycle-
level elucidation required for chemical management.

 Chemical mixture risks: identifying key
toxicants based on toxicity pathways

Tracking  chemical  transport  and  transformation  can  determine  the
types  and  quantities  of  chemicals  released  into  the  environment,
which  serves  as  an  essential  basis  for  understanding  environmental
risks  throughout  the  life  cycle  of  industrial  chemicals.  However,  from
the effects perspective, since transient mixture risks arise from the co-
occurrence of multiple chemical contaminants at each life cycle stage,
effectively  identifying  cross-stage  high-risk  chemicals  can  ultimately
define  the  cumulative  life  cycle  risks  of  industrial  chemicals.  Conse-
quently, efforts should additionally focus on systematically identifying
high-risk  substances  and  elucidating  cumulative  risks  from  diverse
chemicals  (including  transformation  products)  across  all  life  cycle
stages,  so  as  to  pinpoint  life  cycle  risk  hotspots  and  clarify  targeted
management priorities. This process requires identifying key toxicants
within  transient  mixture  pollution  to  enable  risk-directed  life  cycle
chemical management.

Current  identification  of  key  toxicants  in  mixture  pollution  relies
primarily  on  the  toxic  unit  (TU)  approach,  which  quantifies  relative
toxicity  by  dividing  environmental  concentrations  by  toxicity
thresholds[70,71].  This  method  estimates  toxic  contributions  and
identifies high-impact toxicants[72]. However, it assumes all contami-
nants share similar  mechanisms of  action (MoA),  neglecting poten-
tial MoA variations that may cause synergistic or antagonistic effects
among co-occurring chemicals[73], thereby potentially underestimat-
ing  or  misjudging  mixture  toxicity  and  compromising  risk  assess-
ment  accuracy[74,75].  Consequently,  elucidating  pollutant  toxicity
pathways  is  critical  for  robust  assessment  of  industrial  chemical
mixture pollution.
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 Advancing assessment through toxicity pathway
frameworks
The  adverse  outcome  pathway  (AOP)  conceptualizes  causal  chains
from  molecular  initiating  events  (MIE)  through  key  events  (KEs)  to
adverse outcomes (AO), linking molecular interactions to toxicological
effects[76].  For  instance,  Knapen  et  al.[77] integrated  multiple  AOPs
involving fatty acid uptake, synthesis, oxidation, and efflux to construct
an  AOP  network  (AOPN)  for  hepatic  steatosis,  revealing  how  conta-
minants  induce  liver  damage  through  distinct  toxicity  pathways.
Nevertheless,  unknown  probabilities  of  AO  occurrence  across  diffe-
rent  pathways  limit  the  quantitative  applicability  of  AOPs  in  risk
assessment[78,79].

Quantitative  AOPs  (qAOPs)  overcome  this  limitation  by  integrat-
ing experimental data with statistical models (e.g., linear regression,
Bayesian  networks)  to  establish  probabilistic  relationships  among
KEs,  and  identify  dominant  toxicity  pathways  contributing  to
AO[80,81].  A  demonstration  exists  in  an  AOPN  initiated  by  reactive
oxygen  species  (ROS)  production  (MIE)  leading  to Daphnia  magna
mortality  (AO)[82].  Bayesian network  modeling quantified individual
AOPs  within  this  network,  identifying  the  dominant  pathway:  ROS
overproduction causing oxidative DNA damage (KE9), DNA double-
strand  breaks  (KE10),  apoptosis  (KE11),  and  ultimately  organism
death[82].  This  quantitative  approach  established  the  mechanistic
basis for key toxicant identification.

 Event-driven framework for toxicant
identification
Upon  clarifying  dominant  toxicity  pathways,  the  previously  construc-
ted  event-driven  taxonomy  (EDT)  methodology  could  potentially  link
pathways to bioassays by treating the latter as event drivers (EDs) that
trigger  risks[83].  By  comparing  contaminant  concentrations  against
ED-specific  toxicity  thresholds,  this  framework  quantifies  risks  and
identifies high-risk toxicants. For instance, Cheng et al. analyzed more
than  14,000  aquatic  ecotoxicology  publications  and  the  AOP-Wiki
database  using  natural  language  processing  (NLP),  and  thus  estab-
lished  linkages  between  toxicity  pathways  and  bioassays,  identifying
the  corresponding  EDs  and  mapping  their  spatial  distribution  across
China[83].  This  study  revealed  nationwide  ED  distributions,  identifying
aryl  hydrocarbon  receptor  (AhR),  and  antioxidant  response  element
(ARE)  as  dominant  EDs  in  the  Pearl  River  Delta.  With  these  bioassays,
regional  risks  were  calculated  by  combining  concentrations  of
contaminants  with  their  toxicity  thresholds,  and  polycyclic  aromatic
hydrocarbons were identified as  the high-risk  toxicants  in  the region.
This  EDT  framework  represents  a  paradigm  shift  that  turns  to

mechanism-driven toxicity  pathway elucidation and enables high-risk
contaminant  identification[84].  It  should  be  noted  that  current  limi-
tations  in  AOP  data  coverage,  particularly  regarding  contaminant
interactions  and  pathway  comprehensiveness,  remain  significant
barriers  to  risk  assessment  of  mixtures.  Future  efforts  should  expand
toxicity  pathway  mechanisms  through  data  integration  to  enhance
AOP's  applicability  in  risk  evaluation  for  mixtures,  thereby  streng-
thening the scientific foundation for holistic risk assessment[83,85].

Since  industrial  chemicals  generate  transient  risks  at  each  life-
cycle stage, by dynamically analyzing and aggregating these phase-
specific  risks,  we  can  derive  cumulative  life  cycle  risk  metrics  to
comprehensively  reveal  chemical  risk  profiles  and  provide  inte-
grated  management  insights  (Fig.  1).  First,  combining  AOPNs  and
qAOP for  mixture contaminants  under  transient  exposure to clarify
toxicity  pathway  probabilities,  enables  quantification  of  transient
composite pollution risks. Subsequent comparison of risk variations
across  stages  elucidates  industrial  chemicals'  dynamic  behavior,
identifying life cycle risk hotspots and key contaminants. Synthesiz-
ing  these  outcomes  with  material  flows  traces  pollutants  back  to
source chemicals, enabling life cycle risk control.

 Future perspectives

Industrial  chemical  life  cycle  risk  encompasses the dynamic evolution
of  contaminants  from  initial  synthesis  through  utilization  to  environ-
mental fate. Despite persistent knowledge gaps across life cycle stages,
this  work  establishes  an  integrated  dual-flow  framework  that  syn-
chronizes  material  tracking  with  risk  profiling  to  enable  scientifically
grounded life cycle governance of industrial chemicals (Fig. 1). Current
limitations and tentative solutions for enabling life cycle management
are  systematically  summarized  in Table  1.  Through  material  flow
analysis, we suggest reconstructing chemical transfer pathways across
production,  use,  and emission stages.  This  industrial  metabolism net-
work  quantifies  source-to-receptor  relationships  while  enabling back-
ward  contamination  tracing  to  specific  chemical  precursors.  Comple-
mentarily,  the risk flow perspective employs toxicity pathway analysis
to:  (1)  quantify  stage-specific  instantaneous  hazards;  (2)  identify
mixture-critical  toxicants;  and (3) integrate cumulative risk trajectories
across life cycle phases.

The  convergence  of  material  and  risk  flows  generates  valuable
insights  into  dynamic  risk  propagation  mechanisms.  By  mapping
toxicant  pathways  to  source  chemicals  through  established
industrial-environmental  linkages,  this  framework  fundamentally
transforms life cycle management, shifting from terminal mitigation

 

Table 1  Limitations, solutions, and challenges identified for enabling the life cycle management of industrial chemicals

Life cycle stage Current limitations Tentative solutions Remaining challenges

Industrial metabolism • Complex industrial reactions and
transformations obstruct linkage of
source chemicals to terminal pollutants
• Models assume idealized conditions,
ignoring operational variability

• Multi-model integration to quantify material
flows across sector transformations
• Coupling molecular-scale models with intrinsic
kinetics and process simulation to resolve
industrial 'black boxes'

• Limited industrial reaction data
causes prediction-reality discrepancies
• Validation challenges in cross-scale
model integration

Environmental fate
and transport

• Coupled environmental
transport/transformation impedes
quantitative tracking of terminal
pollutants
• Existing models treat transport and
transformation as separate processes

• Application-specific multimedia models to
clarify chemical transport
• Apply transformation models integrating
reaction rules, machine learning, and
experimental data for environmental
metabolites

• No integrated frameworks for
simultaneous transport-
transformation modeling
• Limited joint assessment of dynamic
environmental processes

Risk of mixtures • Traditional key toxicant identification
ignores contaminant interactions, failing
to capture mixture effects

• Adverse Outcome Pathway (AOP) network
construction for toxicity pathway elucidation
• Quantitative AOP for key event relationships
and dominant pathway probability
• Event-driven taxonomy (EDT) for high-risk
toxicant identification

• Limited AOP data (incomplete
pathway coverage and lack of
quantitative interaction data)
• Constrained cumulative risk
evaluation for complex mixtures
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to proactive prevention. It enables precision interventions at critical
control  points  (e.g.,  process  engineering  or  emission  treatment)
where  strategic  actions  maximize  risk  reduction.  Furthermore,  this
integrated  paradigm  redirects  regulatory  interventions  upstream
through  sustainable  feedstock  transitions  and a  priori molecular
design.  Simultaneously,  it  facilitates  a  strategic  transition  from
reactive  measures  to  proactive  prevention  by  dynamically  tracking
chemical fate and risks across technological, process, and ecological
scales.  Achieving  this  requires  cross-sector  collaboration  among
industrial  ecology,  green  and  environmental  chemistry,  ecotoxico-
logy, and data science. We therefore urgently advocate establishing
interdisciplinary frameworks featuring harmonized terminology and
standardized  research  outputs  to  systematically  enhance  life  cycle
risk assessment and management.
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