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Abstract

The intensive development of large-scale livestock and aquaculture industries has
underpinned global food security. However, the extensive use of veterinary drugs, feed
additives, and other related inputs driven by this industrial expansion has led to the
continuous accumulation of new contaminants (NCs) in farming waste, such as antibiotics,
antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARB), endocrine-disrupting
compounds (EDCs), and micro- and nano-plastics (MNPs). These pollutants undergo multi-
media migration, transformation, and food chain transmission, posing potential threats to
ecosystems and human health. This review systematically summarizes the sources and
occurrence characteristics of NCs in different types of farming waste, with a focus on their
environmental fate and multi-media transport behavior. It further elaborates on the
ecological risks arising from the bioaccumulation of these contaminants. Additionally, the
removal efficiencies of physical, chemical, biological, and combined control technologies for
NCs are evaluated. Emphasis is placed on the importance of analyzing composite pollution
mechanisms, establishing precise risk modeling, and implementing integrated full chain
strategies encompassing 'source substitution-process interception-end treatment'. Future
research should prioritize the mechanistic understanding of combined pollution, accurate
risk assessment, and intelligent management to provide a scientific basis for promoting the
green transformation of aquaculture and safeguarding watershed environmental health.

Keywords: New contaminants, Aquaculture and livestock waste, Environmental fate, Ecological risk transmission, Integrated
mitigation technologies

Highlights

+ New contaminant profiles in livestock and aquaculture waste are characterized.

+ The environmental fate of new contaminants in farming waste is elucidated.

+ Ecological risk transmission pathways and assessment methods are reviewed.

* The roles of source reduction for new contaminants are evaluated.

+ Combined removal technologies for new contaminants are summarized.
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Micro/nano plastics
Introduction (MNPs). These particles are primarily derived from microplastics

Large-scale and high-density livestock farming and aquaculture, as
crucial components of modern agriculture, have become a core pillar
for ensuring global food security and promoting economic develop-
ment. According to the Food and Agriculture Organization (FAO) of the
United Nations, the global annual meat production is projected to
increase from the current 228 million tonnes to 463 million tonnes.
By 2050, with the annual output of poultry expected to exceed
37 billion!", the stock of cattle will rise from 1.5 billion to 2.6 billion, the
stock of goats and sheep will increase from 1.7 billion to 2.7 billion!?,
and the output of aquaculture will reach 109 million tonnes?.. How-
ever, while providing abundant animal protein products and creating
substantial economic value, the industry's sustainable development
path has become a global focus due to its massive resource demand
and pollutant emissions.

Currently, the environmental challenges posed by breeding
wastes are shifting from conventional organic pollution to new
contaminants (NCs) represented by persistent organic pollutants
(POPs), endocrine-disrupting compounds (EDCs), microplastics, and
antibiotics. Owing to their concealed nature and complex risks,
these substances have become a core challenge and frontier area in
environmental governancel*l, To date, reported NCs in breeding
wastes are mainly categorized into three types: (1) Antibiotic resis-
tance (AR), antibiotic-resistant bacteria (ARB), and antibiotic resis-
tance genes (ARGs). Excessive use of antibiotics in breeding (such
as fluoroquinolones, tetracyclines) cannot be fully metabolized by
animals and enter the environment with manure. They further
induce bacteria to produce ARGs and generate a large number of
ARB, exacerbating the spread of antimicrobial resistancel®l. (2) EDCs,
including exogenous hormones added to feed (such as steroid
hormones)l’], phthalic acid esters (PAEs) released from plastic equip-
ment®, per- and polyfluoroalkyl substances (PFAS)®, and veteri-
nary drugs (such as avermectins)'% generated during production.
These compounds can interfere with the endocrine functions of
aquatic and terrestrial organisms. (3) Micro- and nano-plastics

formed by the aging and fragmentation of plastic mulch films, feed
packaging, and pipelines, as well as nano-additives in feed (such as
nanopreparations of trace elements). They are recalcitrant, prone to
enrichment in the environment, and form complex combined pollu-
tion as carriers('',

The core risk of NCs in the breeding environment stems from their
environmental persistence, bioaccumulation potential, and food
chain magnification effect, posing long-term threats to ecosystems
and public health. Long-term exposure is closely associated with
various health issues, including cancer, endocrine disorders, immu-
nosuppression, and developmental abnormalities'?. These pollu-
tants diffuse extensively into environmental media like water, soil,
and air through pathways such as manure discharge, organic ferti-
lizer application, and runoff. More critically, NCs possess complex
interactions, which can induce additive or synergistic toxicity in the
environment('3], Furthermore, they are resistant to effective removal
through natural attenuation and conventional treatment processes.
Consequently, these substances persist and ultimately accumulate
in soils, sediments, and aquatic food chains, affecting organisms
from invertebrates to humans!'4. This dynamic exemplifies the 'One
Health' framework, which highlights the interconnected health risks
across humans, animals, and the environment (Fig. 1).

Although the potential risks of NCs have attracted widespread
attention, notable gaps remain in current research on aquaculture
and livestock wastes. Firstly, there is a lack of systematic understand-
ing regarding the sources and occurrence, synergistic and com-
bined effects, as well as ecological risk transmission of various NCs in
these wastes. The key processes of their multi-media migration and
transformation, along with the driving mechanisms of synergistic
control, remain unclear. Additionally, traditional risk assessment
frameworks struggle to effectively quantify the combined risks
posed by these contaminants to ecosystems and human health
under conditions of low concentrations and long-term exposure.

This review aims to systematically synthesize the occurrence cha-
racteristics, environmental fate and behavior, ecological and health
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Fig. 1 New contaminants in aquaculture and livestock waste.
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risks, as well as systematic control strategies of NCs in aquaculture
and livestock wastes. It provides a theoretical basis for the formula-
tion of future research directions and management strategies,
thereby promoting the development of the breeding industry
toward a more environmentally friendly and sustainable path.

Occurrence characteristics and source
apportionment of NCs in breeding wastes

Typical NCs in breeding wastes

EDCs

EDCs in wastes from large-scale intensive farming are extrinsic
chemical substances that target nuclear receptors to interfere with
the endocrine systems of organisms, posing potential threats to eco-
systems and human health!"®. Originating from diverse sources, EDCs
mainly include hormones, alkylphenols, polyhalogenated compounds,
bisphenol A (BPA), PAEs, pharmaceuticals, and pesticides!'®~'®!, During
the farming process, EDCs often enter the environment through path-
ways such as feed additives, plastic facilities, and manure application to
farmland, and accumulate in water bodies, soil, and organisms.

In aquaculture and livestock farming systems, EDCs enter the
waste stream through multiple pathways, including feed additives,
plastic equipment, water systems, disinfectants, and manure appli-
cation, ultimately accumulating in water, soil, and biota (Fig. 2)['9-24,

Alkylphenol ethoxylates (APEs), commonly found in detergents,
paints, and pesticides, represent a major class of estrogenic com-
pounds in farming wastes['l, BPA and its substitutes (Bisphenol S
[BPS] and Bisphenol F [BPF]), widely used in feed packaging, drink-
ing pipes, and mulching films, can be ingested by animals, accumu-
late in adipose tissues, and transfer into meat, eggs, and milk[20,
While PAEs are commonly used as plasticizers, they can easily leach
from farming equipment such as feed containers, nets, and tubing,
especially when exposed to high temperatures, humidity, or ultra-
violet radiation (UV) light(2'l, PFAS are extremely persistent in the
environment due to their stable C-F bonds, which resist biological,
photolytic, and hydrolytic degradation?223], Fishmeal has been
identified as a significant source of PFAS in aquatic species and
related products, such as farmed Atlantic salmon(24.,

There are significant differences in the enrichment levels of EDCs
among different farming systems. The concentration of EDCs in
livestock and poultry manure reaches the microgram per kilogram
level; for example, the total estrogen content in chicken manure is
40.08 pg/kgl?sl, and the average BPA content in cow manure is
11.7 pg/kg. In contrast, the concentration in aquaculture orga-
nisms is at the nanogram per gram level; for instance, the 4-
nonylphenol content in fish ranges from 1.39 to 158.35 ng/g?’L
These differences are closely related to the characteristics of farm-
ing media and the migration laws of pollutants.

AR, ARGs, and ARB

The extensive use of antibiotics in livestock, poultry, and aquaculture
has given rise to a series of environmental and health issues. It is
shown that the antimicrobial consumption per kilogram of product
in global livestock production is 59.6 mg for cattle, 354 mg for
chickens, and 173.1 mg for swine, while that in aquaculture is as high
as 208 mg®?. It is projected that global antimicrobial consumption will
increase to approximately 104,000 tonnes by 203018, In addition to
directly causing antibiotic residues, of greater concern is that the con-
tinuous discharge of antibiotics from breeding wastes promotes the
proliferation and spread of ARB and ARGs. Despite the introduction
of restrictive policies in many countries, antibiotic residues are still
commonly detected in breeding environments, highlighting the per-
sistence and concealment of pollution!?°3%,

ARB enter the environment through excretion, serving as viable
carriers for ARGs dissemination and significantly increasing human
exposure risks (Table 1)B'. Resistance genes spread primarily
through vertical gene transfer and horizontal gene transfer
(HGT)BO321 with their transmission efficiency significantly increased
via conjugation, transformation, and other mechanisms(331. The con-
centration of common ARB (such as Escherichia coli, Klebsiella pneu-
moniae, Enterococcus spp.) in swine manure can reach 108 CFU/g34,
exacerbating the risk of antimicrobial resistance spread.

MNPs

MNPs in breeding wastes pose dual threats to ecosystems and human
health®), with their risks stemming from the intrinsic toxicity of the
particles themselves and the synergistic effects as pollutant carriers®.
On the one hand, MNPs are prone to causing physical damage
triggered by biological uptake, and simultaneously release contained
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Table 1 Distribution and characteristics of AR, ARB, and ARGs
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Category

Antibiotic
class/ARB type

Main associated ARGs

Main detected strains/genera

Typical abundance and variation trends
in the environment

Antibiotics Tetracyclines

tetA, tetB, tetM, tetO, tetW, etc.

Widely present in gut microbiota

High initial abundance in manure; reduced after

(Escherichia coli, Enterococcus spp.)

Widely present in gut microbiota and

Gram-positive bacteria (such as

Multidrug-resistant (MDR) E. coli, MDR

aerobic composting, but genes may persist

High environmental persistence; marker for fecal
pollution; may remain after treatment

Carbapenem-resistant Enterobacterales High abundance in hospitals and breeding
(CR-E), ESBL-producing E. coli/Klebsiella
pneumoniae, and ampicillin-resistant

wastewater; many strains and genes remain
detectable in treated effluents, posing high risks

Composting reduces viable bacterial counts, but
genes may persist

Enterobacterales, Enterococcus spp., etc. Common in multidrug-resistant strains

Prevalent in breeding environment, selection
pressure from florfenicol and quinolones

A concerning resistance to the last-resort antibiotic
Important hospital-acquired resistant bacteria;
potential detection risk in wastewater

These efflux pump genes promote bacterial
multidrug resistance, making them difficult to
eliminate

and ARGs
and the environment
Sulfonamides sull, sul2
the environment
p-lactam blaTEM, blaCTX-M, blaSHV,
blaKPC, blaOXA-48, mecA, etc.
E. coli
MLSB ermB, ermC, InuE, strA, etc.
Enterococcus spp.)
Aminoglycoside aac, aadA, aadB, etc.
FCA gnrsS, aac(6')-lb-cr, floR, cat, etc.  E. coli, Salmonella spp., etc.
Colistin mcr-1, mcr-2, etc. E. coli, Salmonella spp., etc.
Vancomycin vanA, vanB, etc. Enterococcus spp.
Multidrug acrA, acrB, mexB, ogxA, etc.
Enterococcus spp.
ARB Enterobacterales  blaKPC, blaOXA-48, etc.

ESBL-producing blaCTX-M-15, blaCTX-M-14,
E. coli/Klebsiella etc.
pneumoniae

Ampicillin-resistant blaTEM-1, etc.

E. coli

Multidrug-resistant A combination of multiple

(MDR) E. coli/ genes mentioned above

Enterococcus spp.

ARB in aquaculture Genes associated with

environments p-lactams, macrolides,
tetracyclines, sulfonamides, etc. etc.

E. coli

E. coli, Klebsiella pneumoniae
E. coli, Klebsiella pneumoniae

E. coli, Enterococcus spp.

Enterococcus spp., Morganella spp.,
Klebsiella pneumoniae, Serratia spp.,

Extremely high risk; detectable after treatment

Common in medical and breeding environments;
remains detectable in treated effluents

High initial count (~108 CFU/g); significantly
reduced after aerobic composting

High proportion in hospital wastewater; remain
detectable in treated effluents

Widely distributed across all sites in the breeding
environment; may cause cross-contamination
during processing

additives such as plasticizers and flame retardants, leading to direct
ecotoxicity. On the other hand, due to their hydrophobic properties,
MNPs strongly adsorb persistent pollutants, heavy metals, and anti-
biotics in the environment, forming combined pollution aggregates®°.
When these pollutant-loaded particles are ingested by organisms, the
pollutants are transiently released in the gastrointestinal tract,

producing a 'Trojan horse' effect that significantly enhances their bio-
availability and combined toxicity®®”). Notably, common polymers such
as polypropylene (PP) and polyethylene (PE) are widely present in
aquaculture and livestock feed and facilitiest®®), continuously releasing
additives posing health hazards like plasticizers, flame retardants, and
BPAB?, Therefore, MNPs possess a dual identity as both 'pollutants' and
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'carriers', and future risk assessments should focus on their combined
ecological effects under long-term low-dose exposure.

NGCs in different types of breeding wastes

Contaminant profiles in livestock and poultry breeding wastes
As shown in Table 2, livestock and poultry breeding wastes are
important sources of NCs, with their pollutant profiles closely linked to
breeding species!*”). Extensive use of antibiotics such as tetracyclines,
B-lactams, and sulfonamides in livestock farming and aquaculture has
made livestock and poultry manure a major source of ARGs and ARB.

The abundance (up to 10! copies/g) and diversity of ARGs in swine
and chicken manure are generally higher than those in cattle and
sheep manure, which is consistent with the more intensive antibiotic
application patterns in swinel*'-43 and chicken farming#!#445l, Domi-
nant ARG types vary across different breeding systems: tetracycline
resistance genes (such as tetM, tetl) predominate in swine and
chicken farms, while cattle farms show a significant association with
macrolide resistance genes and the sul7 genel*>-47],

Notably, sulfonamide resistance genes (sull, sul2) have become
common contaminants in groundwater around breeding farms due

to their strong environmental mobility*8], indicating persistent envi-
ronmental and health risks!l.

Microplastics in livestock and poultry manure exhibit significant
interspecific differences in abundance: the highest concentration
is found in swine manure (9.02 x 102 + 1.29 x 103 particles/kg),
followed by layer chicken manure (6.67 x 102 + 9.90 X
102 particles/kg), and the lowest in dairy cow manure (7.40 x 10" +
1.29 x 102 particles/kg)>%. These microplastics are mainly composed
of polypropylene and polyethylene, primarily derived from feed and
its packaging.

Regarding EDCs, PFAS concentrations in poultry manure are
generally low (0.66 pg/kg), significantly lower than those in munici-
pal and industrial wastes (220 pg/kg)P'l. In contrast, concentrations
of BPA and PAEs vary by species and feeding patterns, with higher
levels detected in intensive breeding farms, reflecting plastic pro-
duct exposure as a major sourcel>2531,

Characteristic profiles of contaminants in aquaculture

Aquaculture represents another significant industry alongside livestock
farming. As the fastest-growing food industry globally®®*, the rapid
increase in aquaculture production and consumption has been

Table 2 Comparison of concentrations of NCs across different livestock and poultry farming systems

Species

category 1YPeS Medium Main types Concentration (ww) Detection rate Ref.
Chicken Antibiotic Manure, breeding Tetracyclines, Tetracyclines: highest (9.7 x 103-3.2 x 10* ug/kg); Core antibiotics: [41,42]
residues wastewater fluoroquinolones, Fluoroquinolones: 430.7 png/kg 100%; Sulfonamides:
sulfonamides, cephalosporins 35%
ARGs Manure, breeding tet family (tetO/tetW), sul Total ARG abundance: 105-10"" copies/g; tet family:  100% [41,45]
wastewater family (sul1/sul2), bla family ~ 10°-108 copies/g;
ECDs Manure E1,174-E2,E3 E1:28.72 ng/kg; 174-E2: 3.95 png/kg; E3: 7.4 pg/kg Overall detection [25]
rate: 71.42%
MPs Manure, chicken  PE, PS, PET, Nylon Fibers, PP 6.67 x 10% £ 9.90 x 107 particles/kg 50%—100% [50]
farm environment
Swine  Antibiotic Manure, swine Tetracyclines, Tetracyclines: 8.9 x 103-3.0 x 10* ug/kg; Tetracyclines: 90%;  [41-43]
residues farm wastewater fluoroquinolones, Fluoroquinolones: 1,670.58-7,832 ng/kg; Sulfonamides: 33%
sulfonamides Sulfonamides: 148.3 ug/kg
ARGs Manure, swine tet family, sul family, ermB Total ARG abundance: 107-10° copies/g; tet family: ~ 100% [40,45]
farm wastewater 10°-108 copies/g; Swine farm wastewater:
10°-10"2 copies/mL
ARB Manure ESBL-producing Escherichia ESBL-producing Escherichia coli: 1.8 x 103-5.2 x 42%-60%; 25%-38% [40,45]
coli (E. coli), LA-MRSA 103 CFU/g; LA-MRSA: 1.2 x 10%-3.5 x 102 CFU/g
EDCs Breeding Breeding wastewater: natural Breeding wastewater: 17a-E2: 10.9 ng/L, 17/-E2: Breeding [25,54]
wastewater, estrogens: 170-E2, 174-E2,E1 8.0 ng/L, E1: 27.3 ng/L, Total estrogens: 46.2 ng/L; Wastewater: 17a-E2,
manure Manure: E1 Manure: E1: ND ~21 ug/kg 174-E2, E1: 100%;
MPs Manure, intestinal PP, PE, PR, PES, PA, PET Manure: 9.02 x 102 + 1.29 x 10° particles/kg Manure: 100%; [50,55,56]
tract, lung tissue (17.6% < 0.5 mm); Intestinal tract: 9.6 x 103 Tissues: 90%
particles/kg; Lung tissue: 1.8 x 10° particles/kg
Cow Antibiotic Manure, rumen Tetracyclines, Tetracyclines: 30.07-51.36 pg/kg; Core antibiotics: [41-43]
residues contents, cow fluoroquinolones, Fluoroquinolones: 77.19 ug/kg; 75%-90%
farm wastewater  sulfonamides, macrolides Sulfonamides: 9.26 ng/kg
ARGs Manure, rumen tet family, ermB, sul1, ermB, Total ARG abundance: 10°-108 copies/g; 95% [45-47]
contents blaCTX-M ermB: 10°-10° copies/g
EDCs Breeding Natural estrogens: 17a-E2, Breeding Wastewater:17a-E2: 19-1,028 ng/L, 17-E2: 17a-E2,175-E2, E1:  [26,54,57]
Wastewater, Breeding wastewater:174-E2, 29-289 ng/L, E1: 41-3,057 ng/L, Total estrogens: 85.7%; E3:20%, 17p-
manure E1 Manure: E3, 175-E2, BPA 60 - over 4,000 ng/L; Manure: E3: ND-240.9 ng/kg,  E2: 80%, BPA:50%
17p-E2: ND-88.3 ng/kg, BPA: ND-33.3 ng/kg
MPs Manure PE, PP, PET, PVC 7.40%x 10" +1.29 x 102 particles/kg; Manure: 75%—-100%; [55,58,59]
Rumen: 80%
Sheep  ARGs Manure, rumen tet family (tetO/tetQ/tetW), Total ARG abundance: 10°-107 copies/g; tet family: ~ 100% [45,60,61]
contents ermF 10*-106 copies/g
ARB Manure Enterococcus spp. 1.2x103-3.6 x 103 CFU/g 95%
EDCs Breeding Natural estrogens: 170-E2, 170-E2: 172 ng/L, 174-E2: 47.1 ng/L, E1: 157 ng/L, 170-E2,174-E2, E1: [54]
wastewater 174-E2, E1 Total estrogens: 376.1 ng/L; 100%;
MPs Manure, intestinal PE (Low-Density), PP, PET, PA  Manure: 997+971 particles/kg; Intestinal tract: Manure: 92%; [55,58]
tract 102-10 particles/kg Intestinal tract: 100%

PR: Polyester; ARGs: Antibiotic Resistance Genes; ARB: Antibiotic-Resistant Bacteria; EDCs: Endocrine-Disrupting Compounds; MPs/NPs: Microplastics/Nanoplastics; PE:
Polyethylene; PS: Polystyrene; PET: Polyethylene Terephthalate; PP: Polypropylene; PVC: Polyvinyl Chloride; PA: Polyamide; PES: Polyethersulfone; LDPE: Low-Density
Polyethylene; ESBL: Extended-Spectrum f-Lactamase; LA-MRSA: Livestock-Associated Methicillin-Resistant Staphylococcus aureus; 17a-E2: 17a-estradiol; 175-E2: 175

estradiol; E1: Estrone.
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accompaniedbytheemergenceofpollutantsandhealthrisks®¥. Theissue
of combined pollution associated with its rapid development has
become increasingly prominent, forming a unique 'aquaculture-
characteristic pollution profile'™®., This pollution profile mainly includes
heavy metals, antibiotics, POPs, and pathogenic microorganisms.
Among these, the concentrations of heavy metals such as copper, zinc,
lead, and metalloids like arsenic in aquaculture water bodies must be
strictly controlled within limit values. Pathogens, including entero-
toxigenic Escherichia coli, Salmonella spp., Campylobacter spp., Shigella
spp., and Vibrio spp., may threaten human health through fish as a
vector!®Z, In addition, wastewater discharged from aquaculture is rich
in nutrients such as nitrogen and phosphorus, as well as organic
matter, which can easily induce eutrophication and hypoxia in water
bodies and damage the benthic ecosystem.

Even more concerning is the fact that farmed aquatic products
have become a significant route through which NCs are transmitted
to humans. As shown in Table 3, residues of antibiotics such as
erythromycin (ETM), ciprofloxacin (CFX), norfloxacin (NOR), and
sulfamethoxazole (SMX) have repeatedly been found to exceed
standard limits in aquatic products®®, and a high detection rate of
antibiotics has also been reported in aquaculture wastewaterl67-701,

Regarding PFAS pollution, significant variations in bioaccumula-
tion have been observed among different aquatic products. For
instance, the concentration of X;;PFAS in mussels can reach 4.83-
6.43 ng/g”", which is significantly higher than that in abalones,
oysters, and lobsters. Most farmed fish show low pollution levels
(mean concentration range: 0.06-1.5 ng/g)’2. Due to endogenous
emissions and feed additions, effluents from aquaculture farms also
contain EDCs such as steroid hormones; although their concentra-
tions are relatively low, their impacts cannot be ignored(73!.

Microplastics are found in both aquaculture water and
seawaterl7475], The microplastic concentrations in the farming envi-
ronments of crabs and crayfish (233-733 particles/m3) are generally
slightly higher than those in fish (83-550 particles/m3), attributable
to increased exposure from the use of plastic enclosuresl’®l, The
microplastic content in various aquatic organisms is higher than
that in natural water bodiesl’7.78l, demonstrating their strong ability
to accumulate microplastics.

Environmental fate mechanisms of NCs in
livestock waste

Multimedia migration and environmental
persistence

The environmental behavior of NCs in different farming systems
determines their ultimate fate and ecological risks”\. Core processes
include environmental transport and persistence, bioaccumulation
and trophic transfer, transformation and activation!®”!,

In terms of environmental transport and persistence, compounds
such as BPA and phthalates demonstrate persistent existence due to
continuous input despite their biodegradable nature, while halo-
genated compounds like polybrominated diphenyl ethers (PBDEs)
can persist long-term and undergo long-range transport owing to
their high chemical stability. During bioaccumulation, hydrophobic
EDCs are prone to accumulating in organisms due to their high
lipophilicity’®':821 and can undergo biomagnification through the
food chain, ultimately posing human exposure risks via aquatic
products®3l. Furthermore, contaminants that settle with particulate
matter may be re-released into the water column due to bioturba-
tion by benthic organisms, thereby elevating ecological risks(84.

Table 3 Comparison of concentrations of new contaminants across different aquaculture types

Species category Pollutant type Sample type Main types Concentration Ref.
Tilapia Antibiotics Pond water TMP, CFX, etc. 94.30+ 11.56 ng/L [68]
Organism tissues SDz, SDM, SQX, CFX, TC, ETM, CTM, RTM 17.20 £ 1.51 ng/g ww
Olive flounder Antibiotics Aquaculture effluent AMX, FLO, OXO, OTC AMX: 39-1,145 ng/L [67]
FLO: 22-1,448 ng/L
0X0:31-992 ng/L
OTC:33-9,935 ng/L
Grass carp Antibiotics Pond water ETM-H,0, SMX, LIN, etc. 222-1,792 ng/L [69]
Pacific white shrimp Antibiotics Aquaculture tailwater FLO, ENR, SMX, TMP, etc. 8,600-29,000 ng/L [70]
Organism tissues TMP, ENR, SMX, CIP, FLO, TPL 0.072-11.8 pg/kg ww
Salmon EDCs Aquaculture effluent Estrone, testosterone, androstenedione About 1-2 ng/L [73]
Eel EDCs Organism tissues PFAS 3.3-67 ng/g ww [72]
Mussel, oyster, abalone, lobster EDCs Organism tissues (abalone) PFAS 0.12-0.49 ng/g ww [71]
Organism tissues (mussel) PFAS 4.83-6.43 ng/g ww
Organism tissues (oyster) PFAS 0.64-0.66 ng/g ww
Organism tissues (lobster) PFAS 0.22 ng/g ww
Grass carp MPs Aquaculture water Predominantly PP, PE 10.3-87.5 particulars/L [74]
Multiple fish species MPs Lagoon water PP, PE, HDPE, PS, etc. 0.00-0.30 particulars/L [78]
Organism tissues PE, PP, nylon-12, polyacetylene 1-1.5 microplastics per fish
Oyster MPs Seawater PU, PA 144.27 + 42.48 particulars/L [75]
Eel and crayfish MPs Rice-fish culture station water PE, PP, PVC 0.4+ 0.1 particulars/L [77]
Organism tissues (fish) PE, PP, PVC 3.3+ 0.5 particulars/L
Organism tissues (shrimp) PE, PP, PVC 2.5 + 0.6 particulars/L
Fish, crayfish, crab MPs Fish pond PE, PP, PET, PVC 83-550 particulars/m3 [76]
Shrimp pond PE, PP, PET, PA 233-733 particulars/m?3
Crab pond PE, PP, PET, PS, PA 500-750 particulars/m3

TMP: Trimethoprim; CFX: Ciprofloxacin; SDZ: Sulfadiazine; SDM: Sulfadimethoxine; SQX: Sulfaquinoxaline; TC: Tetracycline; ETM: Erythromycin; CTM: Clarithromycin; RTM:
Roxithromycin; AMX: Amoxicillin; FLO: Florfenicol; OXO: Oxolinic Acid; OTC: Oxytetracycline; SMX: Sulfamethoxazole; LIN: Lincomycin; ENR: Enrofloxacin; CIP:
Ciprofloxacin; TPL: Thiamphenicol; PP: Polypropylene; PE: Polyethylene; HDPE: High-Density Polyethylene; PS: Polystyrene; PU: Polyurethane; PA: Polyamide; PVC:
Polyvinyl Chloride; PET: Polyethylene Terephthalate; EDCs: Endocrine-Disrupting Compounds; PFAS: Per- and Polyfluoroalkyl Substances; MPs: Microplastics.
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In terms of transformation and activation, certain pollutants can
be converted into more toxic forms during environmental transport
or metabolic processes(®], as exemplified by the transformation of
PFAS precursors into terminal persistent pollutants such as perfluo-
rooctane sulfonate (PFOS). Although antibiotics are susceptible to
degradation, their continuous input results in persistent existence;
ARGs can achieve long-distance dissemination via vectors such as
microplastics!®l. Antibiotic residues function as a persistent selec-
tion pressure that further enriches ARBI®, increases the abundance
of mobile genetic elements (MGEs)®7), and activates the HGT of
ARGs!88, which promotes the transmission of resistance traits to
human pathogens, amplifying the risk of clinical antimicrobial resis-
tance. Even after complete degradation of antibiotics, ARGs can
persist via mobile genetic elements, leading to an increase in ARGs
without antibiotics®7l. Moreover, non-antibiotic factors, including
heavy metals and microplastics, can improve ARGs transfer effi-
ciency by several-fold via mechanisms such as oxidative stress
induction, triggering 'non-antibiotic-driven resistance expansion'.
For example, MNPs may serve as carriers facilitating the transfer of
ARB and ARGs!88], while heavy metals can promote co-resistance to
antibiotics in microorganisms, as the genes for these resistance
phenotypes reside on the same genetic element(89,

Bioaccumulation and ecological risk transfer

In addition to multi-media migration, NCs are prone to bioaccumu-
lation, resulting in the transmission of ecological risks. NCs constitute a
critical pathway for human exposure through food chain transfer.
Hydrophobic pollutants (such as alkylphenols, organochlorine pestici-
des, and certain PFAS) are prone to accumulating in adipose tissues
due to their high lipophilicity®"), and undergo biomagnification along
trophic levels, resulting in significantly elevated concentrations in high-
trophic-level organisms®®°"l, For instance, the transformation of PFAS
precursors in farmed salmon contributes to seafood contamination,
ultimately posing dietary exposure risks. These exposure processes can
be quantitatively assessed using models such as the estimated daily
intake (EDI), risk quotient (RQ)®Z, and the seafood risk tool (SRT)3!.
Moreover, EDCs such as steroid hormones can impair population sex

ratios and reproductive functions even at trace concentrations®, with
mixture exposures further amplifying ecological risks.

Unlike traditional hydrophobic pollutants, ARGs show a distinct
horizontal enrichment of resistance patterns. Livestock chronically
exposed to low-dose antibiotic environments impose selective pres-
sure on their gut microbiotal’%, leading to the enrichment of resis-
tant bacteria carrying ARGs as dominant populations>%I, This resis-
tance phenotype enrichment is synergistically promoted by the
vector effect of MNPs!'3], which is further promoted by bacterial-
phage symbiosis®’l. Subsequently, through pathways such as
manure application to farmland®8l and wastewater dischargel®,
ARGs disseminate into the broader environment. This process not
only facilitates the transmission of ecological risks®%°" but also
enables the transfer of resistance traits to humans via the food
chain, effectively amplifying the spread and impact of antimicrobial
resistance.

Interfacial and molecular mechanisms combined
with the pollution of NCs

The combined pollution of NCs in livestock manure relies on interfacial
processes centered on MNPs as core carriers. MNPs can bind heavy
metals, EDCs, and ARGs through multiple interfacial forces including
oxygen-containing functional group interactions, electrostatic interac-
tions, and halogen bonds (Fig. 3). These interactions promote the
aggregation of pollutants on the surface of MNPs, leading to the
formation of stable composite particles!'!.

MNPs in the moist matrix of livestock manure, which resembles
freshwater environments, enter cells via phagocytosis. MNPs in
saline microenvironments rely on macropinocytosis. Hydrophobic
pollutants cross cell membranes through diffusion, while hydrophi-
lic pollutants are transported via carrier proteinsl190],

On the surface of MNPs, horizontal gene transfer of ARGs
mediated by plasmids and vertical gene transfer in microorganisms
can also amplify pollution risks. For example, large-sized PE
microplastics, characterized by a rough surface and gaps, can
provide stable habitats for microorganisms to promote biofilm
formation, increasing the conjugative transfer efficiency of tetW and

—o0—0
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—R—cI—§Q)
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Fig. 3 Mechanisms of NCs entering cells and the complex pollution of them!'3/66:81:88,100]
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other ARGs by up to 1.7-fold!'0', These processes synergistically
drive the persistence and spread of combined pollution in livestock
manure.

Source reduction and synergistic control
technologies

Source reduction and functional alternatives
Within aquaculture systems, antibiotics can be reduced at the source
through the adoption of substitutes or alternative strategies. Com-
pounds such as essential oils!'%%, chicken immunoglobulins!'®?, anti-
microbial peptides!'®), and organic acids!'% serve as effective anti-
biotic alternatives. Dietary microspheres have been shown to enhance
antibiotic utilization efficiency!'°, while autogenous vaccines can
improve organism immunity to reduce antibiotic dependencel'®’.
Additionally, probiotics, prebiotics, and fibrous feed components
contribute to the modulation of gut microbiotal'%l. To optimize the
delivery of these bioactive substances, encapsulation systems can be
employed to improve drug transport efficacy!'%.

By strengthening regulatory oversight and emission control of
antibiotic use in livestock farming, the implementation of precision
medication techniques (such as on-demand administration) can
reduce antibiotic application by 30%-50%. In livestock and poultry
farming, probiotics (such as Bacillus spp.) and plant extracts (such as
allicin) serve as antibiotic alternatives for growth promotion, lower-
ing the input of antibiotic residues!''?l. In swine feed, the supple-
mentation of lysozyme and enzymatic preparations (such as amy-
lase, protease, non-starch polysaccharidases, and phytase) improves
nutrient digestibility, reduces the accumulation of undigested
substrates in the hindgut, and modifies the gut microbial fermenta-
tion environment, directly diminishing the abundance of ARBI'''.

End-of-pipe treatment and advanced removal
technologies

In the field of antibiotic treatment in aquaculture wastewater, advan-
ced oxidation processes based on persulfate have attracted significant
research interest due to the advantages offered by sulfate radicals
(-SO,"), including a broad pH adaptability and a relatively long half-
lifel''?, The efficacy of this technology can be further improved
through electrochemical activation!''®, coupling with ferrate, or the
addition of catalysts!''#'""], In comparison, ozonation, while effective in
antibiotic removall''®, is more suitable for freshwater aquaculture
systems as it readily reacts with anions such as halogens in seawater to
generate harmful disinfection by-products.

In the realm of biological treatment, the membrane aerated
biofilm reactor enables effective optimization of functional micro-
bial community structure through precise regulation of aeration
pressure, enhancing system stability and removal efficiency!''7l,
Building on this, the implementation of bioaugmentation strategies
(such as the introduction of synthetic microbial consortia) not only
improves antibiotic degradation capacity but also significantly miti-
gates the dissemination risk of ARGs.

Adsorption and flocculation treatment

Adsorption technology utilizes interfacial interactions (such as van der
Waals forces and electrostatic attraction) on porous materials to
efficiently remove NCs from water, offering advantages such as low
cost and operational simplicity. For instance, a bio-inspired graphene
oxide sponge shows an adsorption capacity of up to 1,006 mg/g for
diclofenac!''®. Biofloc technology operates in a zero-water-exchange
mode, suppressing pathogens through microbial competition and

converting the resulting flocs into supplementary feed, achieving dual
benefits of pollution control and feed substitution. Biochar from
agricultural biomass demonstrates an adsorption rate of up to 99%
for ternary antibiotic mixtures!''?, and at a pH of 7.56, it achieves a
removal efficiency of > 95% for microplastic spheres at a concentration
of 1.08 +0.2 x 108 particles/L!"'2°,

Advanced oxidation technology

Utilizing strong oxidants such as hydroxyl radicals (-OH), hydroperoxyl
radicals (-HO,"), superoxide radicals (-O,7), sulphate radicals (:50,7),
chlorine radicals (-Cl), ozone (Os), and organic peroxy radicals ((ROO) to
oxidize and degrade pollutants in wastewater!'?"). Their activation is
typically achieved through Fenton/Fenton-like oxidation, ozonation,
UV irradiation, electrocatalytic oxidation, photocatalysis, wet oxidation,
or combinations of these processes!'??. Ozone nanobubbles can
remain suspended in water for hours or even months, enabling high
gas transfer efficiency. They possess high oxidation potential, low
buoyancy, and generate free radicals!'?®. A hybrid nanobubble-
forward osmosis (NB-FO) system has been employed for treating and
reusing aquaculture wastewater!'?4,

Biological and ecological treatment
Biological and ecological remediation technologies have garnered
widespread attention in the field of aquaculture wastewater treatment
due to their high efficiency and low operational costs. Moving bed
biofilm reactors and fixed bed biofilm reactors utilize carbon-based
media such as wood chips and corn cobs as both biofilm carriers and
denitrification carbon sources. Under optimized C/N ratios, these
systems effectively facilitate pollutant degradation!'?”. Notably, the
dissimilatory nitrate reduction to ammonium (DNRA) process can
account for up to 23% of the nitrogen transformation!'2%, highlighting
its significance in regulating nitrogen conversion pathways!'?'.
Recirculating aquaculture systems (RAS) achieve closed-loop water
recycling and pollution control by integrating physical filtration, bio-
logical purification, and disinfection units!'?”.. Membrane bioreactors
innovatively combine membrane separation with biological degra-
dation, demonstrating strong potential for efficient removal of organic
matter and pathogenic microorganisms!'?%. There are differences
in the removal effects of biotechnological fermentation (anaerobic
digestion) and composting on ARGs in livestock and poultry wastes.
During the anaerobic digestion of swine manure, tet and erm genes
show a 0.30 log decrease, while sul, fca, and aac genes increase by
1.4-52 times!'?. In some studies, tet, erm, and sul genes decrease by
1.03-4.23 1og!"3%"3!, When treating cattle manure, the fca gene
decreases by 1.77 times!'*2. During the composting of swine manure,
cattle manure, and poultry manure, various ARGs such as tet, aac, mdr,
sul, and bla generally show a 0.70-1.9 log decreasel’*3.. ARGs in poultry
manure also have a 0.92-1.4 log decrease®’, Overall, most ARGs are
significantly reduced, but some genes are enriched during anaerobic
digestion (Table 4), so the process needs to be optimized according
to specific scenarios. This phenomenon is driven by the synergy of
multiple factors: Residual antibiotics and heavy metals from anaerobic
digestion exert selective pressure through survival selection and co-
resistance; specific dominant bacteria serve as primary hosts, whose
proliferation and secretion of extracellular substances promote the
enrichment of ARGs; mobile genetic elements such as transposons
and integrons enhance the cross-species transmission of ARGs; the
structural stability of genes such as sul and a relatively long sludge
retention time (SRT, 12-52 d) provide a foundation for ARG
accumulationl22130134]

Constructed wetlands, as a cost-effective ecological treatment
technology, facilitate processes such as nitrification and denitrifica-
tion through integrated plant-microbe-substrate systems. It has
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Table 4 ARGs removal efficiency under different treatment strategies

Sample Treatment ARGs Abundance after treatment Removal efficiency Ref.

Swine manure  Anaerobic digestion tet,erm 1.0 X 107'-4x1072 copies/16S rRNA 0.30 log decrease [129]

sul, fca, aac 9.07x 10" copies/16S rRNA 1.4-52 times increase [129]

tet, sul, erm, fca 10*-10° copies/g 1.45 times increase [130]

tet, erm, sul ~3 X 1072 copies/16S rRNA 1.03-4.23 log decrease [131]

Cattle manure fca 1.69 x 108 copies/g 1.77 times decrease [132]

Swine manure Composting tet, aac, mdr, sul, bla 5 x 107> (percentage of iTags) 0.74-1.9 log decrease [133]

Cattle manure tet, sul, aac, erm, bla, mdr, fca, van 3 x 1072 copies/16S rRNA 0.70 log decrease [46]

sul, erm aac, bla 4.6 x 10°-5.01 x 10° copies/g 1.0-2.0 log decrease [138]

Poultry manure aac, bla, fca, erm, mdr, sul, tet, other 8 x 1072-4 x 107" copies/16S rRNA 0.92-1.4 log decrease [40]

aac, bla, fca, erm, mdr, sul, tet, other

Swine Biological treatment tet, sul, bla 10-10° copies/mL 0.09-2.7 (tet), 0.17-1.7 (sul) [139]
wastewater process 0.11-2.0 (bla) log decrease

tet, sul, erm, fca, mcr 3.1 X 10-7.1 x 10° copies/mL 0.3-3.1 log decrease [140]

tet, sul 2.6 X 108-1.1 x 10 copies/mL 0.57-0.94 log decrease [141]

tet, sul 1.0 x 10°-1.5 x 10'° copies/mL 0.1-3.3 log decrease [142]

Swine Constructed wetlands tet 1073-107" copies/16S rRNA 0.26-3.0 log decrease [143]

wastewater tet 0.18-2.0 log decrease [144]

[

Advanced oxidation
technology

Aquaculture
wastewater

sull, tetX, intl1, gnrS

3 x 1073-1 x 1072 copies/16S rRNA

1.02 (sulT), 1.09 (tetX), 0.33
(intl7) 0.33 (gnrS) log decrease

114]

been indicated that their treatment efficiency is regulated by multi-
ple factors: at the design level, substrate composition and flow type
are critical!3%]; at the operational level, hydraulic retention time and
loading rate play decisive roles; and at the environmental level,
factors such as temperature, pH, and salinity also significantly
influence removal performancel’3¢. Particularly in coupled subsur-
face vertical and horizontal flow wetlands treating aquaculture
wastewater, nitrification has been identified as the core mechanism
governing treatment efficacy, achieving up to 98% removal of
antibiotics'37. A comparison of core governance technologies is
shown in Table 5.

Integrated multiple-technology synergistic
control systems

Current approaches relying on single technologies for controlling the
environmental risks of NCs often face limitations!'*l, Consequently,
synergistic multi-technology systems have emerged as a central
focus in both research and application. An integrated management
framework spanning source reduction, process interception, and end
treatment is increasingly adopted to address the synergistic effects of
NGs. In the source reduction phase, the combination of advanced
oxidation processes (such as UV/persulfate systems) and precision
membrane separation (such as graphene-modified nanofiltration
membranes) demonstrates strong potential. The former effectively
degrades molecular structures of recalcitrant organics such as
endocrine-disrupting chemicals, while the latter achieves molecular-
level retention (> 99%) of compounds, including per- and poly-
fluoroalkyl substances. For microplastic removal, density separation
(using NaCl or Nal solutions) and thermochemical treatment can be
applied. Composting processes achieve microplastic removal rates
of 13%-29%, while high-temperature pyrolysis (> 500°C) enables
complete degradation of microplastics!'°.

At the levels of process interception and end treatment, the
Integrated Multi-Technology systems (such as microbial fuel cells)
with catalytic oxidation processes like electro-fenton enable simul-
taneous degradation of organic pollutants, in situ generation of
electrical energy, and production of highly reactive radicals, leading
to efficient antibiotic removal. For targeting specific contaminants,
smart materials such as molecularly imprinted polymers offer a novel

pathway for highly selective adsorption. At the terminal treatment
stage, coupled systems combining constructed wetlands with
photocatalysis, along with advanced disinfection methods such as
UV/chlorine, not only achieve deep mineralization of residual pollu-
tants but also effectively disrupt antibiotic resistance genes, with
efficiency reported to be two to three times higher than that of
conventional methods!'47:148], Thermophilic composting combined
with UV disinfection has achieved a 96.8% removal rate of antibiotic
resistance genes in chicken manure, along with complete inactiva-
tion of heat-resistant pathogens!“?l. Soil amendment with modified
biochar (for source retention) coupled with permeable reactive
barriers in groundwater (for end interception) has been shown to
reduce PFAS migration distance by 80%[7l. The integration of
composting and membrane separation technologies enables simul-
taneous removal of microplastics (removal rate > 80%) and ARGs
(removal > 5 log) from manurel3l. Microbial fuel cell systems are
often coupled with constructed wetlands for treating marine aqua-
culture wastewater containing heavy metals and antibiotics('49,

The synergistic removal of both new and conventional contami-
nants from aquaculture waste presents a promising strategy. It
has been reported that a flocculation/ultrafiltration/nanofiltration
system incorporating a layer-by-layer self-assembled nanofiltration
membrane was developed, demonstrating effective removal of both
conventional and new contaminants from actual aquaculture waste-
waterl'>, Furthermore, ecological engineering systems such as
RAS[511 and constructed wetlands!’>2 integrate physical, chemical,
and biological processes('33154, enabling multi-pathway synergistic
removal of contaminants. It has been indicated that constructed
wetland systems achieve satisfactory removal efficiencies for most
antibiotics and EDCs!'>%, and are applicable under various challeng-
ing conditions, including wastewater containing veterinary
pharmaceuticals!'*¢! and high-salinity mariculture effluents!’71,

Furthermore, intelligent management platforms built on Internet
of Things (loT) and digital twin technologies enable closed-loop
management. This includes real-time monitoring, and trend predic-
tion, and dynamic optimization of process parameters. These plat-
forms ensure the stable and efficient operation of multi-technology
integrated systems and improve the overall effectiveness of the
treatment framework.
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Future prospects and challenges

This study aims to address the challenges posed by NCs in aquaculture
systems. There is limited understanding of the combined toxic effects
and cross-media migration of multiple pollutants under low-dose co-
exposure conditions. Moreover, scalable and economically viable inte-
grated processes for the simultaneous removal of diverse pollutants
are still lacking. Future research should focus on (1) elucidating the
interfacial behavior and synergistic effects of NCs to reveal their
migration patterns and combined toxicity mechanisms under mixed
exposure scenarios, (2) developing translational strategies from lab
to application, including integrated treatment systems capable of
removing both conventional and new contaminants, and (3) establish-
ing an intelligent management framework that encompasses source
reduction, process intervention, and end-of-pipe treatment, supported
by real-time monitoring and interdisciplinary collaboration to enable
science-based risk assessment.

Conclusions

Antibiotics (AR-ARB-ARGs), EDCs, and MNPs are widely detected in
livestock and aquaculture wastes, exhibiting distinct compositional
profiles dependent on farming practices. Notably, ARGs abundances in
swine and poultry manure significantly exceed those in cattle and
sheep manure. Meanwhile, aquaculture systems are characterized by
a complex pollution spectrum dominated by antibiotics and EDCs.
These new contaminants undergo multi-media migration and trans-
formation in the environment. Compounds such as BPA exhibit
'persistent existence' due to continuous input, whereas polyhalo-
genated compounds display long-range transport potential owing to
their chemical stability. MNPs act as carriers, exacerbating contaminant
risks through the 'Trojan horse' effect. Importantly, even after antibiotic
degradation, ARGs persist via horizontal gene transfer, resulting in an
increase in ARGs without antibiotics in environmental reservoirs.
Hydrophobic contaminants accumulate along the food chain, leading
to elevated concentrations in high-trophic-level organisms. At the
same time, ARGs spread through 'resistance level enrichment' in
microbial communities, ultimately posing a risk to human health
via dietary exposure. Given the limitations of standalone treatment
technologies, an integrated 'source substitution-process interception-
end treatment' strategy is urgently required. This comprehensive
approach is essential not only for effective control of new contami-
nants in the aquaculture industry but also for facilitating sustainable
sector transformation and advancing the global 'One Health' objective.
To achieve synergistic contaminant removal and risk mitigation, future
efforts should prioritize developing targeted replacement products,
enhanced process interception mechanisms, and efficient end-
treatment technologies.
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