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Abstract
The Asian lotus (Nelumbo nucifera)  has a history of cultivation in Asia dating back over 3,000 years where it  has been an important food crop

producing edible rhizomes and seeds as well as flowers of great aesthetic and cultural value. Here, we de novo assembled the plastomes of 316

lotus accessions including five North American lotus (N. lutea) and 311 Asian lotus (N. nucifera) to construct a pan-plastome genome map, and

investigate the phylogeography and genetic diversity among the only two extant species within this living fossil lineage. A total of 113 unique

genes were annotated and plastome sizes varied between 163,457 and 163,672 bp with only minor differences in each of the four major genomic

units. The most abundant nucleotide differences among plastomes were single nucleotide variants followed by insertions/deletions and block

substitutions mainly found in intergenic spacer regions of the large single copy portion of the plastome. Seven well-supported genetic clusters

were resolved using multiple different population structure analyses. The different lotus types (flower, seed, rhizome, or wild) were dispropor-
tionally  assigned to  multiple  different  genetic  clusters.  This  pattern  indicates  that  the  domestication of  Asian lotus  involved multiple  genetic

origins and possible matrilineal introgression. Geographic mapping of accessions also revealed that genetic diversity is unevenly distributed with

eastern China possessing the highest  genetic  diversity  and regions such as  Yunnan,  Indonesian,  and Thailand possessing unique haplotypes.

These results provide an important maternal history of Nelumbo and necessary groundwork for future studies on intergenomic gene transfer,

cytonuclear incompatibility, and conservation genetics.
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 INTRODUCTION

Nelumbo Adans.  (Proteales,  Nelumbonaceae),  is  a  genus  of
aquatic  plant  species  with  an  estimated  origin  of  135  million
years  ago  (mya)[1],  making  it  one  of  the  earliest  diverging
eudicot  lineages.  Given  the  phylogenetic  position  in  the  early
eudicots  and  the  morphological  similarity  of  extant  species
with  fossil  taxa, Nelumbo is  regarded  as  a  living  fossil.  Two
extant species, Nelumbo lutea (Willd.) Pers. (American lotus) and
Nelumbo nucifera  Gaertn.  (Asian  lotus)  are  recognized  in  this
genus[2]. The Asian lotus (also referred to as sacred lotus and 莲
'lian'  in  Chinese)  is  distributed  throughout  Eastern  Asia  and
northern  Oceania  in  freshwater  habitats.  The  cultivation  of
Asian  lotus  is  thought  to  have  begun  more  than  3,000  years
ago for  the production of  edible  seeds[3].  In  addition to  seeds,
Asian  lotus  is  also  grown  for  the  large  edible  rhizome  it
produces,  and as  an ornamental  in  water  gardens.  From these
different  uses,  Asian  lotus  growers  and  researchers  categorize
the  different  types  of  plants  into  seed,  rhizome,  and  flower
types  based  on  morphological  characteristics  that  best  suit
each of these applications[4]. In addition to the cultivated types,

wild Asian lotus is common throughout east and southeast Asia
in lakes and ponds.

Because  Asian  lotus  is  an  important  food  plant,  extensive
molecular  work  has  been conducted to  better  understand the
genetic diversity and history of this species. Some examples of
this work include estimating the divergence time between the
two Nelumbo species from complete plastome sequences at 1.5
mya[5,6] and  the  discovery  of  an  ancient  whole  genome  dupli-
cation  unique  to Nelumbo using  high-quality  nuclear  genome
assemblies[7].  Population  structure  and  genetic  diversity  in
Asian  lotus  have  also  been  extensively  studied  using  several
different  markers  including  random  amplified  polymorphic
DNA  (RAPD)[8],  inter-simple  sequence  repeats  (ISSR)[9],  ampli-
fied  fragment  length  polymorphisms  (AFLP),  simple  sequence
repeats  (SSR)[10],  single  nucleotide  polymorphisms  (SNPs)[11],
and  whole-genome  resequencing  methods[12−14].  From  the
above  studies,  higher  genetic  diversity  was  generally  found
among wild Asian lotus compared to cultivated Asian lotus, and
among  the  cultivated  lineages,  seed  and  rhizome  types
resolved  in  distinct  clades.  However,  some  conflicts  remained
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unresolved  among  these  studies.  In  particular,  Huang  et  al.[12]

determined that the seed lotuses were monophyletic in respect
to  wild  and  rhizome  lotuses  but  with  low  bootstrap  support,
while Liu et al.[14] found that seed and flower lotuses possessed
higher  genetic  diversity,  and  were  more  often  crossbred  to
each other than either were to rhizome lotuses. While many of
the  previous  studies  focused  on  patterns  of  genetic  diversity,
few  have  integrated  geographic  origin  into  their  analyses,
leaving  gaps  in  our  knowledge  regarding  centers  of  origin  of
the different Asian lotus types[14]. For example, wild Asian lotus
from  Indonesia  and  their  relation  to  cultivated  types  has  not
been  properly  characterized  in  previous  studies.  Given  issues
with incomplete lineage sorting associated with whole genome
duplications[15], using a pan-plastome approach can provide an
improved  resolution  regarding  questions  of  population  struc-
ture,  centers  of  origin,  and  assignment  of  cultivated  types  to
well supported genetic clusters.

Chloroplasts  (plastid  refers  to  all  membrane  bound  organe-
lles of the same origin but serving different metabolic functions
such  as  chloroplasts,  chromoplasts,  and  leucoplasts)  are  the
photosynthesis  organelle  in  plant  and  algae  cells,  originating
from  cyanobacteria  through  an  ancient  endosymbiotic  event
and contain a  distinct  streamlined genome primarily  made up
of  photosynthesis  and  replication  related  genes[16].  Compared
to the nuclear genome, the plastome is uniparentally inherited
and nonrecombinant, which can provide a less noisy signal for
inferring  relatedness  especially  in  lineages  with  polyploidy,
incomplete  lineage  sorting,  and/or  frequent  introgression[17].
Most previous studies in phylogenomics have been focused at
the  species  level  or  above  and  often  employ  genomic  simpli-
fication  strategies  such  as  using  only  the  transcriptome[18] or
reduced-representation/finely-filtered  genomes[19] in  the  final
analyses.  As  whole-genome  sequencing  and  assembly  have
gotten  more  accurate  and  complete,  large  intraspecies  collec-
tions  of  genomes  (often  referred  to  as  the  pan-genome)  are
now  being  published  that  include  all  or  nearly  all  major
nucleotide  variants  found  in  a  given  lineage  across  the  entire
genome.  Such  pan-genomes  have  been  produced  for  impor-
tant  agronomic  plant  species  such  as Glycine  soja[20], Sorghum
bicolor[21],  and Brassica  napus[22].  Similarly,  pan-plastomes  are
now  being  generated  for  several  plant  species  with  the  first
such dataset involving 321 complete plastomes to differentiate
pepper  (Capsicum)  cultivars  and  lineages[23].  As  with  other
phylogenomic approaches pan-plastomics have several advan-
tages over nuclear pan-genomes such as larger more complete
reference  sets  for  assembly  and  comparison,  occurrence  in
higher copy number in the cell resulting in greater read depth,
and  the  absence  of  large  duplicate  gene  arrays  reducing
problems associated with paralogy[24]. Therefore, we employed
a pan-plastome approach to address several outstanding ques-
tions regarding Nelumbo cultivation and evolution. In addition,
the  dataset  presented  here  is  an  important  comparative
resource for pan-plastome studies in other species which are at
present uncommon.

Here, we assembled a large plastome data set including 316
(five N.  lutea and  311 N.  nucifera)  complete  circular  plastomes
to:  (a)  construct  a  reliable  pan-plastome  map  for Nelumbo,  (b)
identify  genomic  patterns  in  the  data  set,  such  as  mutational
hotspots  and  characterization  of  different  nucleotide  variants,
and  (c)  resolve  well  supported  maternal  lineages  within
Nelumbo and  relate  these  to  the  different  cultivated  and  wild

types including the sister species N. lutea to address questions
regarding  origin  and  relatedness.  For  convenience,  the  names
of the different lotus types and species used in this study were
simplified  as  follows: N.  lutea (North  American  lotus):  LA;  wild
Asian  lotus:  LW;  flower  lotus:  LF;  seed  lotus:  LS;  and  rhizome
lotus: LR (all cultivated types are from N. nucifera).

 RESULTS

 Pan-plastome structure and organization
To characterize the plastome structure and genomic organi-

zation of N.  lutea and N.  nucifera,  comprehensive comparisons
were conducted with regards to genome size, tetrad length, GC
content,  and  gene  order  and  function  (Fig.  1, Supplemental
Table  S2).  All  plastomes  assembled  as  part  of  this  study
retained  the  typical  quadripartite  structure  found  in  most
chloroplast genomes (comprised of a LSC and SSC separated by
a pair of IRs). The plastome size across all 316 accessions varied
from  163,457  to  163,672  bp  (Med  =  163,647  bp).  Among  the
different plastome regions, the LSC size ranged from 91,746 bp
to  91,914  bp  (Med  =  91,888  bp),  the  SSC  between  19,605  and
19,639  bp  (Med  =  19,627  bp),  and  the  IRs  from  26,053  bp  to
26,071  bp  (Med  =  26,066  bp).  The  total  GC  content  (%)  of  the
complete plastomes ranged from 37.95 to 38.00 (Med = 37.96)
with  36.17  to  36.22  (Med  =  36.19)  for  the  LSCs,  32.22  to  32.34
(Med = 32.25) for the SSCs, and 43.18 to 43.22 (Med = 43.19) for
the IRs.  In all  four regions and in total length the N. lutea plas-
tomes were shorter in length than the N. nucifera plastomes.

A  total  of  113  unique  genes  were  annotated  and  grouped
into  functional  categories  as  follows:  79  protein-coding  genes
(PCGs),  30 transfer  RNA (tRNA) genes,  and four  ribosomal  RNA
(rRNA)  genes.  The  annotated  genes  were  located  in  the
following  genomic  regions:  83  genes  (61  PCGs  and  22  tRNA
genes) in the LSC, 12 (11 PCGs and one tRNA gene) in the SSC,
and  18  (seven  PCGs,  seven  tRNA  genes,  and  all  four  rRNA
genes) duplicated in the IRs. Among the genes 18 (13 located in
LSC,  one  in  SSC  and  four  in  the  IRs)  including  12  PCGs  (atpF,
clpP, ndhA, ndhB, petB, petD, rpl2, rpl16, rpoC1, rps12, rps16, and
ycf3)  and  six  tRNA  (trnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU,
trnL-UAA,  and trnV-UAC)  contained  introns.  Of  the  genes
containing introns three PCGs ycf3, clpP, and trans-spliced rps12
(characterized  by  the  first  exon  locating  in  LSC  and  the  other
two  in  the  IRs)  contained  two  introns  (Fig.  1; Supplemental
Annotation). These results indicate a highly conserved genome
structure and gene content across the Nelumbo pan-plastome.

 Pan-plastome polymorphisms
In  order  to  assess  nucleotide  variants,  all  plastomes  were

aligned and scanned for variants. The pan-plastome alignment
length  was  164,754  bp,  in  which  164,058  (99.58%)  sites  were
conserved  and  696  (0.42%)  sites  were  variable  of  which  577
sites were parsimony-informative and 45 were autapomorphic.
Using  LA001  as  a  reference,  variants  among  316  plastomes
were  identified  as  either  SNVs,  InDels,  or  block  substitutions.
Among  these  variants,  SNVs  were  the  most  abundant  (418,
60.06%)  followed  by  InDels  (208,  29.89%)  and  block  substitu-
tions (70, 10.06%). Variants were unevenly distributed through-
out  the  pan-plastome  (Table  1, Fig.  1).  Most  variants  were
located  in  the  LSC  (487,  69.97%),  followed  by  the  SSC  (167,
23.99%), and the fewest in the highly conserved IRs (42, 6.03%).
In regard to the location of variants to genes, intergenic spacer
regions  (IGS)  contained  the  most  (510,  73.28%)  variants,  while
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cds (124, 17.82%) and intronic (62, 8.91%) sequences contained

far  fewer  (Fig.  2).  A  total  of  499  fixed  variants  (294  SNVs,  151

InDels,  and  54  block  substitutions)  were  found  that  could

distinguish American from Asian lotuses (Table 1, Supplemental

Fig.  S1).  Nonsynonymous mutations were found most often in

the  PCGs accD, ccsA, cemA, matK, ndhE, ndhF, rpoC1, ycf1,  and

ycf2.  When  assessed  by  functional  group,  these  nonsynony-
mous  mutations  were  most  abundant  in  the  groups  NADH

dehydrogenase  and  RNA  polymerase  (Fig.  2, Supplemental

Table  S3).  After  excluding  sites  with  gaps,  a  total  of  162,648

sites  were  retained  with  566  variable  sites,  among  which  31

were  autapomorphic  and  535  were  parsimony-informative

including  529  bi-allelic  sites  and  six  tri-allelic  sites  (i.e.,  site

16,914 in rpl33, site 18,026 in psaJ-trnP-UGG, site 40,576 in trnL-
UAA-trnT-UGU, site 40,801 in trnT-UGU-rps4, site 90,747 in psbA,

and site 138,254 in ycf1).

 
Fig.  1    The  pan-plastome  of Nelumbo.  The  inner  genes  of  the  outer  circle  are  transcribed  counterclockwise  while  the  outer  genes  are
transcribed clockwise; genes with introns were marked with an asterisk (ycf3, clpP, and rps12 contain two introns all others contain one). The GC
content is  displayed as  gray bars  inside of  the tetrad divisions (LSC,  SSC,  IRA,  and IRB)  SNVs,  InDels,  and block substitutions are represented
within  the  GC  content  as  orange,  blue,  and  yellow  lines,  respectively.  Comparisons  of  the  complete  genome  length  and  each  of  the  four
subregions (given in median lengths) are compared for each of the different Nelumbo types N. lutea LA, LW, LF, LS, and LR.

Table 1.    Number of variants among 316 Nelumbo accessions. The number of variants found only in N. nucifera are indicated in parenthesis.

Variants Total
Region Location

LSC SSC IRA/B CDS Intron IGS

SNV 418 (294) 274 (182) 112 (89) 16 (12) 117 (91) 33 (23) 268 (180)
Block substitution 70 (54) 56 (42) 12 (11) 1 (0) 3 (3) 4 (4) 63 (46)
InDel 208 (151) 157 (118) 43 (27) 4 (3) 4 (2) 25 (19) 179 (130)
Total 696 (499) 487 (342) 167 (127) 21 (15) 124 (96) 62 (46) 510 (356)
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 Population structure and genetic diversity
In order to elucidate matrilineal relationships among lotuses,

multiple  approaches  were  employed  to  resolve  population
structure and calculate genetic diversity as relates to the diffe-
rent  species  and  cultivated  types.  Based  on  a  SNV  only  input
matrix,  population structure as inferred using ADMIXTURE was
determined  based  on  the  lowest  CV  error  of  0.026  at  K  =  7
(Fig. 3d). All N. lutea individuals resolved into a distinct genetic
cluster  with  no  cross  assignment  to  any  of  the N.  nucifera
genetic  clusters  (designated  as  genetic  clusters  I−VI, Fig.  3e).
Individual  assignment  proportions  (based  on  q-values)  were
high  among  nearly  all  Asian  lotus  individuals  except  for  six
accessions  in  genetic  cluster  III  that  had  less  than  35%
assignment  to  genetic  cluster  I  and  two  individuals  with  less
than  30%  assignment  to  genetic  cluster  VI  as  well  as  15  acce-
ssions in genetic cluster in VI with less than 45% assignment to
genetic cluster V. The other three methods, namely, an ML tree
using  a  SNV  only  matrix,  PCA  using  a  complete  plastome
matrix,  and  a  median-joining  network  using  a  gap-excluded
matrix,  all  corroborated  the  population  structure  resolved  in
the  ADMIXTURE  analyses.  For  example,  the  close  relationship
between  genetic  clusters  V  and  VI  is  resolved  across  methods
by: (1) resolution as sister clades in the ML analyses, (2) multiple
connecting  nodes  and  few  variants  on  branches  separating  V
and  VI  in  the  median-joining  network,  (3)  partial  overlap
between V and VI in the PCA graph, and (4) partial assignment
of some individuals in VI  to V in the ADMIXTURE analyses (Fig.
3a−c, 3e).

The  different  Asian  lotus  types  were  unevenly  represented
among  genetic  clusters  (Fig.  3a, Supplemental  Fig.  S2 & S3).
Genetic  cluster  I  contained  three  (21%)  LF  and  11  (79%)  LW
accessions; II contained 1 (3%) LF, 1 (3%) LR, 29 (91%) LS, and 1
(3%) LW; III contained 1 (3%) LS, and 34 (97%) LW; IV contained

26 (61%) LF, 1 (2%) LR, 15 (35%) LS, and 1 (2%) LW; V contained
7  (18%)  LF,  4  (11%)  LR,  10  (26%)  LS,  and  17  (45%)  LW;  and  VI
contained  2  (1%)  LF,  148  (89%)  LR,  and  16  (10%)  LW.
Furthermore, rhizome lotuses were found in four of six genetic
clusters  with  12  haplotypes;  flower  lotuses  found  in  five  of  six
genetic clusters with nine haplotypes, and wild lotuses found in
all six genetic clusters with 28 haplotypes.

From  the  median-joining  network  42  haplotypes  were
designated  among  the  316  accessions  examined  (designated
h1−h42).  The  four  haplotypes  (h1−h4)  from N.  lutea were
denoted  for  possessing  a  large  number  of  nucleotide  variants
separating  the  haplotypes  within  the  species  and  an  even
larger number of variants separating these haplotypes from N.
nucifera resulting  in  high  levels  of  genetic  and  haplotypic
diversity  (π =  2.02e-04,  Hd  =  0.900)  for  the  LA  genetic  cluster.
Nucleotide  and  haplotype  diversity  among  the  six  genetic
clusters within Asian lotus varied widely (Fig. 4). Genetic cluster
I contains 2 haplotypes with π =8.7300e-07 and Hd = 0.143; II 5
haplotypes with π = 3.7673e-05 and Hd = 0.738; III 9 haplotypes
with π =  1.5533e-04 and Hd = 0.882;  IV  2  haplotypes  with π =
5.6860e-07  and  Hd  =  0.092,  V  10  haplotypes π =  3.7673e-05,
and Hd = 0.738; and VI 10 haplotypes with π = 8.8611e-05 and
Hd = 0.533.

As  with  genetic  diversity,  divergence  patterns  varied  be-
tween  genetic  clusters.  Genetic  cluster  III  had  the  lowest  level
of  divergence  when  compared  to  all  other  genetic  clusters  (III
to I Fst = 0.823; III to II Fst = 0.701; III to IV Fst = 0.670; III to V Fst =
0.553; and III to VI Fst = 0.657). By contrast genetic cluster I had
higher levels of divergence when compared to the other Asian
lotus genetic clusters (I to II Fst = 0.921; I to III Fst = 0.823; I to IV
Fst = 0.998; I to V Fst = 0.971; and I to VI Fst = 0.985). The typical
levels of divergence between genetic clusters are more similar
to  that  found  between  genetic  cluster  I  and  others,  with
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Fig. 2    Variant locations categorized by genic position (CDS, Introns, and IGS) and functional group.
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genetic cluster III  being an outlier in regard to the lower levels
of divergence to all other genetic clusters.

 Geographic distribution of Asian lotus
In order to resolve patterns related to origin and dispersal of

Asian  lotuses  individuals  were  mapped  by  genetic  cluster  and
type  (Fig.  5, Supplemental  Tables  S1 & S4).  The  Asian  lotus

collections used in this study were made from three main areas
of  historical  cultivation  including:  (1)  northeastern  China  and
North Korea; (2) east central China; and (3) southern China and
several  Southeast  Asian  countries  including  India,  Thailand,
Indonesia,  and  Singapore  (Fig.  5).  All  wild  lotuses  in  genetic
cluster  I  were  collected  from  Yunnan  province  with  a  single
flower  type  collected  in  east  central  China  and  all  remaining
flower  types  in  this  cluster  also  collected  from  Yunnan.  Most
seed  lotus  accessions  (28/32)  in  genetic  cluster  II  were  from
central  China  with  a  single  wild  accession  collected  from
northern Thailand, a single flower type from Japan, and a single
rhizome  type  collected  from  central  eastern  China  (Fig.  5).
Accessions assigning to genetic cluster III were broadly arrayed
throughout Southeast Asia in the countries of India, Indonesia,
Singapore,  Thailand  as  well  as  eastern  China.  Within  genetic
cluster III several haplotypes were found to have geographically
narrow distributions such as h25 and h28 in China, h32 and h34
in India, h41 and h42 in Indonesia, h32 in Thailand, and h35 in
Singapore.  Nearly  all  of  the  accessions  assigned  to  genetic
cluster  IV  were  collected  from  China  (a  single  sample  from
Japan),  mainly  of  haplotype  h6  (42/43),  and  most  of  seed  or
flower  type  (26/43  flower  and  15/43  seed).  Accessions  from
genetic clusters V and VI were all collected from across eastern
China  except  for  a  single  accession  from  North  Korea.  Haplo-
types in genetic cluster V were widespread across China except
for h27, h30, h31, h37, h38, h39, and h40 which were each only
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Fig. 3    Population structure of Nelumbo. All analyses resolved similar membership into six genetic clusters (I−VI). (a) ML tree of 316 accessions.
(b)  Median-joining network with haplotype identifiers  adjacent to nodes,  size of  pie  chart  proportional  to number of  accessions sharing the
same haplotype, colors in the pie chart represent percentage of accessions from a given Asian lotus type. (c) PCA analysis including LA (upper
left inset) and excluding LA showing the first two components in both cases. (d) CV errors across a range of K values from 3−9. (e) Population
structure bar-plot at K = 7.
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collected  once.  All  of  these  uncommon  haplotypes  in  genetic
cluster  V  were  wild  type  lotuses.  In  genetic  cluster  VI  all  acce-
ssions  from  the  northeastern  most  provinces  of  Heilongjiang
and Jilin were all wild types. Most haplotypes in genetic cluster
VI  were  geographically  widespread  except  for  h15,  h16,  h18,
h26, and h29 which were uncommon and only collected in the
provinces  of  Jiangsu,  Guizhou,  Shandong,  Heilongjiang,  and
Anhui respectively.

 DISCUSSION

 Hypervariable regions across the lotus pan-plastome
Plastomes are highly conserved in most land plants in terms

of  size,  structure,  and  gene  content,  with  lotuses  being  no
exception  in  this  regard[25].  The  pan-plastome  resolved  here
indicates  that  the  gene  content  and  order  were  highly
conserved  and  consistent  with  those  previously  described  in
Xue  et  al.[5] and  Wu  et  al.[6].  Despite  structural  and  genic

conservation,  abundant nucleotide variants  were found across
the Nelumbo pan-plastome.  Relatively  few  variants  were
detected in cds regions, save ycf1 which was extraordinarily rich
in nucleotide variants, possible because of its position spanning
the junction of IRA and SSC (Figs 1 & 2).  This is similar to what
has  been  previously  reported  for  junction  spanning  genes  in
Passiflora  trichocarpa[26].  Following ycf1 in  a  number  of  cds
variants  were rpoC1 and ndhF which  have  also  been  found  to
contain  a  higher  number  of  nucleotide  variants  than  other
functional  plastome  genes  and  thus  their  use  in  phylogenetic
studies  for  eudicot  groups  like  Apioideae,  Cactoideae,  and
Asteridae[27].  While mutations (especially InDels) in cds regions
are  expected  to  result  in  a  loss  of  function  in  translated
proteins, ribosomal frameshifting in plastomes has been shown
to recover original functions from cds containing mutations[28].
As such mutations in some plastome cds regions may have less
of  an  impact  than  predicted.  Unlike  the  relatively  limited
number of  cds variants the type and abundance of  nucleotide
variants  in  IGS  and  introns  were  considerably  greater.  For

mydata$Type

LF LS LW LR

I II III

IV V VI

 
Fig. 5    Geographic distribution of Asian lotus collections used in this study separated by genetic cluster and color coded by type (see Fig. 3).
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instance,  block  substitutions  in  cds  regions  are  found  only  in
the ycf1 and rpoA genes  whereas  they  are  relatively  abundant
in  IGS  and  intronic  regions  (although  less  so  in  introns).
Specifically the large number of variants found in the Nelumbo
rpl16 intron is similar to that found in the distantly related plant
families Crypteroniaceae and Poaceae where this hypervariable
region  was  employed  in  phylogenetic  studies[29,30].  Similarly,
the  presence  of  InDels  is  higher  outside  of  cds  regions.  This
pattern  of  variant  abundance  and  type  found  in  the Nelumbo
pan-plastome  follows  that  found  in  other  plastomes[31].
Because  frameshift  mutations  result  in  greater  disruption  to
protein  structure  and  function,  they  are  often  purged  via
selection[32].  That  said,  frameshift  correction  through  transla-
tion recoding has been recently described from chloroplasts[28]

which  may  render  some  cds  mutations  less  impactful  by
retaining  original  protein  function  across  lineages  despite
underlying  differences  in  DNA.  As  more  pan-plastome  studies
are  completed  it  is  becoming  increasingly  apparent  that
genomic  regions  previously  used  for  higher-level  systematic
studies  such  as rbcL and matK should  be  supplemented  with
hypervariable  regions  found  in  IGS  and  intronic  regions  for
improved  resolution  in  intraspecific  studies.  In  this  study  the
IGS  regions rps18-rpl33 and trnQ-UUG-rps16 proved  especially
rich  with  informative  markers.  Our  pan-plastome  study  like
those  from  cultivated  species Brassica  napus and Sorghum
sp[21,22] found  that  SNVs  are  by  far  the  most  common  variant
type.  However,  one  of  the  outstanding  questions  is  whether
variants  differ  in  type  and  effect  (in  regard  to  gene  function)
between domesticated lineages and wild progenitors. With the
completion  of  more  pan-plastome  studies  from  diverse  culti-
vated taxa, patterns specific to domesticated lineages can now
be resolved to try  to  understand the function and importance
of  plastids  in  the  domestication  syndrome  specifically,  and  in
plant evolutionary biology more generally.

 Divergence among genetic clusters and the centers of
origin for different types of Asian lotus

Plant  population  structure  and  genetic  diversity  are  known
to  be  affected  through  a  number  of  different  processes
including genetic drift, reproductive isolation, local adaptation,
demographic  fluctuations,  mode  of  reproduction,  and  addi-
tionally  from  artificial  selection  and  human  translocation
associated  with  the  domestication  process[33].  Such  patterns
are  evident  in  this  pan-plastome  study  of Nelumbo wherein
geographic  separation  between N.  nucifera and N.  lutea is
reflected  in  the  numerous  fixed  genetic  differences  between
these species (Fig. 3).  Both analyses based on nuclear[13,14] and
plastomic  dataset  here  supported  the  indubitable  divergence
between  these  two Nelumbo species,  while  some  differences
were also found regarding phylogeny of genetic clusters within
N. nucifera mainly due to the conflicts of maternal and paternal
inheritance  (nucleocytoplasmic  conflicts)  common  seen  in
many other species[34,35], which was also important evidence of
hybridization  or  introgression,  such  as  most  seed  lotus
accessions  were  resolved  as  monophyly  in  the  previous  two
researches, but into genetic clusters II and IV here. Additionally,
sample  differences  between  the  two  previous  works,  and  the
limited  genetic  information  plastome  carried  compared  to
nuclear  loci  controlling  morphologic  traits  used  to  designated
lotus  types  could  also  cause  these  differences  like  seed  and
flower lotuses in genetic cluster IV, but not much. This was also
reflected by the much lower genetic diversities of each genetic

cluster compared to that in Li et al.[13], and Liu et al.[14]. Genetic
clusters  II  and  III  showed  much  higher  genetic  diversity  than
others  the  same  as  nuclear  analyses  in  Liu  et  al.[14] regarding
seed  and  wild  types,  whichever  genetic  cluster  VI  (rhizome
type) showed relatively lower genetic diversity.

Within N.  nucifera, six  well-supported  genetic  clusters  were
resolved with notable differences in the genetic and haplotypic
diversity  as  well  as  the  cultivated  types  found  in  each  (Fig.  3).
For  instance,  genetic  cluster  III  is  characterized  by  having  a
large  number  of  haplotypes  each  separated  by  many  genetic
differences  with  few  repeats  per  haplotype.  In  addition,  the
membership  of  genetic  cluster  III  is  made  up  of  all  wild
accession  except  for  a  single  seed  type  (LS036,  h22).  One
possible interpretation from this pattern is that genetic cluster
III  represents  a  wild  lineage  from  which  few  cultivated  types
have been selected. This interpretation is further confirmed by
noting  that  the  patterns  resolved  in  genetic  cluster  III  are
similar to those found in wild N. lutea, although more sampling
in N.  lutea is  needed to  confirm this  pattern.  It  suggested that
each cultivated type — flower,  rhizome,  or  seed lotus was not
single-originated  (cultivated  from  the  single  wild  population)
because  no  cultivated  type  was  found  solely  within  single
genetic cluster, implying potential multiple origins for all types
and/or  maternal  introgression  into  cultivated  types  from
different  origins,  as  like  the  instances  where  it  was  clearly
known  when  the  cultivated  rice  was  initially  selected  from
certain  cultivated  lineages[36,37].  Types  can  be  further  resolved
by  haplotype  wherein  several  types  are  sometimes  found
within  a  single  haplotype.  For  instance,  the  largest  haplotype
h7  (genetic  cluster  VI)  with  109  accessions  is  made  up  of  1%
flower,  93%  rhizome,  and  6%  wild  types.  Furthermore,  the
relatively narrow distributions of wild lotus in genetic clusters I
and  III,  while  cultivated  types  in  genetic  clusters  V  and  VI
further expanded their range, indicating the domestication and
cultivation  history  of  lotus  has  gradually  expanded  under  the
action  of  human  activity.  Genetic  diversity  also  showed  a
decreasing trend from wild to cultivated types (genetic clusters
III  to  V  to  VI),  which  may  also  be  a  signal  of  human  domesti-
cation.  It  showed  that  cultivated  types  were  selected  to  be
cultivated  from  multiple  origins  or  if  it  has  maternal  introgre-
ssion,  both  of  which  could  result  in  a  polyphyletic  pattern
among the cultivated types, for instance, rhizome lotuses were
found in four of six genetic clusters with 12 haplotypes; flower
lotuses  found  in  five  of  six  genetic  clusters  with  nine
haplotypes,  and  wild  lotuses  found  in  all  six  genetic  clusters
with  28  haplotypes  (Fig.  3a, b,  & Fig.  5).  Given  this  pattern
among  our  plastomic  data  a  monophyletic  origin  for  seed
lotuses  is  not  supported[12],  however  because  seed  lotuses
were found in four out of six genetic clusters with eight unique
haplotypes,  claims  regarding  diversity  are  supported  by  our
data. Based on this wild type, lotuses contain the highest level
of  genetic  diversity  with  cultivated  types  also  exhibiting  high
levels  of  plastomic  diversity.  It  should  also  be  noted  that  the
classification  of  cultivated  types  was  based  on  their  primary
use, and some types also have traits that make them usable for
other purposes, which might cause some tenuous designations
to  bring  out  conflicting  results  in  determining  monophyly.  An
important  step  in  understanding  the  evolution  of  cultivated
lotuses  would  be  to  analyze  the  nuclear  genes  involved  with
lotus domestication[13,38] in concert with the pan-plastome data
to  better  understand  how  plastome  divergence  is  concordant
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with  patterns  of  artificial  selection  detected  in  the  nuclear
genome.  Such  findings  may  help  to  elucidate  patterns  of
introgression in the domestication of lotus and how plastomes
might  have  been  involved  in  controlling  the  directionality  of
crosses through cytonuclear-incompatibility.

With  regard  to  the  geographic  origins  of  cultivated  lotuses,
several inferences can be made. Genetic cluster I has a probable
origin in Yunnan province as all wild accessions were collected
there  and  this  genetic  cluster  has  been  the  matrilineal  source
for  a  very  small  number  of  flower  type  cultivars  (two  flower
types  from  genetic  cluster  I  collected  in  this  study).  Of  any  of
the geographic patterns genetic cluster I  is the most restricted
and  least  selected  from  in  generating  lotus  cultivars.  The  only
wild  accession  in  genetic  cluster  II  was  from  Chiang  Mai,
Thailand  suggesting  that  this  may  be  the  origin  of  the  many
seed types collected from this genetic cluster in central eastern
China  (Fig.  5).  However  alternative  inferences  include  matrili-
neal gene flow into wild Thai populations or the Thai accession
is the result of an escaped cultivar[39]. Given that higher genetic
diversity  is  present  in  China  within  genetic  cluster  II,  the
alternative  inferences  cannot  be  ruled  out  as  centers  of  origin
can also be centers of genetic diversity. Genetic cluster III like I
is made up primarily of wild type accessions but unlike genetic
cluster I,  III  is  geographically distributed throughout Southeast
Asia and eastern China. Additionally, haplotypes within genetic
cluster III are restricted to a given geographic location. As such,
genetic  cluster  III  may  represent  a  lineage  that  broadly
dispersed in the distant past and thereafter through adaptation
and  drift  have  produced  localized  haplotypes.  The  geography
of  island  and  peninsula  formation  in  the  Sunda  Shelf  over  the
last  50  million  years  may  have  helped  drive  this  pattern[40].
Genetic  clusters  IV,  V,  and VI  all  appear  to  originate  in  eastern
China as no wild accession were found outside this geographic
area. In genetic cluster IV, a single wild accession from Yunnan
shares  the  h6  haplotype  with  98%  of  the  mostly  flower  and
seed type accessions in this genetic cluster. The low nucleotide
and  haplotype  diversity  of  matrilineal  genetic  cluster  IV  is
counter  to  findings  found  among  seed  and  flower  lotuses
where high levels of admixture have been noted in these lotus
types using nuclear data.  That said it  is  possible to have had a
matrilineal  bottleneck  induced  from  cytoplasmic  incompati-
bility  within  a  lineage  while  maintaining  a  highly  diverse  and
admixed  nuclear  genome  over  time[41].  That  said,  flower  and
seed types are found in nearly all of the genetic clusters, albeit
only  two  out  of  166  are  flower  type  and  no  seed  types  in
genetic cluster VI,  suggesting high levels of maternal introgre-
ssion  among  flower  and  seed  types  across  genetic  clusters.
Genetic  cluster  VI  is  clearly  the  source  of  most  rhizome  type
lotuses and because the plant part  selected for is  unrelated to
sexual reproduction, a few very common haplotypes (resulting
from asexual reproduction via rhizome cuttings to plant fields)
account  for  nearly  all  rhizome  types  in  this  genetic  cluster.
Despite most accessions in genetic cluster VI having only a few
haplotypes,  numerous  wild  haplotypes  were  also  assigned  to
this cluster with some having restricted geographic distribution
(Supplemental  Fig.  S4).  This  suggests  that  a  good  deal  of  wild
diversity  remains  throughout  eastern  China  and  especially  in
the northeastern region.

The domestication of aquatic plants for human consumption
is  unsurpassed  in  diversity  and  extent  outside  of  the  eastern
coastal plain of China. Lotus, because of the many parts of the

plant that can be used for human consumption and the health
benefits from eating these parts, has been and will continue to
be  an  important  food  crop  for  humans.  As  with  any  crop,
genetic diversity is essential to maintain high levels of nutrition,
disease resistance, yields, and improving or developing traits of
interest[42].  Wild  populations  of  Asian  lotus  are  known  to  be
threatened  by  human  development  and  environmental
pollution[13] making  the  characterization  and  mapping  of
genetic  diversity  all  the  more  important  in  prioritizing  conser-
vation  efforts.  Our  study  has  shown  that  cultivated  and  wild
Asian lotus  are  divided into at  least  six  maternal  lineages with
geographic  distribution  and  selection  of  lotus  types  differing
between genetic clusters. From these results, several regions in
China (namely Yunnan and the northeast) as well as regions in
southeast  Asia  should  be  explored  further  to  more  properly
characterize the unique genetic diversity of lotuses from these
areas. In addition, these wild haplotypes should be assessed for
their  potential  use  in  developing  new  lotus  cultivars.  The
experimental  breeding  of  diverse  lotuses  may  also  provide
useful insights into cytonuclear incompatibility and further our
understanding of genomic evolution in this living fossil lineage.
In  summary,  the  pan-plastome  resources  presented  here  for
lotus will provide new insights into the natural and domestica-
tion  history  of  this  lineage  as  well  as  prove  useful  in  applied
studies  such  as  marker-assisted  breeding  or  the  development
of transplastomic lines for improved yield or disease resistance.

 MATERIALS AND METHODS

 Sampling, assembly, and annotation
The de  novo assembly  of  all  plastomes  to  complete  circular

molecules  was  conducted  rather  than  SNV  calling  to  a  refe-
rence  genome  because  de  novo  assembly  allows  for  the
assessment and removal of intergenomic (e.g., horizontal gene
transfer  from  chloroplast  to  nuclear  genome)  transfer
sequences[43].  From  the  total  365  accessions  provided  in  Li  et
al.[13] and  Liu  et  al.[14],  some  accessions  (one  LA,  17  LW,  11  LF,
four  LS,  and  16  LR)  had  to  be  discarded  because  complete
plastomes  could  not  be  assembled  due  to  lower  sequencing
quality  in  these  samples.  In  the  final  set,  a  total  of  316
plastomes  (five  LA,  63  LW,  39  LF,  49  LS,  and  160  LR)  were
successfully assembled for use in downstream analyses. Except
for N.  lutea sampled  from  North  America,  the N.  nucifera
accessions  were  broadly  collected across  China and Southeast
Asia  (Supplemental  Table  S1).  Based  on  Illumina  next-
generation  sequencing  (NGS)  reads  from  whole-genome
sequencing  (WGS),  de  novo  assembly  of  all  plastomes  was
completed  using  SPAdes  3.14[44] from  which  a  graph  of  major
contigs  was  used  to  generate  a  circular  molecule  in  Bandage
0.8.1[45]. The clean raw WGS reads were first randomly extracted
using  the  'sample'  function  in  SeqKit  0.13.1[46] to  generate
approximate  6–8  Gb  datasets,  and  were  then  aligned  against
two  published  congeneric  plastomes  (NC_015605,  and  NC_
025339) to filter out plastomic reads using BWA-MEM algorithm
in  bwa  0.7.17[47] with  default  settings[47].  Filtered  reads  were
used  for  de  novo  assembly  in  SPAdes  3.15.2  with  five  k-mers
(51, 71, 91, 101, and 121) and further combined automatically in
SPAdes  3.15.2  following  settings  provided  in  He  et  al.[37].
Bandage 0.8.1 was used to obtain the final circular molecule for
each accession. Average assembly depth of each accession sur-
passed  100×.  All  plastome  sequences  were  manually  adjusted
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to start with the first base of the LSC region using Blastn 2.9.0[48]

against the sequence itself.
Length, together with GC content of LSC, SSC, and IR for each

plastome was detected using Perl script, which were processed
in  IBM  SPSS  Statistics  22  (SPSS  Inc.,  Chicago,  USA).  Accessions
LA001  (N.  lutea)  and  LF001  (N.  nucifera,  flower  lotus)  were
annotated as exemplars from each of the two Nelumbo species
respectively using GB2sequin[49] with published plastomes of N.
lutea (NC_015605) and N. nucifera (NC_025339) from NCBI used
as comparative references to check the accuracy of the de novo
assemblies.

 Plastome polymorphisms
Assembled plastome sequences were aligned in MAFFT 7[50]

using the default settings. All aligned plastomes were manually
scanned  with  variants  detected  by  DnaSP  6[51] using  LA001
used  as  the  reference.  Nucleotide  variants  were  classified  into
SNVs, Block substitutions (consecutive nucleotide substitutions
greater  than  1  nucleotide  in  length  which  in  some  cases
includes gaps),  and InDels  (insertions or  deletions one nucleo-
tide in length). The position of each variant was mapped to the
reference  to  characterize  the  location  in  the  genome  as  cds,
intronic,  or  intergenic.  The  stacked  graph  was  plotted  in
package ggplot2 in R v 4.0[52].

 Population and phylogenetic analyses
Based  on  the  complete  aligned  plastome  sequences,  the

median-joining  network  was  resolved  in  Popart  1.7[53] to
resolve  haplotype  diversity.  The  principal  component  analysis
(PCA)  of  the  two  datasets  (including  or  excluding  LA)  was
performed  in  TASSEL  5.2[54],  using  the  highest  (in  regard  to
percent  explanation)  two  eigenvectors  for  plotting  in  two
dimensions.  Using  a  SNVs  only  matrix  extracted  from  the
aligned plastomes (alignment file of SNVs from 316 accessions
was  available  at  Figshare, https://doi.org/10.6084/m9.figshare.
17694764.v2),  IQ-tree  2.1[55] was  used  to  reconstruct  a  maxi-
mum  likelihood  (ML)  tree  using  a  TVMe+ASC+R2  nucleotide
substitution  model  chosen  by  the  Bayesian  information
criterion  (BIC)  and  1,000  bootstrap  replicates  to  assess  branch
support.  Population  structure  analysis  was  performed  using
ADMIXTURE 1.3[56] using default  settings for  haploid data with
runs on different K values from 3−9. The optimal K was chosen
from  the  lowest  cross-validation  (CV)  error  value  compared
across  all  values  of  K.  Nucleotide  diversity  (π),  haplotype
diversity  (Hd),  and  genetic  differentiation  (Fst)  were  calculated
in  DnaSP  6  to  assess  the  genetic  diversity  and  divergence
within  and  among  different  genetic  clusters.  Source  informa-
tion of each accession was collected from previous publications
and plotted using ggplot and map packages in R v 4.0.
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