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Abstract
With the rapid development of sequencing technologies, followed by the reduction of sequencing cost, numerous ornamental plants have been

sequenced,  resulting  in  their  genomic  studies  shifting  from  gene  cloning  and  marker  development  to  whole  genome  profiling.  A  profound

understanding of genome structure and function at the whole genome level can not only help to modify ornamental traits, such as fragrance,

color and flower shape, through genetic engineering, but also infer the genetic relationship and evolutionary history of ornamental plants via

comparative genomics analysis. In this paper, we review the current situation of sequencing strategies and the application of genomics to study

the  origin  and  evolution  of  ornamental  plants.  We  highlight  challenges  of  ornamental  plant  genomic  research.  The  use  of  cutting-edge

technologies,  such  as  genomics,  gene  editing  and  molecular  design  polymerization  breeding,  can  facilitate  our  understanding  of  genetic

regulation  mechanisms  and  the  germplasm  innovation  of  important  traits  in  ornamental  plants.  The  results  can  be  expected  to  significantly

increase the breeding efficiency of ornamental plants.
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 Introduction

Ornamental  plants,  including annual  herbs,  perennial  herbs,
ornamental  shrubs,  and  trees[1],  play  an  important  role  in  the
construction  of  human  settlements  by  promoting  urban  and
rural  greening,  regulating  air  humidity,  absorbing  harmful
gases and dust,  and preventing soil  erosion[2,3].  The extracts of
ornamental  plants  can  also  be  used  for  cosmetics,  foods,  fine
chemicals  and other  industries[4−6].  The breeding objectives  of
ornamental plants are focused on new shapes, new colors and
new  fragrances.  Conventional  breeding  techniques,  such  as
cross and mutation breeding, have produced a large number of
new cultivars  of  ornamental  plants.  However,  these traditional
methods  are  time-consuming  and  laborious,  the  compatibility
of  distant  hybridization  is  poor,  and  the  results  are  unpredic-
table.  Genomics  is  a  new  branch  of  biology,  which  takes  DNA
sequencing  as  its  core  technology,  combined  with  genetics,
molecular  biology,  and  bioinformatics  to  accurately  interpret
genome information.  The rapid development of  genomics has
pushed the breeding work to new heights. Through the precise
location  of  functional  genes  and  genetic  transformation,  we
can potentially accelerate the breeding process and obtain new
cultivars with favorable features.

The  completion  of  the  whole  genome  sequence  of Prunus
mume[7] fuels the development of ornamental plant genomics.
Currently,  more  than  72  species  of  ornamental  plants  have
been  sequenced,  including Rosa  chinensis[8,9], Chrysanthemum
nankingense[10], Phalaenopsis  aphrodite[11], Paeonia  suffruti-
cosa[12] and  other  important  ornamental  plants,  thanks  to  the
rapid  development  of  sequencing  technology  and  the  reduc-
tion  in  cost.  Through  the  mapping  and  cloning  of  functional
genes,  and  the  study  of  gene  expression  and  regulatory  net-
works at the genome-wide level, researchers can systematically

analyze the genetic mechanisms underlying important traits of
ornamental  plants.  By  analyzing  genomic  variation  in  plant
populations, we can infer the population structure, population
history, and environmental adaptability of ornamental plants.

In  this  paper,  we  review  the  recent  progress  in  genome
sequencing  of  important  ornamental  plants,  including  the
sharing  of  genomic  data  and  its  application  in  ornamental
character  mapping  and  variety  classification,  and  discuss  the
application prospects of new technologies. We pinpoint several
challenges  faced  by  ornamental  plant  breeding.  We  limit  our
review to the genomics of floral traits.

 Genome sequencing of ornamental plants

To date,  at  least  72 species  of  ornamental  plants  have been
sequenced  (Supplemental  Table  S1, Table  S2),  among  which
perennial  herbs,  shrubs,  trees,  and  annual  herbs  account  for
36%,  24%,  24%,  and  17%  (Table  1, Fig.  1),  respectively.
Sequenced  species  include  10  from  Rosaceae,  five  from
Orchidaceae, five from Asteraceae and six from Fabaceae (Table
2, Supplemental Table S3, Fig 2).  Illumina sequencing (second-
generation)  has  been  the  main  sequencing  technique  of
ornamental plants over the past decade. Yet, since 2015, third-
generation  sequencing  technology  has  been  applied,  which
markably  reduces  sequencing  cost  and  improves  sequencing
quality (Supplemental Fig S1).

 Sequencing strategy of ornamental plants
In  1977,  Maxam & Gilbert[13] reported a sequencing method

by  chemical  degradation.  In  the  same  year,  Sanger  et  al.[14]

developed a method of DNA sequencing based on the selective
incorporation of chain-terminating dideoxynucleotides by DNA
polymerase during in vitro DNA replication.  The application of
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these  technologies  implies  the  birth  of  a  new  generation  of
sequencing. The earliest plants sequenced, such as Arabidopsis
thaliana[15], Oryza sativa[16], Zea mays[17], Prunus persica[18] adopt
the method of first-generation sequencing. However, high cost,
time-consuming  and  low-throughput  limit  its  application,  so
second-generation  sequencing  with  high  throughput  and  low
cost  arises  at  a  significant  moment[19].  So  far,  second-gene-
ration  sequencing  represented  by  Illumina  is  still  a  popular
method  of  sequencing.  Among  the  sequenced  ornamental
plants, 36 species have adopted the second-generation sequen-
cing strategy (Supplemental Table S1, Table S2). However, their
limited ability to resolve large complex genomes derived from
complex whole-genome duplications leads to many problems.
First of all, short read-lengths make it hard to distinguish a large

number  of  repeated  sequences,  it  often  leads  to  incomplete
assembly,  which  brings  great  difficulties  to  the  subsequent
gene annotation and other bioinformatic analysis[20]. Secondly,
second-generation  sequencing  methods  depend  on  PCR  am-
plification during library preparation on the flow cells[19], PCR is
a  bias-prone  process  that  leads  to  GC  bais.  Under  the
requirement  of  high  throughput,  low  cost  and  long  read
lengths,  third-generation  sequencing  technology  is  gradually
developing (Supplemental Table S4).

HeliScope is the first commercial single molecule sequencing
platform,  as  the  method  was  relatively  slow,  expensive,  and
produced  short  reads,  it  did  not  prove  viable[19].  Single-
Molecule  Real-Time  Sequencing  (SMRT)  and  Oxford  Nanopore
Technologies  (ONT)  are  two  commercially  successful  third-
generation sequencing techniques, both of which can produce
genome assemblies  of  high quality  without  PCR amplification.
Single-Molecule  Real-Time  Sequencing  (SMRT)  was  developed
by  Pacific  Biosciences,  and  takes  advantage  of  the  natural
process of DNA replication, using zero-mode waveguide (ZMW)
technology and gamma-labeled phosphonucleotides for direct
observation of  DNA synthesis  on single  DNA molecules  in  real
time[21].  Single-Molecule  Real-Time  Sequencing  offers  longer
read  lengths  than  the  second-generation  sequencing  techno-
logies,  making  it  well-suited  for  genome,  transcriptome,  and
epigenetics  research[21].  In  2014,  Oxford  Nanopore  Techno-
logies  (ONT)  released  the  MinION  as  a  Nanopore  sequencing
device,  it  is  much  smaller  than  the  current  NGS  platforms.
MinION directly observe DNA or RNA bases by means of pores
that  are  embedded  in  a  membrane  separating  two  compart-
ments[22].  Although  the  MinION  is  easy  to  carry  and  can
produce  ultra-long  reading  length[23],  because  of  the  lower
read  accuracy  and  high  cost,  the  application  of  Oxford  nano-
hole  sequencing  in  plants  is  still  in  its  infancy[19,24].  Although
third-generation sequencing has the advantage of longer read
length, its error rate is significantly higher than that of second-
generation sequencing, which can be combined to make up for
their  respective shortcomings,  which is  especially  beneficial  to
assemble  the  genome  from  scratch.  This  method  is  called
hybrid  sequencing[25].  Hybrid  sequencing  is  widely  used  in
plant  sequencing.  Among  the  sequenced  ornamental  plants,
four  species  use  Illumina+Nanopore  strategy  for  genome
sequencing,  31  species  use  Illumina+PacBio  strategy  and  one
species  adopt  BGISEQ-500+PacBio  strategy  (Supplemental
Table S1, Table S2).

Considering  species  with  complexity  and  high  repeat
sequence,  it  is  very  difficult  to  assemble  a  complete  genome
only by sequence reading[20], many researchers use Hi-C data to
assist  genome  assembly.  High-throughput  chromosome
conformation capture (Hi-C) is a technology that can study the
three-dimensional architecture of whole genomes. By coupling
proximity-based  ligation  with  large  parallel  sequencing,  Hi-C
allows unbiased identification of chromatin interactions across
an entire genome[26]. The many advantages of Hi-C technology
have  attracted  the  wide  attention  of  researchers,  the  asse-
mbled  genomes  of Rhododendron  williamsianum[27], Rhodo-
dendron  simsii[28], Rosa  chinensis[9], Osmanthus  fragrans[29],
Chimonanthus  praecox[30], Chimonanthus  salicifolius[31] are
assisted by  Hi-C  technology.  At  present,  two sequenced white
lupine genomes provide us with a good example. The genomes
using  Hi-C  data  not  only  have  higher  assembly  integrity,  but
also have better chromosome collinearity[32,33].

Table 1.    Representative species of different tpye of ornamental plants.

Representative species

Perennial herbaceous flowers Catharanthus roseus, Chrysanthemum
nankingense, Nelumbo nucifera

Annual herbaceous flowers Helianthus annuus, Ipomoea nil
Flowering trees Osmanthus fragrans, Prunus mume,

Prunus yedoensis
Flowering shrubs Lavandula angustifolia, Paeonia

suffruticosa, Rosa chinensis

 
Fig.  1    The  reported  72  ornamental  plants  species  fall  into  4
categories.

Table 2.    Representative species of different family of ornamental plants.

Representative species

Rosaceae Prunus mume, Prunus yedoensis, Rosa chinensis
Fabaceae Ammopiptanthus nanus, Mimosa pudica
Asteraceae Chrysanthemum lavandulifolium, Chrysanthemum

nankingense, Helianthus annuus
Orchidaceae Dendrobium catenatum, Phalaenopsis aphrodite

 
Fig. 2    The genome-sequenced ornamental species belong to 33
families.
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 Genome database of ornamental plants
The Arabidopsis Information  Resource  (TAIR, http://www.

arabidopsis.org)  was  launched  in  2001,  and  is  the  first
angiosperm genome database[34]. With the development of the
ornamental  plant  genome  sequencing  project,  various
ornamental  plant  genome  databases  have  been  established.
The  ornamental  plant  genome  database  can  be  further
classified  as  four  different  types:  family  database[18,35];  single
species  database[18,33,35];  clade-oriented  database[36,37] and
comprehensive database (Supplemental Table S1, Table S2).

The  single  species  database  of  individual  species  not  only
provides  the  updated  genome  sequence,  but  also  provides  a
series  of  bioinformatics  tools  for  online  analysis.  For  example,
the  Nelumbo  Genome  Database  (NGD, http://nelumbo.
biocloud.net)[38] contains  the  most  updated  lotus  genome
assembly and information on both gene expression in different
tissues and coexpression networks. In addition, genetic variants
and  phenotypes  of  88  key  lotus  cultivars  were  integrated.
GBrowse  provided  by  NGD  can  easily  view  genes,  DNA
sequences,  amino  acids,  SNPs  and  Indels.  Moreover,  the
website  also  provides  tools  such  as  blast,  blat,  and  Primer  for
sequence  analysis  and  search.  The  database  is  helpful  to  the
study of  population genetics  and molecular  breeding of  lotus,
as  well  as  a  comprehensive  understanding  of  the  genetic
variation  characteristics  of  the Nelumbo  nucifera genome.  The
history of cultivation and domestication of lotus can be traced
back  to  the  data  in  order  to  cultivate  new  varieties  with  high
yield  and  high  quality  and  to  improve  the  level  and  speed  of
breeding  techniques.  Unfortunately,  among  the  sequenced
ornamental  plants,  only  a  few  plants  such  as Helianthus
annuus[38], Ipomoea nil[39] and Dianthus caryophyllus[40] have an
established  database,  and  the  database  of  many  species  is  far
less perfect than that of the Nelumbo genome database.

Compared  with  the  single  species  database,  the  database
integrated  according  to  families/clade-oriented  pays  more
attention  to  the  integration  and  unification  of  different  plant
data.  The  Genome  Database  for  Rosaceae  (GDR, https://www.
rosaceae.org)[41] first  established  in  2003,  after  decades  of
development,  has  significantly  expanded  data  and  functions
centering on Rosaceae plant interaction. GDR contains detailed
data  on  published  trait  loci  in  Rosaceae,  based  on  these  trait
terms,  the  GDR  team  developed  the  Rosaceae  Trait  Ontology
that is tightly linked to the Plant Trait Ontology (TO). Except for
this,  QTL  in  GDR  also  includes  aliases,  curator-assigned  QTL
labels,  published  symbols,  trait  names,  taxa,  trait  descriptions,
screening  methods,  map  positions,  associated  markers,  statis-
tical  values,  datasets,  contact  information  and  references.  At
the  same  time,  the  website  supports  viewing  and  statistics  of
these data according to genus units. The Breeding Information
Management  System  (BIMS)  is  a  Tripal  module  developed  by
the  GDR  team,  it  provides  breeding  teams  with  tools  to  store,
manage,  archive  and  analyze  their  private  or  public  breeding
data,  and  other  breeders  can  also  use  BIMS  to  query  and
download  public  breeding  data.  At  present,  GDR  includes
genome  assembly  and  annotation  data  of  five  ornamental
plants,  including Cerasus × yedoensis, Malus  baccata, Rosa
multiflora, Rosa  chinensis, Prunus  persica,  as  well  as  24  crops,
including apricot, apple and strawberry.

A  family  database  or  clade-oriented  database  has  the
disadvantage  of  incomplete  data.  At  present,  GDR  lacks  the
genome  data  of Prunus  mume, Dryas  drummondii and Prunus

yedoensis.  OrchidBase  lacks  the  genome  data  of Dendrobium
officinale and Phalaenopsis  Aphrodite.  The  pomegranate  ge-
nome  lacks  two  cultivars,  'Tunisia'  and  'Dabenzi',  in  the  Hard-
wood Genomics Project. Many comprehensive plant databases
have  been  established,  and  the  more  representative  ones
include  Phytozome[42],  PGDD[43],  PLAZA[44],  and
Ensemblplants[45],  containing  most  of  the  published  plant
genome information.

The  genome  data  of  ornamental  plants  are  growing  rapidly
in  quantity  and complexity,  and its  main function has  evolved
from  data  storage  to  online  analysis[46].  The  excellent  genome
database  will  provide  great  convenience  for  the  study  of
structural  genomics,  comparative  genomics  and  functional
genomics of ornamental plants.

 Domestication and evolution events of
ornamental plants

In recent years, a large number of plant genome sequencing
and resequencing projects have promoted the development of
comparative  genomics.  By  comparing  the  genome  sequences
of different related species, we can identify the contraction and
expansion of gene families[47],  estimate the divergence time of
species[48], identify gene fusion and gene cluster[10,49] and Ana-
lysis system evolution[8]. The study of comparative genomics of
ornamental  plants  will  help  to  speed  up  the  basic  research  of
their  biology  and  improve  the  efficiency  of  the  development
and utilization of wild related species resources.

 Gene replication event
A  variety  of  evidence  shows  that  gene  replication  can

promote the rapid recombination of plant genome, lose a large
number  of  genes  and  increase  structural  variation,  which  is
extremely  important  for  plant  evolution[50].  The  study  of  gene
replication in ornamental plants has important guiding signifi-
cance for their genetics and breeding.

Gene  duplication  includes  tandem,  tetraploid,  segmental
and transpositional[51].  Tandem repeats are highly prevalent at
centromeres[52],  to  create  a  cluster  of  homologous  genes  with
similar sequence and function, which are arranged in series on
the chromosome in a head-to-tail manner[53]. There is evidence
that tandem duplication leads to widespread TS and CYP gene
clusters  in  the  chrysanthemum  genome,  which  greatly  pro-
motes  the  diversity  of  terpenoids  in  chrysanthemum[10].  Seg-
mental  duplication  is  the  most  important  structural  variation
on  chromosomes[54].  Repetitive  region  caused  by  segmental
duplication  is  usually  the  repetition  of  all  genes  in  a  large
region,  rather  than  the  duplication  of  single  or  several  genes.
For  individual  gene  families,  fragment  replication  also  plays  a
major  role  in  species-specific  expansion[55−57].  DNA  binding
with  one  figure  (Dof)  proteins  play  important  roles  in  various
biological processes and defense regulatory networks in plants.
Dof genes of  many plants  came primarily  from segmental  and
duplication  events[55,56].  A  total  of  24  full-length RchDof genes
were  identified  in Rosa  chinensis,  seven  pairs  of RchDof dupli-
cated  genes  (12 RchDof genes)  were  generated  by  segmental
duplication[57].  Transposable  elements  (TEs)  is  an  important
part  of  the  plant  genome.  They  can  replicate  independently
and  insert  replicative  fragments  into  many  different  loci  on
other  DNA  sequences  in  the  same  cell[58].  The  long  terminal
repeat  (LTR)  retrotransposon  in Phalaenopsis  equestris were
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identified  and  six  high-copy  retrotransposons  were  found[59].
Among  them, Gypsy1,  Gypsy2,  Gypsy3, and Orchid-rt1 have
amplified  within  Phalaenopsis  orchids  concomitant  with  the
expanded  genome  sizes,  and Orchid-rt1 and Gypsy1 may
experience various events of mutation and homologous recom-
bination. Polyploid or whole genome duplication is a common
phenomenon  in  plants,  which  promotes  the  evolution  and
diversity of organisms[60]. WGD events played an important role
in  regulating  the  evolution  of  chrysanthemum.  It  was  found
that many ornamental  and medicinal  traits  of  chrysanthemum
were  related  to  gene  replication[10].  In  addition,  gene  replica-
tion  is  closely  related  to  flower  fragrance[30],  flower  shape[61],
flowering[62],  flower  development[10,63],  resistance[64] and circa-
dian rhythm[65].

Gene duplication usually results in three different situations:
becoming  a  pseudogene;  acquiring  a  novel  function;  or
subfunctionalization[66].  However,  random  mutations  may  not
be  helpful  to  human  social  production.  Some  studies  have
suggested  that  the  polyploidy  formed  by  whole  genome
replication  leads  to  a  greater  phenotypic  breadth  in  which
natural and artificial selection can work, thus making successful
domestication  possible[67].  Through  the  domestication  of
ornamental plants, the variation traits that meet people's needs
have  been  continuously  accumulated  and  strengthened,  and
the  wild  varieties  have  finally  formed  high-quality  modern
cultivated species.

 Evolution and domestication
Domestication  and  evolution  have  profoundly  shaped  the

genomic structure and genetic diversity of crops today. The in-
depth study and exploration of the genetic mechanism of crop
domestication can help us to understand and identify the wild
ancestral  species  of  ornamental  plants[68];  determine  the  time
and place of the domestication[69];  clarifiying whether it comes
from  a  single  domestication  event  or  multiple  domestication
events[69,70];  understanding  the  differences  in  morphological,
physiological  and  biochemical  characteristics  between  orna-
mental plants and their ancestral species, as well as the genetic
basis  for  such  differences[71];  evaluating  the  changes  and
causes  of  the  genetic  structure  of  crop  populations  compared
with their ancestral species[72].

Rosaceae contains nearly 3,000 species, many of which have
been  domesticated  by  humans  thousands  of  years  ago.  The
whole  genome sequence of Prunus  mume was  assembled and
nine ancestral chromosomes of Rosaceae were reconstructed[7].
It  is  speculated  that  they  evolved  from  the  same  ancestor[7].
Based on the resequencing of Prunus  mume,  the  phylogenetic
tree of Prunus mume was constructed by using the core genes
of  13  species  of Prunus and  three  related  species  of  Rosaceae,
and the  evolutionary  history  of Prunus was  reconstructed.  The
results  show that the divergence times between Prunus mume
and  other Prunus species  as  ~3.8  Mya  and  that  between  wild
Prunus  mume and  cultivated Prunus  mume is  ~2.2  Mya.  It  is
concluded  that  divergent  selection  may  have  played  a  role  in
the  differentiation  of  these  two  subspecies  long  before  the
domestication of Prunus mume[48].  Four thousand to five thou-
sand  years  ago,  peach  experienced  a  primitive  domestication
bottleneck in China,  which showed a significant decline in the
diversity  of  wild Prunus  davidiana and the  domesticated Asian
cultivar[73].  The  cultivation  and  domestication  path  of  peach
was  analyzed  based  on  the  whole  genome  of  peach  and  14

other  species  of Prunus resequenced.  It  is  considered  that  the
effect  of  the  second  bottleneck  is  clearly  reflected  in  the
reduction  of  nucleotide  diversity  observed  during  the  transfer
from  eastern  to  western  cultivar.  Compared  with  eastern  and
wild relatives,  these bottlenecks seem to lead to a  serious loss
of diversity of western varieties, as well as obvious deficiencies
of  rare  varieties  and  relatively  slow  LD  decay[18].  The  de  novo
chromosome-level  reference  genome  of Cerasus  serrulata was
assembled[74].  Through 656 single-copy orthologs,  the authors
constructed  a  phylogenetic  tree  containing  10  species.  It  was
found  that Cerasus  serrulata diverged  from Prunus  yedoensis
about  17.34  million  years  ago,  while Cerasus  serrulata and
Cerasus  avium diverged  from  21.44  million  years  ago.  These
results confirm that Cerasus serrulata are more closely related to
Prunus yedoensis.

Lotus  is  an  important  aquatic  plant,  which  has  many  values
such as medicine, edible and ornamental. Nineteen individuals
of  lotus,  including  three  cultivated  temperate  lotus  (rhizome
lotus,  seed  lotus  and  flower  lotus),  one  wild  temperate  lotus
(wild lotus), one tropical lotus (Thai lotus) and one outer group
(Nelumbo  lutea).  Through  the  analysis  of  genetic  diversity,  it
was  confirmed  that  wild  Thai  lotus  showed  greater  differen-
tiation and higher genomic diversity than cultivated lotus[75]. A
recent  re-sequencing  study  of  296  lotus  germplasm  resources
further  confirmed  this  conclusion.  The  analysis  of  population
structure  and  genomic  diversity  of  three  types  of  cultivated
lotus:  rhizome,  flower,  and seed lotuses  showed that  the  seed
and  rhizome  lotus  groups  had  not  originated  from  a  single
source, but had a more complex multi-source[76].

 Genetic studies on main agronomic ornamental
traits

With economic development, people have put forward more
requirements for the color, fragrance and shape of ornamental
plants.  In  recent  decades,  breeders  are  committed  to  identi-
fying important ornamental  gene loci  and regulation patterns.
Thanks  to  the  high-quality  reference  genome,  once  the  orna-
mental  major  genes  are  located,  the  corresponding  molecular
markers  can  be  developed,  and  the  mutant  plants  can  be
obtained  by  genetic  transformation  (Supplemental  Table  S5).
These genes related to important traits are reviewed below.

 Phenological traits
Plant  phenology,  including  flowering  phenology,  is  an  im-

portant  parameter  for  crop  growth  monitoring,  yield  predic-
tion  and  growth  simulation[77].  Understanding  the  phenology
of ornamental plants, especially flowering phenology, can help
producers  determine  the  time  of  sowing,  hybridization  and
harvest. Therefore, many studies have been devoted to analysis
of  the  molecular  mechanisms  of  bud  dormancy,  flowering,
flower development and flowering regulation.

Dormancy  is  an  adaptive  process  that  enables  plants  to
withstand  difficult  environmental  conditions  in  winter  tem-
perate  climate[78].  The  study  of  the  molecular  mechanism  of
dormancy  is  of  great  significance  for  perennial  temperate
ornamental  plants.  However,  compared  with  other  crops,  the
molecular mechanism of ornamental plants affecting dormancy
is still  in the primary stage, and the dormancy studies of many
important  ornamental  plants  remain  in  the  stage  of  physiolo-
gical  experiments.  At  present,  only Paeonia  suffruticosa[79],
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Prunus  mume[80], Prunus  persica[81] and  a  few  others  have  iso-
lated  dormancy-related  genes.  The  verification  of  gene  func-
tion  is  not  enough  due  to  the  lack  of  genetic  transformation
systems.  The CBF gene  of Prunus  persica was  isolated  and
overexpressed  in Malus × domestica.  Compared  with  the
untransformed  apple  lines,  the  transgenic  plants  with  the
PpCBF1 gene  showed  growth  cessation  and  leaf  senescence
under  short-day  treatment.  This  is  the  first  example  of  short-
day  light-induced  dormancy  caused  by  structural  overexpre-
ssion of the CBF gene[82]. MADS-box gene (PmDAM6) was found
expressed  in  the  lateral  buds  of Prunus  mume[83].  Overexpre-
ssion of PmDAM6 in transgenic poplars showed that the plants
exhibited  growth  cessation  and  terminal  bud  set  when  the
stem  tips  of  the  control  plants  continued  to  grow,  indicating
that PmDAM6 has the function of growth inhibition[84].

After the release of dormancy, flowering is a key event in the
life cycle of seed plants, and there are six main ways to regulate
flowering,  including  vernalization  and  autonomous  pathways,
photoperiod  pathway  and  the  circadian  clock,  gibberellin
pathway,  ambient  temperature  pathway,  age  pathway  and
meristem  responses[85].The  mechanisms  of  the  six  pathways
have been well studied, many genes associated with them have
been  located  in  ornamental  plants.  Among  them,  a  large
number of genes have been verified. FLC, a MADS-box protein,
is a key inhibitor in vernalization and autonomous pathways[86].
An AGL6-like  gene CpAGL6,  was  cloned  from Chimonanthus
praecox.  The  transgenic  experiment  showed  that  the  ectopic
expression  of CpAGL6 inhibited  the  vegetative  growth  of
Arabidopsis  thaliana and  led  to  early  flowering,  which  was
mainly related to the inhibition of floral inhibitor FLC and floral
promoters AP1 and FT[87]. In 1998, the LHY gene was confirmed
to  be  related  to  the  photoperiod  pathway  and  the  circadian
clock of Arabidopsis thaliana[88]. LHY, TOC1 and CCA1 constitute
the core negative feedback loop of the plant circadian clock[89].
A LHY/CCA1-like  gene  was  identified  in  chrysanthemum  and
named CsLHY, CsLHY was  fused  with  a  gene  encoding  a  short
transcriptional  repressor  domain  (SRDX)  and  constitutively  ex-
pressed  in  chrysanthemum.  The  results  showed  that  although
the  flowering  transition  was  insensitive  to  photoperiod  in
CsLHY-SRDX transgenic  plants,  the  further  development  of
capitulum  was  blocked  and  no  flowering  was  observed[90].
Gibberellin  (GA)  is  an  important  plant  hormone,  which  can
promote  flowering  in  annual  and  biennial  plants,  and  may
inhibit  flowering  in  woody  perennials[91]. Della protein  is  a
repressor  directly  acting  on  the  downstream  of  GA  receptor,
regulating  plant  growth  and  development  induced  by
GA[91].Two Della homologous genes PmDELLA1 and PmDELLA2
in Prunus  mume are  overexpressed  in Arabidopsis  thaliana,
resulting in plant dwarfing and flowering delay, indicating that
these two Della proteins are negative regulators of GA signal in
Prunus  mume[92]. SVP gene  plays  an  important  role  in  the
control  of  flowering  time  by  ambient  temperature[93].  A SVP
homologous  gene LaSVP,  in Lavandula  angustifolia was
confirmed.  The  expression  of LaSVP in Arabidopsis  thaliana
delayed flowering and affected the floral dosage-dependent in
a  dosage-dependent  manner.  MicroRNA156-mediated spl
transcription  factors  can  ensure  flowering  time  under  non-
inductive conditions,  which is  an important  age pathway[94].  It
is  found  that CmNF-YB8 gene  can  regulate  the  early
transformation  of  chrysanthemum  from  juvenile  to  adult,  as
well  as  early  flowering,  regardless  of  day-length  conditions.  In

this process, members of the cmo-miR156 and SPL families, the
core  components  of  the  age  pathway,  are  involved[95].  During
floral  induction,  the  apical  meristem  changes  from  vegetative
meristem  to  inflorescence  meristem,  which  is  related  to  the
increased  expression  of SOC1 encoding  MADS-box  transcrip-
tion factors[85]. Six homologous SOC1 genes were isolated from
four  tree  peony  cultivar,  including PrSOC1,  PdSOC1,  PsSOC1,
PsSOC1-1,  PsSOC1-2  and  PsSOC1-3. The  ectopic  expression  of
PsSOC1 in tobacco showed that the high expression of PsSOC1
in  transgenic  tobacco  not  only  promoted  plant  growth,  but
also advanced flowering time[96].  It  should be pointed out that
in the process of flowering induction, several genes play a role
in  several  tissues  more  than  once,  and  these  genes  converge
into a complex regulatory network of flower development.

The  longevity  of  cut  flowers  is  an  important  trait  that
determines  the  sale  of  ornamental  plants.  Consumers  appre-
ciate  long-lasting  flowers,  and  the  sales  industry  hopes  to
reduce  the  deterioration  of  flower  quality  in  the  distribution
chain[97].  Senescence,  as  the last  stage of  flower  development,
determines the lifespan of ornamental plants. It has been found
that  the  occurrence  of  aging  is  regulated  by  a  number  of
phytohormones,  including  ethylene,  abscisic  acid  (ABA),
jasmonic  acid  (JA)  and  polyamine  (PA),  and  cytokinin  (CTK),
which can inhibit  aging[98].  The  pathway of  ethylene synthesis
is  relatively  simple,  in  which  ACC  serves  as  the  unique
precursor,  ACC synthase (ACS)  and ACC oxidase (ACO) are  key
enzymes[99].  Many  studies  on  the  molecular  mechanism  of
ethylene-mediated flower senescence focus on these three key
enzymes.  At  present,  several  studies  have  confirmed  that  ACC
synthase and ACC oxidase are closely related to the senescence
of ornamental plants[100,101], furthermore, the regulation mecha-
nism of ethylene on flower senescence has been well verified in
many  plants,  such  as Petunia  hybrida[102], Ipomoea  nil[103],
Paeonia suffruticosa[104], and Dianthus caryophyllus[105,106]. How-
ever,  many  ornamental  plants  are  not  regulated  by  ethylene,
ethylene  has  little  effect  on  petal  senescence  in  lilies,  tulips,
chrysanthemums and gladiolus[107]. ABA is considered to be an
important regulator of petal senescence in ethylene-insensitive
ornamental  plants[108],  and  the  effect  of  abscisic  acid  on
senescence  has  been  proved  in  many  ethylene-insensitive
ornamental plants such as gladiolus[109] and lily[110]. It should be
noted  that  it  is  not  a  single  phytohormones  that  regulates
senescence  in  ornamental  plants.  Multiple  hormones  antago-
nize each other and jointly regulate the senescence process of
plants[111].  At  present,  there  have  been  many  studies  on  the
molecular  mechanism  of  the  antagonistic  role  of  plant  hor-
mones  such  as  gibberellin[112,113] and  salicylic  acid[114] in  the
process of petal senescence.

 Flower shape
Flowers are unique reproductive organs of angiosperms. For

the wild species, the evolutionary direction of plants has always
been  to  promote  the  reproductive  success  of  plants  by
changing  the  shape,  color,  smell  and  reward  to  attracting
pollinators[115].  However,  the  wild  species  do  not  fully  meet
people's needs, and the customer's demand for purposeful and
unique  horticultural  plants  urges  scientists  to  constantly
improve  the  shape  of  flowers.  The  morphology  of  ornamental
plants  mainly  includes  floral  organ  structure,  flower  branch
growth  state,  inflorescence  type  and  plant  morphology.
Improving  floral  size,  double  flowered,  number  of  flower
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branches  and  inflorescence  type  is  an  important  direction  of
morphological improvement.

In  angiosperms,  the  basic  developmental  system  of  floral
organs is explained by the ABCDE model[116]. In this model, the
genes  related  to  flower  development  are  divided  into  five
categories,  namely  A,  B,  C,  D  and  E,  in  which  A-  and  E-class
determine  sepal  development,  A-,  B-  and  E-class  determine
petal  development,  B-,  C-  and  E-class  determine  stamen
development,  C-  and  E-class  determine  carpels  development
and  D-  and  E-class  determine  ovule  development.  Plants  such
as Antirrhinum  majus, Petunia  hybrida and Arabidopsis  thaliana
have  made  important  contributions  to  the  proposal  and
perfection of flower development models[117−119], its own genes
related  to  flower  development  have  also  been  well  studied.  A
large  number  of  genes  related  to  flower  development  are
located in  model  plants  which provides  great  convenience for
the  subsequent  study  of  genes  related  to  other  ornamental
plants.  Taking Antirrhinum  majus as  an  example,  after  the  B-
class  genes DEF and GLO were  first  located  in Antirrhinum
majus,  its homologous genes were also cloned in Phalaenopsis
Aphrodite[120], Eustoma  grandiflorum[121], Torenia  fournieri[122]

and other plants. At present, A-[123], B-[124], C-[125,126], D-[126], and
E-[87,127] class  genes  in  ornamental  plants  has  been  verified  by
transgenic  plants.  In  chrysanthemum,  14  C-class  genes  were
cloned,  of  which  seven  belong  to  the CAG1 gene  and  seven
belong to the CAG2 gene[128]. The chimeric repressors silencing
technique was used to knock out C-class in chrysanthemum to
form a multiple-petal phenotype. The expression of CAG1s and
CAG2s chimeric repressors led to the morphological changes of
pistil and stamens forming petaloid organs in disk florets[128]. In
orchid,  four SEP-like genes  were  cloned  and  divided  into
PeSEP1/3 and PeSEP2/4.  Transcriptome  data  showed  that  all
PeSEP genes were expressed in all flower organs. When PeSEP3
was  silenced  by  VIGS,  the  sepal  became  leaf-like  organs,  and
the  characteristics  of  the  epidermis  and  the  content  of
anthocyanin  and  chlorophyll  changed,  while  the  silencing  of
PeSEP2 had little effect on flower phenotype[129].

The  floral  size  and  the  number  of  flowers  may  be  the  most
easily  observed  traits,  which  directly  affect  the  visual  effect  of
the whole plant.  At  the same time,  the size of  flowers and the
number  of  flowers  also  have  an  important  effect  on  plant
pollination[130].  However,  there  are  few  studies  on  the  gene
mapping  of  these  traits  in  ornamental  plants,  only  in Petunia
hybrida[131,132], Helianthus annuus[133,134] and Aquilegia[135].

The  perianth,  including  the  calyx  and  corolla,  are  the  most
prominent  parts  of  a  flower.  The  corolla  of  most  plants  has  a
beautiful  shape  and  bright  colors,  which  is  the  main
ornamental  part.  A  small  number  of  plants,  such  as Strelitzia
reginae, Begonia fuchsioides belong to calyx ornamental plants.
The study of the number of petals (including double flower and
other traits) and the number of calyx is of great importance to
improve the ornamental quality of flowers. Through GWAS, QTL
and other methods, scientists have mapped a number of genes
related to the number of petals in Dianthus caryphyllus[125], Rosa
chinensis[8,136,137], Prunus mume[48], Prunus persica[138] and other
plants,  and  genetic  transformation  verification  is  also  under
way.  An APETALA2 homologous  gene RcAP2 from  rose  was
overexpressed  in Arabidopsis  thaliana, increasing  the  number
of  petals.  In  addition,  after  silencing  the RcAP2 gene  in  'Old
Blush', the petal number decreased significantly[136].

The  corolla  of  ornamental  plants  has  a  variety  of  shapes.

Except  for  a  few  asymmetric  flowers,  most  of  the  corolla  are
classified as  radially  symmetrical,  Cruciform,  Caryophyllaceous,
Rosaceous, Campanulate,  Tubular,  Infundibuliform, Hypocrate-
riform,  Urceolate,  Rotate,  and bilaterally  symmetrical  Butterfly-
like  or  Papilionaceous,  Ligulate,  Bilipped  or  Bilabiate  corolla.
The  molecular  basis  of  flora  symmetry,  including  related
processes  such  as  development,  life  cycle,  and  metabolism,  is
regulated  by  a  specific  transcription  factor  (TF)[139].  In  core
dicotyledonous  plants, CYC2 is  the  main  regulator  of  flower
symmetry,  which  can  independently  control  the  bilaterally
symmetrical  traits of flowers[140−142].  Some studies have shown
that  the CYC2 gene  is  at  least  involved  in  the  evolutionary
transformation  of  the  symmetry  of  Brassicales,  Malpighiales,
Dipsacales, Asterales and Lamiales[143]. In addition, some genes
such as RAD and DIV belonging to the MYB family also control
symmetry[144].  In Antirrhinum  majus,  the  antagonistic  action
that RAD has  over DIV by  competing  for  the DRIF proteins
preventing  the  formation  of  the DRIF-DIV complex  and,
consequently, in the establishment of an asymmetric pattern of
gene  activity  in  the Antirrhinum flower  meristem[145].  Six
CmCYC2 genes  in  chrysanthemum  were  identified[146].  It  was
found  that  the  ectopic  expression  of  the CmCYC2 gene  in
Arabidopsistcp1 mutant  changed  the  symmetry  and  flowering
time of Arabidopsis thaliana[146].

Organ fusion is  another  way of  flower  shape change,  which
can  lead  to  greater  morphological  diversity  of  closely  related
species[147].  Fusion  occurs  in  two  ways:  when  the  organ
primordium cannot be separated from the floral meristem, or at
the  later  stage  of  the  individual  primordium  or  even  the  full
formation  of  the  organ,  the  'fusion  program'  was  initiated  to
enable the establishment of a permanent connection between
them[148].  The  genesis  of  fusion  organs  is  thought  to  be
mediated  by NAC transcription  factors  from  the NAM/CUC3
subfamily  and  microRNA  from  the  miR164  family,  which  me-
diates  the  formation  of  boundaries  during  meristem  develop-
ment[149−151].  This  conclusion  has  been  further  confirmed  in
model plants such as Antirrhinum majus[152], Petunia hybrida[153],
Arabidopsis thaliana[154] and so on.

 Flower color
Flower color is the most important feature of plants to attract

pollinators[155].  At  the same time,  the bright  color  of  flowers  is
also an important factor to attract consumers. Although natural
ornamental  plants  have  plentiful  colors,  the  colors  of  some
important  ornamental  plants  are  limited.  For  example,  roses
and chrysanthemums lack  blue varieties[156],  mei  and morning
glory lack bright yellow[157], Cymbidium hybrida lack orange and
brick-red[158].  Therefore,  flower  color  improvement  has  always
been an important goal for breeders. The main substances that
determine  flower  color  are  the  following  three  kinds:  flavo-
noids, carotenoids and betaine[159].

The most important substance of flavonoids is anthocyanins,
which determine the pink, red, violet and blue of flowers[160]. It
is the main contributor to color designation. It has been found
that  the  key  structural  genes  that  catalyze  the  early  and  later
stages  of  anthocyanin  biosynthesis  include  phenylalanine
ammonia  lyase  (PAL),  cinnamate-4-hydroxylase  (C4H),  4-
coumarate: CoA ligase (4CL)chalcone synthase (CHS),  chalcone
isomerase  (CHI),  flavanone-3-hydroxylase  (F3H),  flavonoid  3'-
hydroxylase  (F3'H)  and  flavonoid  3',5'-hydroxylase  (F3'5'H),
flavonol  synthase  (FLS),  UDP-glucose:  flavonoid  glucosyltra-
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nsferase (UFGT) and methyl transferase (MT)[159,161−163]. Many of
these  genes  have  been  identified  in  ornamental  plants.  In
chrysanthemum,  seven  structural  genes CHS, F3H, F30H, DFR,
ANS, 3GT and 3MT regulated by transcription factors CmMYB5-1,
CmMYB6, CmbHLH24 and CmMYB7-1 were  identified  as  key
genes  for  anthocyanin  biosynthesis[164,165].  In  cultivated  chry-
santhemum,  due  to  the  lack  of  delphinidin-based  anthocya-
nins,  no  violet/blue  chrysanthemum  was  found. F3′5′H gene
was  introduced  into  eight  chrysanthemum  lines  by Agrobac-
terium  tumefaciens transformation,  and  it  was  found  that  the
petal color of all cultivars turned blue due to the accumulation
of delphinidin[166].

Carotenoids are isoprenoid molecules related to plant colors
such as  yellow,  and orange to  red[167] and accumulate  in  non-
ferrous  bodies  in  the  form  of  fat-soluble  products.  Structural
genes  in  the  carotenoid  biosynthesis  pathway  have  been  well
described in a variety of plant model systems[168−170]. Phytoene
synthase  (PSY),  phytoene  desaturase  (PDS), ζ-carotene  isome-
rase  (Z-ISO),  carotene  isomerase  (CRTISO),  geranylgeranyl
pyrophosphate  synthase  (GGPPS)  are  important  enzymes
involved  in  the  synthesis  of  carotenoids[171].  The crtW gene
encodes β-carotene  ketolase  (4,4'-b-oxygenase),  which  can
guide  the  synthesis  of  pink  to  red  carotenoid  pigments.  This
gene  is  commonly  found  in  bacteria,  fungi  and  unicellular
algae[172]. The crtW gene was isolated from marine bacteria and
modified  the  carotenoid  biosynthesis  pathway  of  lotus.  In
transgenic plants, the color of petals changed from light yellow
to  dark  yellow  or  orange[173].  In  addition,  carotenoid  biosyn-
thesis  genes  in  many  ornamental  plants  such  as Narcissus
pseudonarcissus[174], Primula  vulgaris[175] and Dianthus  caryo-
phyllus[176] have  also  been  identified.  In  addition,  there  is
evidence  that  the  biosynthesis  pathway  of  flavonoids  and
carotenoids  may  be  regulated  by MYB transcription
factors[175,177,178].

Betaine is a nitrogenous compound whose colors range from
red-violet  betacyanins  to  yellow  betaxanthins[179].  Similar  to
flavonoids,  betaine  accumulates  in  the  vacuoles.  At  present,
only  in  Caryophyllales  (except  for  Caryophyllaceae  and
Molluginaceae) are stained with betaine[180,181]. Compared with
other  major  types  of  plant  pigments,  the  study  on  betaine
biosynthesis  lags  seriously[180],  the  core  biosynthetic  pathway
of  these  pigments  has  not  been  fully  elucidated  until
recently[182,183].  At  present,  the  research on the  regulation and
synthesis  of  betaine genes  is  mainly  focused on crops  such as
Beta vulgaris[184,185] and Hylocereusundatus[186,187]. Only Mirabilis
jalapa[188,189] has  been  researched  in  ornamental  plants.  The
key  enzyme  gene  in  betaine  biosynthesis  was  isolated  from
Mirabilis  jalapa: MjDOD,  and  transformed  it  into E.  coli by
constructing  a  vector  containing MjDOD gene,  which  induced
its expression, and successfully obtained betaine[189].

 Flower fragrance
Flower  fragrance  is  an  important  trait  of  ornamental  plants.

The  fragrance  of  plants  can  make  people  feel  good,  and  the
flower  volatile  compounds  related  to  flower  aroma  are  also
widely  used  in  perfumes,  medicine  and  condiments  among
other things. At the same time, flower fragrance can also attract
pollinators  and  promote  flower  fertilization[190].  More  than
1,700 flower  volatile  organic  compounds have been identified
in  1,000  species  of  angiosperms[191],  which  come  from  a  few
synthetic metabolic pathways, including terpenoids, phenylpro-

panoids/benzenoids,  and  fatty  acid  derived  biosynthesis
pathways.

Terpenoids,  especially  monoterpenes  such  as  linalool,  limo-
nene, myrcene, and trans-b-ocimene, but also some sesquiter-
penes  such  as  farnesene,  nerolidol,  and  caryophyllene,  are
common  components  of  floral  fragrance[192].  In  orchids,  the
PbGDPS gene was identified in Phalaenopsis  bellina,  which can
produce  both  precursor  of  monoterpenes  (GDP)  and  the
precursor  of  sesquiterpenes  (FDP)[193,194].  Chan et  al.  identified
the  transcripts  related  to  fragance  in Vanda Mimi  Palmer  and
found  that  the  clones  of  32  transcripts  were  related  to
sesquiterpene  synthase,  germacrene  D  synthase  and  tyrosine
decarboxylase[195].  In peony, four wild tree peony species were
profiled as  integrative  volatile,  including Paeonia  ostii,  Paeonia
rockii,  Paeonia  delavayi and Paeonia  lutea. A  total  of  67  floral
volatiles were identified and the terpenoids in Paeonia ostii and
Paeonia  rockii were  the  most  abundant.  Transcriptome
sequencing showed that there were 17,967 DEGs, of which 116
were related to the accumulation of terpenoids.  Among them,
1-deoxy-D-xylulose  5-phosphate  synthase,  geranyl  pyropho-
sphate synthase, farnesyl pyrophosphate synthase and terpene
synthase may be the main regulatory enzymes of Paeonia ostii
and Paeonia rockii terpene biosynthesis[196].

Phenylpropanoids/benzenoids are the second largest  group
of  flower  fragrance components[191].  The biosynthesis  of  these
compounds  is  regulated  not  only  by  the  time  and  space  of
flower development, but also by the rhythmic and the biosyn-
thesis  of  precursors[197].  Phenylpropanoids/benzenoids  are  the
main  sources  of  fragrance  in  plants  such  as Prunus  mume[198],
Petunia  hybrida[199], Syringa  vulgaris[200] and Magnolia  champa-
ca[201].  At present, many coding enzyme genes involved in this
pathway have been cloned and verified. Taking Petunia hybrida
as an example, Ph BSMT1, Ph BSMT2, Ph BSMT3, Ph IGS1, Ph EGS1,
Ph PAAS, Ph BPBT, Ph CFAT, Ph BSMT1 and Ph BSMT2 are known
to  catalyze  the  formation  of  benzoic  acid  and  salicylic  acid,
which are the components of many plant fragrances[197,202−207].
At the same time, the transcription factors ODO1[199], EOBI and
EOBII[208] of  phenylpropanoid-related  compounds  have  been
proven  by  genetic  transformation  experiments.  In Prunus
mume, benzyl alcohol and benzyl acetate were found to be the
main sources of the aroma of Prunus mume.  No benzyl alcohol
or  benzaldehyde  reductase  (BAR)  activity  was  detected  in  the
fragrant  variety  'Fenghou'.  It  is  inferred that  the lack  of  benzyl
alcohol  synthesis  of  the  'Fenghou'  variety  is  due  to  the  low
activity of PmBAR1-Fen and the low expression of PmBAR3[209].

The  proportion  of  fatty  acid  derivatives  in  plant  volatiles  is
lower than that of terpenoids, phenylpropanoids / benzenoids.
It  is  found that  aliphatic  compounds play an important  role  in
the  aroma  sources  of Dianthus  caryophyllus[210], Centaurea
aeolica[211], Plumeria  rubra[212] and Antirrhinum  majus[213].  Fatty
acid derivatives in ornamental plants are mainly synthesized by
C18  fatty  acids,  including  linolenic  and  linoleic  acid.  The
biosynthesis of fatty acid derivatives begins with stereospecific
oxygenation catalyzed by the lipoxygenase (LOX) pathway[214].
At  present,  the  studies  on  fatty  acid  derivatives  are  mainly
focused  on  genes  involved  in  the  lipoxygenase  pathway[215],
but there are few studies on expression in flower organs.

 Stress resistance
Stress  generally  refers  to  biotic  or  abiotic  stresses.  Abiotic

stresses  including  diseases,  pests  and  weeds,  and  abiotic
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stresses include cold, high temperature, drought, waterlogging,
and salinization. The earths' climate is diverse and complex, and
the vegetation in different regions face different stresses, which
pose  a  severe  challenge  to  the  production  of  ornamental
plants.

At  present,  the  main  strategies  for  crop  disease  control  are
still  highly  dependent  on  chemical  pesticides.  However,  all
kinds  of  pesticides  usually  cause  direct  or  indirect  harm  to
human beings and the natural  environment,  and it  is  a  strong
desire  of  consumers  to  move  towards  an  environmentally
friendly and healthy production system. In this context, the use
of gene editing technology to obtain disease-resistant varieties
accurately  and  efficiently  has  become  the  primary  breeding
strategy.  A  variety  of  ornamental  plants  have  acquired  the
ability  to  resist  diseases  and  insect  pests  through  transgenic
technology.  In  chrysanthemum,  insect-resistant  transgenic
chrysanthemum  plants  were  obtained  by  transferring  the
Bacillus  thuringiensiscol1Ab gene[216].  Chrysanthemum  contai-
ning the rice chitinase gene was transformed by Agrobacterium
tumefaciens. It was found that their resistance to Botrytis cinerea
was  enhanced[217].  Transformants  of  chrysanthemums  with
resistance  to  cucumber  mosaic  virus  can  produce  better
flowers when attacked by the virus[218]. In lily, in addition to the
study of anti-fungal[219] and anti-viral[220], there are also studies
on  nematode  resistance[221,222].  Genetic  transformation  of
disease  resistance  was  also  studied  in  Gladiolus[223−225],
Orchidaceae[226−228], Petunia  hybrida[229], Rosa  chinensis[230] and
other ornamental plants.

Different  climatic  conditions  put  forward  different  require-
ments  for  the  survival  of  ornamental  plants,  such  as  cold
tolerance  in  northern  areas  and  drought  tolerance  in  desert
areas.  In  order  to  ensure  ornamental  plants  have  a  broader
living  space,  it  is  imperative  to  improve  plant  resistance.  In
many  plants/organisms,  some  genes  have  been  found  which
encode  and  synthesize  these  stress  protective  compounds,
which  are  mainly  divided  into  three  categories:  1)  genes  that
encode  the  synthesis  of  osmolytes  such  as  mannitol,  glycine
betaine,  proline,  heat  shock  proteins;  2)  genes  responsible  for
ion  and  water  uptake  and  transport  like  aquaporins  and  ion
transporters;  and  3)  genes  regulating  transcriptional  controls
and  signal  transduction  mechanisms,  for  example MAPK and
DREBI[231].  A heat shock protein synthesis gene RcHSP17.8 from
Rosa  chinensis was  obtained  and  transformed  into Arabidopsis
thaliana by Agrobacterium  tumefaciens transformation.  It  was
found  that  these  transgenic  plants  were  more  tolerant  to  to
high temperature, salt, osmotic and drought stress[232]. The salt
tolerance  of  three  chrysanthemum  varieties  with  wild
chrysanthemum  were  compared  through  physiological
experiments.  The  results  showed  that  the  salt  tolerance  of
Chrysanthemum  lavandulifolium and  'Jinba'  were  better  than
that  of  the  other  two  varieties,  while  'Xueshan'  was  salt
sensitive. Based on the differential expression analysis of genes,
it  was found that the genes related to signal  transduction,  ion
transport,  proline  biosynthesis,  reactive  oxygen  species
scavenging  systems  and  flavonoid  biosynthesis  pathway  were
related  to  salt  tolerance  of  chrysanthemum.  Activation  of
mitogen-activated  protein  kinases  (MAPKs)  is  an  important
pathway in eukaryotic signaling events,  which plays a key role
in  plant  defense  response  and  growth  and  development[232].
Studies  have  shown  that CmMKK4-CmMPK13 and CmMKK2-
CmMPK4 may be involved in the regulation of salt tolerance in

chrysanthemum,  and  the  relationship  between CmMKK9 and
CmMPK6 and temperature stress in chrysanthemum[233].

 Plant architecture
Plant architecture generally refers to the morphology of  the

aboveground  parts  of  higher  plants,  which  are  mainly
determined by factors affecting branch branches,  plant height
and  inflorescence  morphology.  At  present,  in  the  field  of
ornamental  plants,  the  research  on  plant  architecture  mainly
has two purposes:  to  make the plant  shape more beautiful,  to
meet  people's  aesthetic  needs  (Weeping Prunus  mume,
turtuosa Prunus mume, Styphnolobium japonicum), and to make
plants  more  adapted  to  the  development  of  the  horticulture
industry,  and  to  reduce  management  costs  (dwarfing  plants
and compact branches).  The weeping trait  is  very popular due
to  their  beautiful  shape  and  common  appreciation  of  flowers
and trees. Prunus persica, Prunus mume, Cerasus subhirtella and
other  Rosaceae  plants  as  well  as Ulmus  pumila, Betula  pendula
have the phenomenon of hanging branches. The weeping tree
phenotype in Prunus persica is located in the LG2 linkage group
and is controlled by the Ppa013325 gene. It may be a potential
plant  gene  regulator  of  gravity  perception  or  response[234].  In
the  study  of Prunus  mume,  the  major  QTL  loci  related  to
weeping traits have been mapped within a 0.29 Mb region on
chromosome  7,  and  the  only  specific  expression  of Pm024213
in buds and stems was detected in PmWEEP interval. Functional
annotation  and  membrane  structure  prediction  showed  that
the gene was  a  transmembrane protein  located in  the  chloro-
plast  and  containing  thioredoxin  domain[235].  In  recent  years,
miniaturized  and  compact  potted  flowers  and  bonsai  are
becoming  more  and  more  popular,  as  the  stalks  of  many
ornamental  plants  are  easily  damaged,  the  dwarfing  techno-
logy  of  ornamental  plants  shows  more  and  more  vitality.
Dw/dw[236] and Tssd/tssd[237] have been identified to be related
to the dwarfing of  peach.  In  addition, SHI, rol and other  genes
have  been  well  transformed  in  ornamental  plants  such  as
Euphorbia  pulcherrima[238], Angelonia  salicariifolia[239],  and
Mecardonia procumbens[240].

 Application of efficient biotechnology to
ornamental plants

Ornamental  plants  are  of  great  commercial  value  to  the
horticultural  industry,  and  people  have  been  committed  to
their ornamental genetic improvement for a long time, but the
traditional  breeding methods often have a  long cycle and low
breeding  efficiency.  Although  researchers  have  obtained  a
large  number  of  candidate  genes  by  means  of  GWAS  and
genetic linkage analysis, only some of them have been verified
by  transgenic  experiments.  With  the  development  of  biotech-
nology,  gene  editing  technology  can  accurately  edit  the  DNA
sequence and shorten the breeding cycle,  which plays  a  great
role  in  the  breeding  of  ornamental  plants.  This  part  provides
reference  for  modern  ornamental  plant  breeding  through  an
overview of general biotechnology.

 Gene mapping
Quantitative  traits  are  continuous  phenotypic  variations,

which cannot be strictly classified. Quantitative traits controlled
by polygenes and are easily affected by the environment. Many
ornamental  traits  of  plants,  including  flowering  time[241],
double  flower[8] and  flower  color[48],  belong  to  quantitative
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traits. At present, several methods such as quantitative trait loci
mapping  (QTL),  genome  wide  association  study  (GWAS),
bulked segregant analysis (BSA), and other methods have been
developed for the study of these quantitative traits.

Quantitative trait locus analysis (QTL) is a widely used tool to
analyze  the  genetic  basis  of  complex  traits  based  on  the
construction  of  genetic  maps.  The  basic  idea  of  QTL  is  to  use
the  linkage  information  between  markers  and  QTL,  to  detect
the  linkage  degree  between  molecular  markers  and  QTL  by
maximum  likelihood  method  or  regression  analysis,  so  as  to
locate QTL location and estimate QTL effect[242].  Paterson et al.
reported  the  first  work  on  plant  QTL[243].  Since  then,  QTL
mapping  has  gradually  become  an  important  tool  for  func-
tional  gene  mapping.  After  more  than  30  years  of  develop-
ment,  the  QTL  location  method  has  developed  from  single
marker analysis to multi-interval mapping, and from static QTL
location to dynamic QTL location. In the pas decade, combined
with the continuous development of high-throughput sequen-
cing  technology,  marker  resources  have  become  more
abundant,  and  the  construction  of  high-density  genetic  maps
of some ornamental plants[244−247] has become possible. On this
basis, more and more major QTL of important ornamental traits
of  ornamental  plants  have  been  cloned[127,248],  and  consider-
able progress has been made in the study of QTL of ornamental
plants.  The  F1  hybrid  population  'Liuban'  ×  'Fentaichuizhi'  of
Prunus  mume was  selected  as  experimental  material,  and  a
large-scale  molecular  marker  was  developed  and  constructed
with a high-density genetic linkage map of Prunus mume using
the  SLAF-seq  technique,  and  then  QTL  mapping  analysis  was
carried out on 15 important ornamental traits, such as growth,
plant architecture and flower related quantitative. A total of 66
QTLs loci were detected, and 58 possible candidate genes were
screened  using  the  genome  annotation  information  of Prunus
mume[244].

The  genome  wide  association  study  (GWAS)  is  based  on
linkage  disequilibrium.  By  analyzing  the  segregation  charac-
teristics of high-density molecular markers of a large number of
individuals,  researchers  can  select  molecular  markers  asso-
ciated  with  phenotypic  variation  of  complex  traits,  and  then
analyze  the  genetic  effects  of  these  molecular  markers  on
phenotypes[249].  This  method  directly  uses  the  natural  popu-
lation,  which  can  save  a  lot  of  time  in  constructing  the
population.  Besides  that,  the method has  large recombination
variation  and  high  mapping  accuracy,  and  can  identify  many
multi-allele/gene  loci  that  have  not  been  found  in  QTL
mapping[249].  Although  GWAS  was  originally  mainly  used  for
the  analysis  of  complex  genetic  diseases  in  humans,  over  the
past decade it has been gradually extended to plants, including
some  ornamental  plants  (Supplemental  Table  S6).  In Prunus
mume,  researchers have identified significant quantitative trait
loci  through  GWAS  technology.  The  candidate  regions
associated with  traits  including petal  color,  stigma color,  calyx
color,  bud  color,  staminal  filament  color,  wood  color,  petal
number,  pistil  character,  bud  aperture,  and  branching  pheno-
type were identified. It is the first time the genetic structure of
floral  size,  color,  and structure,  in  terms of  the number  of  loci,
their  genomic  distribution  and  the  magnitude  and  pattern  of
their effects in a woody plants has been clarified[48]. At present,
researchers  have  mapped  more  than  a  hundred  loci
(Supplemental Table S6) in seven species of ornamental plants
by  using  GWAS  technology,  which  shows  that  the  application

of  GWAS  has  greatly  promoted  the  research  of  alleles  of
important traits in ornamental plants.

Bulked  segregant  analysis  (BSA)  is  a  mapping  method  for
rapidly  functional  gene  mining  using  extreme  phenotypic
individuals. The main idea is to sequence two groups of indivi-
duals  with  opposite  extreme  phenotypes  in  the  segregated
population,  and  to  compare  whether  there  is  a  significant
difference  in  allele  frequencies  at  polymorphic  sites  between
the two groups[250]. Compared with traditional genetic analysis
methods,  BSA only  needs  to  identify  individuals  with  different
extreme phenotypes in the target population, regardless of the
accuracy  of  other  individuals,  which  greatly  reduces  the  scale
and cost by simplifying the program[251]. Because BSA does not
need a large population, it is favored in the study of plant type
traits  of  woody  plants,  such  as  the  weeping  trait  of Malus
halliana[252], Prunus persica[234] and Prunus mume[235],  the dwarf
trait of Prunus persica[234] and gene mining and marker develop-
ment.  Twentyt  individuals  each  of  weeping  and  upright  F1
generation of 'Liuban' × 'Fantaichuihzi' were selected. Using the
strategy  of  RNA-seq  based  on  BSA,  five  QTL  related  to  the
weeping trait were detected on chromosome 7 and combined
with  WGCNA  to  identify  a  core  candidate  gene PmUGT72B3.
The Pm024074 (PmUGT72B3)  allele  encodes  a  protein  contain-
ing  conserved  coniferyl-alcohol  glucosyltransferase,  which  is  a
key  protein  regulating  lignin  and  IAA.  Now,  BSA  analysis  has
become  a  powerful  tool  for  mapping  functional  genes  in
addition to QTL and GWAS.

 VIGS
Virus-induced gene silencing (VIGS) is  a technique based on

RNA  interference,  which  uses  the  instant  knock-down  of  the
target gene expression of the modified plant virus genome[253].
Compared  with  traditional  gene  function  research  methods,
such as transgene,  gene knock-down and antisense inhibition,
VIGS  has  the  advantage  of  a  short  test  cycle,  being  indepen-
dent  of  transgenic  operationand  has  low  cost  and  high
throughput[254]. The photoperiod flowering responses of plants
can  be  divided  into  three  types:  long-day  (LD);  short-day  (SD);
and  day-neutral  (DN).  Under  the  condition  of  SD  and  LD,  the
expression  of RCCO and RcCOL4 in  rose  was  reduced  by  VIGS,
which  successfully  delayed  the  flowering  time[255].  The
expression  of PeERF1 was  down  regulated  in  orchids  using
CymMV-based  virus-induced  gene  silencing  (VIGS),  and  it  was
found that  the nanoridges of  the silenced plants  reduced.  It  is
proved that PeERF1, as a SHN ortholog transporter, participates
in  the  morphological  formation  of  lip  epidermis  at  the  end  of
flowering  by  regulating  the  development  of  nanoridges
structure of Phalaenopsis[256].

 Gene editing
The development of gene editing technology is the demand

of  modern  plant  breeding,  which  rapidly  modifies  the  plant
genome  in  an  accurate  and  predictable  way[257].  Many  gene
editing techniques have been developed, including Zinc-finger
nucleases (ZFNs)[258],  transcription activator-like effector nucle-
ases  (TALENs)[259] and  clustered  regulatory  interspaced  short
palindromic repeat (CRISPR)[260]. Some studies have shown that
CRISPR/Cas9 is obviously superior to TALENs and ZFNs in terms
of  design,  construction  difficulty,  time,  cost  and  modification
efficiency.  CRISPR  has  gradually  become  the  first  choice  for
plant gene editing[261−263].
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Dihydrofavonol-4-reductase-B (DFR-B) is an important enzyme
in the anthocyanin biosynthesis pathway. In Ipomoea nil, DFR is
present as a small, tandemly arrayed three-gene family (DFR-A,
DFR-B and DFR-C),  in  which DFR-B is  the  major  gene that  con-
trols flower color. The DFR-B gene was removed from Ipomoea
nil with CRISPR/Cas9. Among the 32 transgenic plants, 24 (75%)
had  low  anthocyanin  content  whose  performance  is
white[264].This is the first report to use CRISPR/Cas9 technology
on flower color research. In lily, CRISPR/Cas9 was used to knock
out  the LpPDS gene of  two kinds of  lily  and obtained comple-
tely albino, pale yellow and albino–green chimeric mutants[265].
CRISPR/Cas9  will  significantly  promote  the  development  of
improved ornamental  horticultural  crops and bring innovative
solutions  to  sustainable  and  competitive  production  of  novel
ornamental plants.

 Discussion

It is predicted that nearly 600 species of flowering plants will
be sequenced by July 2021 (www.plabipd.de/plant_genomes_
pa.ep). Many research groups have proposed to sequence more
plants[266−268]. With the development of sequencing technology
and the reduction of  sequencing cost,  plant  genome data  will
show  explosive  exponential  growth  in  the  future.  As  such,
comparative  genomics  and  functional  genomics,  which  are
based  on  whole  genome  data,  will  develop  more  rapidly  and
infiltrate into all aspects of plant genetic research. Although the
development of plant genomics technology has promoted the
research  of  ornamental  plants,  there  are  many  problems  in
genome  sequencing,  data  utilization  and  achievement  trans-
formation.

First,  the  sequencing  and  assembly  of  genomes  is  still  a
difficult  problem. Many ornamental  plants have experienced a
long  history  of  evolution  and  domestication,  especially  plant
with  homologous  polyploids  or  extremely  large  genome
sizes[269]. For genome assembly based on short reading (75_700
bp)  data,  repeat  content,  and  high  heterozygosity  sequences
are  usually  not  well  solved,  resulting  in  the  formation  of
chimeric  sequences  and  fragmentation  contigs[270].  Even  if
third-generation  sequencing  technology  with  longer  read-
lengths  is  used,  the  integrity  of  genome  assembly  of  some
ornamental plants is only about 80%[62].  Secondly, it  is difficult
to  map  genes  related  to  key  traits  from  a  large  amount  of
genome  data  in  the  process  of  molecular  breeding  of
ornamental  plants,  which  is  largely  due  to  the  lack  of  suitable
phenotypic data. The gene mapping of many crops only needs
to  obtain  simple  phenotypic  data  such  as  plant  height,  fruit
weight  and  leaf  area,  while  the  ever-changing  morphology  of
ornamental plants and the twisted branches of turtuosa Prunus
mume and complex flower shapes of chrysanthemum not only
make  the  measurement  work  extremely  difficult,  but  also  the
effective  estimation  of  the  recorded  character  data  is  low,
resulting  in  weak  correspondence  between  the  trait  data  and
the  allelic  variation  of  candidate  genes  in  the  germplasm  set.
Thirdly, many ornamental plants (especially woody plants) lack
effective transformation systems,  so  the new genes cannot  be
transformed  into  plants  for  cultivar  creation.  Finally,  whether
transgenic  ornamental  plants  meet  safety  and  health  needs  is
also  one  of  the  problems  facing  ornamental  plant  breeders,
although  at  least  50  species  of  ornamental  plants  have  been
transformed[271],  few GM ornamental cultivar have passed field

trials  and obtained regulatory  approval.  In  the  biotechnology/
GM  crop  database  approved  by  (ISAAA),  an  international
agricultural biotechnology application service, only three orna-
mental  plants  are  listed:  petunia,  rose,  and  carnation[271].  This
may  be  due  to  the  potential  toxicity  and  allergies  to  humans,
potential  environmental  risks  (such  as  opportunities  for  gene
flow,  adverse  effects  on  non-target  organisms,  resistance
evolution  of  weeds  and  insects).  Genetically  modified  crops
that  are  widely  used  to  carry  foreign  genes  face  obstacles  to
promotion[272].  Although  these  problems  have  existed  in  the
many  years  of  development  of  ornamental  plant  genomics,
researchers  continue  to  use  new  methods  and  new  ideas  to
overcome  these  difficulties,  such  as  gene  editing  technology,
with the rapid development of this technology.

In the aspect of sequencing, DNA sequencing technology in
the  past  produced  either  highly  accurate  short  reads  or  less-
accurate  long  reads.  The  long  high-fidelity  (HiFi)  readings
recently launched by PacBio broke this balance. The accuracy of
HiFi  readings  generated  consensus  sequence  from  multiple
passes of a single template molecule as high as 99.8%, and can
produce  readings  with  an  average  length  of  13.5  kb[273].  After
the  progress  of  third-generation  sequencing  technology,  the
innovation  of  a  genome  assembly  algorithm  followed.
HiFiasm[274],  a  new  de  novo  assembler  that  strives  to  preserve
the  contiguity  of  all  haplotypes.  And  HiCanu[275] is  a  modifi-
cation  of  the  Canu  assembler  which  can  accurate  assemble
segmental  duplications,  satellites,  and  allelic  variants  from
high-fidelity  long  reads.  The  advantages  of  these  new  techni-
ques have been shown in challenging sequencing tasks such as
hexaploid California redwood[274] and autotetraploid cultivated
alfalfa[276].  On  this  basis,  the  gaps,  collapsed  regions  and
unassigned sequences in the plant genome will  be less,  which
will  provide  a  guarantee  for  the  comprehensiveness  and
accuracy of phenotypic analysis in the future. In the mapping of
complex  traits,  researchers  are  no  longer  satisfied  with  the
location  of  simple  one-dimensional  traits  such  as  plant  height
and fruit  diameter,  but the combination of image analysis and
QTL mapping to study complex phenotypic traits has gradually
become  a  research  hotspot.  Many  scholars  have  studied  the
gene  mapping  of  plant  morphology  by  using  the  morpho-
metric  model  based  on  elliptic  Fourier,  and  have  made  many
gratifying  achievements  in  the  location  of  fruit  shape[277] and
leaf  shape[278,279].  And  a  mature  geometric  morphometry
platform has been established[280]. Unfortunately, there are few
studies on the location of characters of ornamental plants, and
the  transformation  of  three-dimensional  flower  structure  into
available one-dimensional data is still one of the difficulties that
need to be overcome.

During  the  1990's,  with  the  revolution  of  genomics  and  the
rise  of  systems  biology,  biosynthesis  emerged[281].  Synthetic
biology  is  the  science  of  how  to  design  and  synthesize
organisms.  Specifically,  synthetic  biology  is  an  advanced  form
of  gene  editing.  It  applies  the  principles  of  modularity  and
engineering  design  to  synthesize  cells  by  changing  their
DNA[282]. The study of synthetic biology was first carried out on
bacterial cells such as Mycoplasma mycoides[283], and now it has
been  gradually  extended  to  eukaryotes,  including  plants.  We
believe  that  with  the  analysis  of  more  gene  regulatory
networks and metabolic networks of ornamental traits and the
progress  of  biological  gene  synthesis,  ornamental  plants
designed according to the needs of  consumers  will  emerge in
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the  near  future.  China  has  a  long  history  of  ornamental  plant
cultivation  and  is  rich  in  ornamental  plant  resources,  which  is
known as the 'mother of gardens'. It is estimated that there are
at  least  31,000  species  of  vascular  plants  in  China,  of  which
more  than  6,000  species  have  ornamental  value.  Most  of  the
ornamental  plants,  such  as  rhododendron,  rose,  camellia  and
mei, originated and are cultivated in China[284].

The  rapid  development  of  genomics  has  greatly  promoted
the research of horticultural plants[285]. In recent years, with the
continuous  reduction  of  the  cost  of  genome  sequencing
technology, more and more ornamental plants have their own
genome data, but it  is still  a small portion of ornamental plant
germplasm  resources.  It  has  become  an  arduous  task  for
modern ornamental plant researchers to sequence ornamental
plants  in  an  orderly  and  reasonable  manner,  to  carry  out  in-
depth  mining  of  important  genetic  resources,  and  to  protect
and utilize  them.  Therefore,  breeders  need to make full  use of
genomic  theories  and  methods  (including  molecular  markers,
whole  genome  selection,  genome  editing  and  synthetic  bio-
logy)  to  alleviate  the  bottleneck  of  existing  variety  innovation
and  utilization,  analyze  the  genetic  regulation  mechanism  of
important  ornamental  characteristics,  establish  an  efficient
biological  breeding  technology  system,  and  carry  out  variety
creation.
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