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Abstract
Ornamental geophytes are a group of important flowers worldwide. As perennial plants, geophytes go through several rounds of life cycle under

seasonal  climates.  The  dormant  trait  of  underground  modified  organs  in  geophytes  is  critical  for  the  process  of  storage,  planting  as  well  as

breeding. Although the dormant physiology in geophytes is complex and largely unknown, several advancements have been achieved in this

field.  Here,  we  review  the  knowledge  on  the  role  of  environmental  factors,  endogenous  hormones,  carbohydrates,  and  epigenetics  in  the

regulation of geophytes dormancy release (GDR). We also discuss dormancy release (DR) methods and their roles in geophytes, including small

molecular chemicals and wounding treatments.
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 Introduction

Ornamental  geophytes  contain  more  than  800  different
botanical  genera  which  have  different  development  biology
and  physiology.  Morphologically,  ornamental  geophytes  are
characterized  by  modified  organs  (stem,  root,  leaf,  or  hypo-
cotyl) grown underground and used as storage organs for plant
growth  and  propagation,  including  tulip,  lily,  gladiolus,  narci-
ssus,  hyacinth,  freesia,  dahlia,  hippeastrum,  and  others.  High
land plants are evolutionally originated from marine organisms.
During  the  Late  Tertiary,  the  climatic  zones  were  formed  and
the  flora  was  dominated  by  woody  angiosperms.  Land  plants
have  to  evolve  new  survival  strategies  to  cope  with  climate
change.  Some  species  obtained  the  ability  to  survive  adverse
periods by developing underground modified organs. Based on
morphology, geophytes are classed into five groups: bulbs (the
majority),  tuber,  corm,  rhizome,  and  tuberous  roots  (Fig.  1).
Geophytes are major players in the international  flower indus-
try  and  are  widely  used  as  cut  flowers,  potted  plants,
landscaping, and gardening plants. Most of the geophytes have
a  growth  cassation  period  (called  dormancy)  except  species
that  are  originally  from  tropical  areas,  like Crinum  asiaticum,
Hippeastrum rutilum, and Curcuma alismatifolia Gagnep.

Dormancy is  defined as  the  inability  to  initiate  growth from
meristems (and other organs and cells with the capacity to re-
sume growth) under favorable conditions[1]. In bulbs, dormancy
could  be  further  divided  into  three  types:  i)  endodormancy,
which  is  regulated  by  internal  factors.  Geophytes  in  endodor-
mancy are not able to grow even when placed under favorable
conditions,  e.g.,  gladiolus  and  lily;  ii)  ecodormancy,  which  is

reduced  growth  response  to  external  signals,  like  high/low
temperature,  short  photoperiods,  drought,  and  low  oxygen.
Once  the  external  signals  are  removed,  geophytes  resume
growth. Non-deciduous bulbs (hippeastrum) have ecodormant
phenomena  when  planted  in  the  temperate  zone;  iii)  para-
dormancy,  which  is  known  as  apical  dominance.  Axil  bud
growth is inhibited by internal signals[2,3].

Dormancy  is  an  essential  trait  in  the  horticultural  industry.
Pre-sprouting and deep dormancy are problems for  crops and
geophytes[4,5].  The  occurrence  of  geophyte  dormancy  restricts
the  growth  period  and  increases  storage  costs.  On  the  other
hand,  the  dormancy  period  allows  the  commercial  handling,
storage,  and  transportation  of  dormant  organs  world  wide.
Therefore, precise regulation of geophyte dormancy and GDR is
required  for  effectively  managing  their  production,  shipping,
and utilization.

Recently,  the  topic  of  perennial  woody  bud  dormancy  has
been  reviewed[3,6−9].  However,  few  reviews  regarding  GDR  are
available. Although both geophytes dormancy and woody bud
dormancy  belong  to  bud  dormancy  or  vegetative  organ
dormancy, several morphological and physiological differences
may  cause  some  special  responses  in  geophytes:  i)  unlike
dormant branch buds (e.g., poplar, pear, or apple tree), buds of
geophytes  are  grown  on  modified  storage  organs  (except
tuberous  roots  where  buds  grow on the attached root  crown)
which  contain  much  more  starch,  glycerol,  or  sugars  than
regular  branch  bud;  ii)  embedded  in  soil,  dormant  geophytes
have  a  few  different  environmental  conditions  from  regular
branch  bud,  e.g.,  geophytes  may  have  different  strategies  to
sense the change of light.
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In this review, we summarize the current knowledge of GDR
and  review  progress  made  in  the  area  of  environmental  and
hormone  regulation,  epigenetics,  and  miRNA.  We  also  discuss
strategies for GDR in the bulb flower industry and prospects for
future studies.

 Environmental factors regulating GDR

 Temperature
For bulb plants, the temperature is the most important factor

that  affects  geophytes  dormancy  (GD).  Many  geophytes  in
equatorial  and  subtropical  zones,  where  there  are  relatively
uniform  environmental  conditions,  rarely  have  marked  rest
periods  and  continuously  develop  foliage  leaves,  such  as
Hippeastrum, Crinum  asiaticum, and Haemanthus  multiflorus
Martyn..  However,  when  planted  in  marked  climatic  changes
conditions,  non-deciduous  bulbs  exhibit  ecodormant  pheno-
mena, such as Hippeastrum and Clivia. Geophytes located in the
Mediterranean  go  into  dormancy  in  hot  summers  suggesting
temperature  is  an  essential  factor  controlling  GD.  When  the
temperature drops in the temperate zone, most bulb plants go
into  dormancy  from  autumn  and  are  not  suitable  for  plant
growth,  such  as Begonia  tuberhybrida, Tigridia  pavonia, and
Gladiolus  hybridus.  In  the  flower  production  chain,  bulbs  were
stored  at  a  relatively  low  temperature  to  extend  ecodormant

duration when undergoing long-distance shipping and forcing
flowers  throughout  the  year,  such  as  tulip  (storing  at  −2  to
9 °C), lily (at −2 to −1 °C), and gladiolus (at 4 °C).

Temperature signaling serves as a critical environmental cue
for  GDR  (Fig.  2).  Besides,  temperature  signal  interplays  photo-
period  signals  in  perennial  dormant  vegetative  organs[10].  In
recent  years,  a  cold  sensor  (COLD1;  CHILLING-TOLERANCE
DIVERGENCE1)  is  identified  in  rice,  which  interacts  with  G
protein to activate the Ca2+ channel for temperature sensing[11].
In temperature signaling, ICE1 (INDUCER OF CBF EXPRESSION),
an  MYC-like  bHLH  transcriptional  activator,  is  induced  by  low
temperature and promotes both seed dormancy in Arabidopsis
and bud dormancy in poplar, pear, and apple[12−14]. Besides, by
using transcriptome analysis,  ICE1 is  suggested to be involved
in bud dormancy of geophytes, like leafy spurge, gladiolus, and
lily,  suggesting  its  conserved  role  in  regulating  GD[15−17].  ICE1
could  bind  to  CBFs  (C-REPEAT/DRE  BINDING  FACTORs)  and
active  DAM  (Dormancy-Associated  MADS-Box)  expression,
promoting  endodormancy[18,19].  DAM  was  firstly  characterized
in  a  peach  mutant  (evergrowing)  which  exhibits  constant
growth without dormancy[20].  DAM is a MADS-box protein and
homologous  to  SVP  (SHORT  VEGETATIVE  PHASE)  in  Arabidop-
sis,  which  binds  the  CArG  motif  of  the FT (FLOWER  LOCUS  T)
promoter  and  directly  inhibits FT expression[21]. FT has  been
well  characterized  in  perennial  bud  dormancy  that  it  plays  a
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Fig.  1    Photos  to  document  the  classification  and  morphological  diversity  of  geophytes.  (a)  Dormant  lily  bulbs,  (b)  gladiolus  corms,  (c)
Zantedeschia aethiopica tuber, (d) Canna indica rhizome, (e) Dahlia tuberous root. ab: apical bud; ax: axillary bud; bd: bud; bp: basal plate; br:
branch root; cr: root crown; nd: node; rt: root; rz: rhizome; sc: scale; st: stem root; tr: tuberous root. The scale bar represents 1 cm.

 
Fig. 2    Biochemical and physiological processes occur during the whole process of dormancy in geophytes. In autumn, low temperature and
short days induce endogenous ABA and inhibit CKs and GA. Besides, soluble sugars are decreased in shoots along with blocked PD and slow
cell division. During the winter, long-term cold treatment contributes to decreasing ABA content in dormant organs and promoting GA, CKs,
and soluble sugars. Meanwhile, callose around the PD is degraded which helps to active cell communication and cell division in buds. When
the temperature and light are suitable for corm sprouting, ABA is continuously decreased and soluble sugars are used for plant growth. CDR:
corm dormancy release; DR: Dormancy release; LD: Long day; LT: low temperature; SD: short day.
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positive  role  in  bud  dormancy  release,  like  Gentian  and
poplar[22,23].  DAM  is  involved  in  regulating  bud  dormancy  of
trees  by  repressing  GA  biosynthesis  and  cell  division,  and
promoting callose accumulation near plasmodesmata (PD)[24].

Besides  ICE1,  ambient  temperature  is  also  sensed by phyto-
chrome B (phyB) in Arabidopsis[25].  The active phyB is involved
in  plant  growth  and  development  including  dormancy[24,26].
The photoconversion between Pr  and Pfr  enables the connec-
tion of the environmental cues with morphological reactions or
plant  behaviors[24].  It  is  possible  that  phyB  can  also  regulate
GDR when soil temperature changes, even if there is no light.

In  the  actual  planting  of  geophytes,  to  accelerate  GDR,
methods like warm baths and cold storage are widely used[27].
However,  the  mechanism  of  warm  baths  for  geophytes  is  less
known, compared to cold storage.

 Light
Light is another important environmental factor affecting GD

and  GDR  mainly  by  its  light  quality,  quantity,  and  duration.  In
autumn,  before  the  temperature  decreases  dramatically,  light
duration is much shorter than in the summer (Fig. 2). Plants can
sense  light  changes  with  sensors,  e.g.,  phyA,  phyB,  CRY1,  and
CRY2[28,29].  Light  participates  in  dormancy  induction  of  geo-
phytes,  however,  it  might  have  a  weaker  effect  on  GDR  com-
pared  to  temperature.  Because  dormant  geophytes  were
imbibed in the soil naturally.

It  has  been  shown  that  different  light  wavelength  has
different  effects  on  plant  development  including  vegetative
growth,  flowering,  and  dormancy[30].  Light  with  a  specific
wavelength  is  recognized  by  a  certain  light  sensor[30].  ULTRA-
VIOLET B RESISTANCE 8 (UVR8) senses UVB light (280−315nm);
Cryptochrome  (cry),  phototropin  (phot),  ZEITLUPE  (ZTL),  and
phytochrome  (phy)  can  sense  light  with  315−500  nm  wave-
length;  in  addition,  phytochrome  can  sense  red  and  far-red
light[31].  phyA  is  active  in  darkness  (the  very  low  fluence
response; VLFR) and the R/FR high irradiance response (R/FR‐
HIR)  while  it  maintains  low  levels  in  the  white  light.  phyB  is
abundant and stable under white and red light.  There are two
forms of phyB in plants: one is Pr (inactive form) and the other
is Pfr (active form). Pr is converted into Pfr by absorbing R light
while  Pfr  is  converted  into  Pr  by  absorbing  FR  light[32].  In  the
light  response,  phyA  and  phyB  inhibit  PIFs  (PHYTOCHROME‐
INTERACTING  FACTORS)  and  further  regulate  cell  division  and
cell  elongation[33,34].  Although  there  is  limited  research  about
light-regulated  GDR,  several  studies  have  shed  light  on  light-
regulated  bud  and  seed  dormancy[33,35].  In Populus,  the  phyB-
PIF8  module  responds  to  the  light  changes  and  controls
seasonal growth cessation and bud break by cell division[33]. In
Arabidopsis  seeds,  the  phyB-PIF1  module  mediates  seed
dormancy  and  germination  by  regulating  the  antagonism
between GA and ABA metabolism[35]. In barely, white light and
blue light had dramatically stimulation of HvNCED1 expression
dry dormant seed to increase the ABA content to maintain the
dormancy[36].  Moreover,  compared  with  the  monochromatic
photoreceptors,  multiple photoreceptors,  i.e.,  the combination
of  blue  and  green  light  photoreceptors,  play  a  more  efficient
role  in  the  maintenance  of  dormancy  in  imbibed  seeds  of
Lolium rigidum[37].

In  addition,  light  quantity  and  duration  control  GDR  in
species such as lily, potato, Anemone coronaria, and Lotus[38−41].
In Easter lily, dormancy and vernalization could be achieved by
combining  long-day  photoperiods  and  cold  treatment,  which

can  be  technically  replaced  by  each  other  equally  on  a  week-
for-week  basis[42].  For  most  winter  dormant  geophytes,  short
day  (SD)  conditions  result  in  growth  cessation  and  endodor-
mancy,  e.g.,  Gladiolus,  Asiatic  lily, Hosta  plantaginea[27].  SD  is
sensed  by  phytochromes  in  plants  and  mediates  endodor-
mancy  by  regulating CONSTANS (CO)/FT expression[24].  In
addition,  SD  also  induced  endogenous  ABA  levels  by  stimu-
lating DAM expression[24].

 Endogenous hormones involved in GDR

 Abscisic acid
Hormones  are  the  most  effective  regulators  in  regulating

plant  growth  and  development  as  well  as  dormancy[24].  It  is
well  known  that  ABA  is  the  master  hormone  in  the  whole
process  of  GD  (Fig.  3),  including  dormant  induction,  mainte-
nance, and release[24]. We have discussed the mechanism in our
previous  review,  containing  the  interplay  between  ABA  and
environmental  factors,  hormones,  sugars,  or  epigenetics[24].  In
Brief,  ABA  is  involved  in  dormancy  by  repressing  cell  division,
decreasing  energy  transition,  blocking  cell  communication  via
PD,  and  slowing  down  the  transcription  and  translation  of
genes.

 Gibberellic acid
For  several  geophytes,  GA  is  also  considered  an  essential

hormone in promoting GDR (Fig. 3), e.g., tulip, Oriental lily, and
Fritillaria  meleagris[43−45].  However,  it  is  not  always  the  case  in
Gladiolus, Polianthes tuberosa, and others[5,46].

During natural GDR, endogenous GA is induced by long-term
cold exposure and geophytes are ready to sprout when spring
arrives[27]. During bud dormancy release, chilling repressed SVL
expression, and thus up-regulates the transcript of SVL'S target
genes,  like GA20ox[47].  Increased GA could be an antagonist  to
ABA  and  bud  dormancy  release  by  promoting  cell  division,
soluble  sugar  content,  energy  metabolism,  and  reopening
plasmodesmata  communication[24,48,49].  Negative  regulators  in
GA  signaling,  DELLA  proteins,  are  degraded  along  with
increased  GA  content  during  bud  dormancy  release  in  tree
peony and Japanese apricot[50,51].

 Cytokinins
In  geophytes,  cytokinins  (CKs)  turn  out  to  be  an  efficient

hormone  to  break  endodormancy  and  paradormancy  (axillary
bud  dormancy),  e.g.,  Gladiolus, Zantedeschia,  Narcissus,  and
Fritillaria meleagris[17,45,52,53]. Endogenous CKs are stimulated by
chilling and play a positive role in GDR (Fig. 3).

During  GDR,  CKs  biosynthesis  genes  including isopentenyl
transferase (IPT)  and CYP735As (CYTOCHROME  P450,  FAMILY  735,
SUBFAMILY  As)  are  active  while  CKs  inactive  pathway  is  inhi-
bited, such as CKP1 (CYTOKININ RIBOSIDE PHOSPHORYLASE1)[17,54].
Silencing either of these genes results in a short dormant period
in Gladiolus corm and potato tuber[17,55]. The functions of CKs are
as  follows:  1)  promoting  cell  proliferation  and  division  via  cell
cyclin  genes.  In  Gladiolus,  accumulated  CKs  promote  the
transcripts of CYCLIN genes[2]. In potato tubers, dormant cells are
arrested  at  the  G1  cell  stage,  and  CYCLIN  D  members  are
involved  in  active  this  process[55];  2)  enhancing  secondary  PD
formation and PD transport in shoot meristem[56,57]. Silencing CK
receptor  genes  (AHK3 and AHK4)  reduces  PD  transport[57];  3)
antagonizing ABA during GDR. CKs inhibit ABA biosynthesis and
signaling  transductions  via  transcription  factors  during  GDR,
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including  NAC83,  SVL,  and  TCP19  (Teosinte  Branched  Cyldoeia/
PCF) in geophytes[2,17,24].

 Ethylene
Ethylene  is  a  small  molecular  gaseous  hormone  and  several

research articles have shown that it is involved in GDR in onion
and Liatris,  among others (Fig.  3)[58,59].  Similar to geophytes,  in
birch, ethylene is induced under SD conditions and inhibits cell
division  in  shoot  meristem  which  further  contributes  to  bud
dormancy[60]. Mutating ethylene response (ETHYLENE RESPON-
SE1)  results  in  decreasing  response  to  SD  and  delayed  endo-
dormancy  in  birch  as  ABA  accumulation  and  signal  transduc-
tion  are  abolished  in etr1 mutant[60].  In  chrysanthemum,
ethylene is  induced by cold temperatures and triggers growth
cessation and dormancy. The etr1 mutant in Chrysanthemum is
insensitive  to  ethylene  and  has  a  delayed  dormancy
phenotype[61].  In  onion,  exogenous  ethylene  upregulates  ABA
biosynthesis and delays bulb dormancy[58].

However,  the  role  of  ethylene  on  GDR  is  various  when  the
situation or  species  changes.  In  Gladiolus,  the ethylene-releas-
ing  compound  (chloroethane-phosphonic  acid;  CEPA)  promo-
tes the sprouting of dormant cormels but inhibits the sprouting

of  non-dormant  cormels[62].  In  freesia,  ethylene  exposure  time
and  repeat  times  affect  the  accelerated  speed  of  corm  dor-
mancy  release[63].  The  underlying  mechanism  still  needs  to  be
investigated.

 Karrikins
Smoke has been used to break dormancy in geophytes since

the 1990s, such as freesia and Gladiolus[27,64]. Moreover, smoke
is a broadly effective stimulant that enhances the germination
of  approximately  1200  species  in  more  than  80  genera[65].
Karrikins (KARs)  are a  group of  chemicals  that  are defined as a
kind  of  plant  hormone  found  in  the  smoke  of  burning  plant
materials[65].  Karrikinolide  (butene  lactone,  3-methyl-2H-furan
[2,3-c]pyrone,  KAR1)  was  first  identified  in  2003  and  charac-
terized as the most effective and abundant germination stimu-
lant among all  KARs[66,67].  Although there is no direct evidence
that  shows  KARs  promote  GDR  whereas  it  seems  that  KARs
possibly have a conserved role in the seed germination of crops
and weeds[68].

KARs  trigger  the  association  of  KAI2  (KAR  receptor)  with
SMXL2  (SMAX1-LIKE)  and  MAX2  (MORE  AXILLARY  GROWTH2),
leading  to  ubiquitination  and  degradation  of  SMXL2,  and

 
Fig.  3    The  interplay  among  hormones  and  carbohydrates  in  regulating  GDR.  During  GDR,  ABA  is  the  master  hormone  that  could  delay
dormancy release by repressing cell division, blocking cell communication via callose, and inhibiting the biosynthesis of DNA, RNA, and protein
by releasing SnRK1. Other hormones like GA, CKs, KARs, and ETH could interplay with ABA via transcription factors. A solid line represents the
direct effect, and a dashed line represents the indirect effect. The interplay is summarized from different species. ABA: abscisic acid; ABI5: ABA
INSENSITIVE  5;  ACC:  1-Aminocyclopropane-1-carboxylic  acid;  AIL1:  AINTEGUMENTA-like  1;  ARR:  RESPONSE  REGULATOR  1;  CALS1:  CALLOSE
SYNTHASE 1;  CKs:  cytokinins;  CYP707A:  CYTOCHROME P450,  FAMILY 707,  SUBFAMILY A;  CYCD: D type CYCLINS;  DAM: Dormancy-Associated
MADS-Box; DELLA: aspartic acid–glutamic acid–leucine–leucine–alanine; EBB3: EARLY BUD-BREAK 3; ETH: ethylene; ETR1: Ethylene Receptor 1;
FT: FLOWER LOCUS T; GA: Gibberellic acid; GA2ox1: Gibberellin 2-Oxidase 1; GA20ox1: Gibberellin 20-Oxidase 1; GA3ox1: Gibberellin 3-Oxidase
1; IPT: ISOPENTENYL TRANSFERASE; KARs: Karrikins; KAI2: KARRIKIN-INSENSITIVE 2; LAP1: Like- APETALA 1; NAC: NAM, ATAF, CUC; NCED: 9-CIS-
EPOXYCAROTENOID  DIOXYGENASE;  PP2C:  Protein  phosphatase  2C;  SnRK1/2:  SNF1-related  protein  kinase  1;  TCP:  Teosinte  Branched
Cyldoeia/PCF; TOR1: Target of Rapamycin; SMXL2: SMAX1-LIKE.
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further promoting seed dormancy release[68]. KAI2 can serve as
an environmental sensor or integrator of environmental signals
(light,  temperature,  water,  and  nutrients),  to  modulate  seed
dormancy  via  the  balance  of  ABA  and  GA[69].  In  seeds,  KAR1
promotes  seed  dormancy  release  by  increasing  endogenous
GA and repressing endogenous ABA (Fig. 3)[65,70].

 Endogenous carbohydrates participating in GDR

Carbohydrates  serve  as  energy  substances  for  cell  activities
in plants and involve almost the whole plant life cycle including
dormancy and growth. It includes soluble sugars (e.g., glucose,
fructose, and sucrose) and non-soluble sugars like starch. Those
carbohydrates  can  be  transformed  with  each  other  through
various biochemical  metabolism.  Finally,  all  carbohydrates  can
provide energy (ATP and NADH) for plants by glycolysis[71].

For  geophytes,  the  dormant  organs  are  sink  organs  and are
enriched  in  carbohydrates.  During  bulb  dormancy  release  by
cold  treatment,  polysaccharides  tend  to  be  broken  into  oligo-
saccharides or monosaccharides that could be used to maintain
the  development  and  growth  of  plants[72−74].  In  lily  or  tulip,
starch is degraded into small molecular sugars and cold contri-
butes  to  the  increase  of  fructose,  glucose,  fucose,  mannose,
altrose,  and  so  on  which  could  be  later  largely  used  for  bud
development  at  the  end  of  bulb  dormancy[75−77].  In  this
process, several starch-degrading enzymes are involved, e.g., α-
amylase,  isoamylase, β-amylase,  and α-glucosidase[78].  More-
over, in geophytes, accumulated sugars have to be transported
by  sugar  transporters  and  PD,  and  then  downloads  to  buds
where  sugars  could  be  used  as  energy  resources  for  cell
division and elongation[79].  Endogenous ABA could repress the
mobility  and  content  of  soluble  sugars  while  GA  plays  the
opposite  role  in  geophyte  dormant  buds[24,48,79].  Although
multiple research has shown the correlation between GDR and
sugars, there is yet no genetic evidence.

Sucrose not only supports energy to plant development but
also  integrates  plant  development  by  acting  as  a  signal
molecular[24].  Sucrose is  hydrolyzed into fructose,  glucose,  and
uridine  diphosphate  glucose  by  invertases  (INV)  and  sucrose
synthase  (SUS),  respectively,  and  further  phosphorylated  by
hexokinase  (HXK1)  to  generate  glucose-6-phosphate  (Glc6P),
resulting in trehalose-6-phosphate (T6P) and Glc1P[80].  T6P and
Glc1P  have  conserved  functions  among  plants  that  are
involved  in  energy  supply  and  signal  transduction[80].  Sugar

metabolic  and  signaling  pathways  integrate  endogenous
phytohormone  signals  as  well  as  environmental  signals  (light,
temperature,  water,  and  nutrients)  and  further  regulate  or
balance plant development[24,80].  HXK1 and REGULATOR OF G-
PROTEIN SIGNALING 1 (RGS1) directly sense glucose, and SUS is
a  potential  sucrose  sensor[80].  In  addition,  Sucrose  Non-
Fermenting  Related  Protein  Kinase  1  (SnRK1)  and  Target  of
Rapamycin  (TOR)  can  sense  energy  status  (Fig.  3)[24].  TOR  is  a
growth  activator  and  promotes  mRNA  translation  and  cell
division  by  phosphorylating  the  mTOR  Substrate  S6  Kinase  1
(S6K1)  when  in  a  high  energy  state  (e.g.,  high  T6P,  G1P,  and
G6P)[24]. But when in a low energy state, SnRK1 is active and can
inhibit  the  TOR's  activity  by  direct  phosphorylation[24].  Modi-
fying  the  transcriptional  levels  of  SnRK1  and  T6P  in  potatoes
significantly affects the tuber's dormancy trait[81].

 Epigenetic regulation regulating GDR

Epigenetics refers to the reversible and heritable changes in
gene function without  changing the DNA sequence.  In  plants,
the  main  epigenetic  regulation  mechanisms  include  DNA
methylation,  histone modification,  chromatin  remodeling,  and
microRNAs  (miRNAs)[82].  Although  several  reviews  suggested
that epigenetic regulations are involved in GDR, limited genetic
evidence  supports  these  postulates  due  to  lack  of  efficient
genetic transformations for GDR[24,82].

 Histone modification
Histone modification is one of the most important epigenetic

modifications  in  plants,  which  fine-tunes  gene  expression
during  plant  development  transitions  by  changing  chromatin
structure,  and  mainly  includes  acetylation,  methylation,  and
ubiquitylation  (Table  1)[24].  During  DR  in  lily  bulbs,  genes
related  to  histone  modifications  are  changed  dramatically,  a
similar  tendency  occurs  in  bud  and  seed  dormancy[24,83,84].
During  endodormancy  release  in Pyrus  pyrifolia,  H3K4me3  (H3
lysine  4  trimethylation)  level  at DAM locus  is  reduced[85].
Meanwhile,  H3K27me3  is  remarkably  enriched  at DAM loci[86].
In  poplar,  a  negative  regulator  of  bud dormancy,  EEB3 (EARLY
BUD  BREAK3)  is  repressed  in  its  transcript  level  by  H3K27me3
when buds are in dormant states,  and further  extends the cell
cycles  in  the  shoot  meristem[87].  Histone  acetylation  is  also
involved in GDR. In potato tubers,  histone acetylation levels of
histone  H4,  H3.1/3.2  are  increased  when  GDR[88].  As  it  is  well
known that genes in pathways of flowering, vernalization, and

Table 1.    Dormancy associated genes regulated by epigenetics.

Modification type Regulation factors* Functional class* Target genes* References

Chromatin remodeling complexes BRM SWI2/SNF2-like FT, CO, SOC1 [91]
Chromatin remodeling complexes EBS BAH and PHD domain-containing protein FT [93]
Heterochromatin LHP1 HP1 homologue FT [91]
Histone deacetylation FLD Homologous to a subunit of histone deacetylase

complexes
FLC [91]

Histone deacetylation FVE Putative subunit of histone deacetylase complex FLC [91]
Histone monoubiquitination HUB1/2 E3 homologs FLC [94]
Histone methylation MRG1/2 H3K36me3 FT [95]
Histone methylation VRN1/2 H3k27me3 FLC, FT [91,96]
Histone demethylation JMJ30 Histone demethylase SnRK2.8 [97]
DNA methylation MET1 Maintenance CpNpG methyltransferase FLC [91]

* BAH: bromo-adjacent homology; BRM: BRAHMA; CO: CONSTANS; EBS: EARLY BOLTING IN SHORT DAYS; FLC: FLOWER LOCUS C; FLD: FLOWER LOCUS D; FT:
FLOWER  LOCUS  T;  FVE:  FLOWER  LOCUS  VE;  HUB:  HISTONE  MONO-UBIQUITINATION;  JMJ30:  JUMONJI  C  DOMAIN-CONTAINING  PROTEIN  30;  LHP1:  LIKE
HETEROCHROMATIN PROTEIN; MET1: METHYLTRANSFERASE 1; MRG: MORF RELATED GENE 1; PHD: Plant homeodomain; SnRK: SNF1-related protein kinase 1;
SOC1: SUPPRESSOR OF OVEREXPRESSION OF CO 1; SWI2/SNF2: SWITCHING2/ SUCROSE NONFERMENTING; VRN: VERNALIZATION.
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ABA  are  proven  to  be  involved  in  GDR,  here,  we  summarize
some histone modifications  at  these  loci  in  Arabidopsis (Table
1). It is clear that GDR is regulated by histone modification but
the mechanism remains unknown in geophytes.

 DNA methylation
In  plants,  DNA  methylation  occurs  at  cytosines  in  all  sequ-

ence  content  (CG,  CHH,  and  CHG)[89].  DNA  METHYLTRANSFE-
RASE  1  (MET1),  CHROMOMETHYLTRANSFERASE2  (CMT2),  and
CMT3  are  responsible  for  the  maintenance  of  CG,  CHH,  and
CHG  methylation,  respectively[89].  Low-temperature-induced
GDR  in  lily  bulbs  and  DNA  demethylation  is  increased,  which
contributes  to  the  cell  division  in  shoot  meristems[90].  In
Arabidopsis, DNA methylation could regulate the vernalization
gene  (FLC)  which  is  tightly  controlled  during  the  transition
stage (Table 1)[91,92]. Currently, research about DNA methylation
in GDR is less illustrated.

 miRNA
MicroRNA  (miRNA)  is  a  special  class  of  small  RNAs  (sRNAs)

with  a  length  of  about  19  to  24  nucleotides  in  length  which
guide  the  post-transcriptional  silencing  of  target  genes  with
high  complement  to  the  miRNA[98].  In  plants,  miRNAs  are  in-
volved  in  all  aspects  of  plant  development  and  transition
stages from growth to dormancy, cell  proliferation to differen-
tiation, and vegetative to reproductive growth[99]. Besides, hor-
mone signaling and environmental  signals  could  be mediated
by  miRNAs,  e.g.,  miRNA390  and  miRNA319  mediate  auxin
signaling  and  low-temperature  signaling  by  targeting ARF2
(AUXIN  RESPONSE  FACTOR2)  and TCP1,  respectively[99,100].  It  is
well  known  that  miRNA-target  gene  modules  are  conserved,
such  as  miR156/157-SPL,  miR160-ARF,  miR172-AP2,  miR319-
TCP,  and  miR390-TAS3 (ta-siRNAs  act  on ARF)[98].  But  some
conserved miRNAs also have gained unique targets in different
species  throughout  the  evaluation  process,  like  miRNA396  in
moss and miRNA390 in Physcomitrella patens[98].

Although  much  process  has  been  achieved  on  perennial
vegetative  bud  dormancy  by  RNA  sequencing  techniques  in
recent  years,  the  genetic  evidence  is  still  missing  (Table  2).  In
Japanese apricot (Prunus mume Sieb. et Zucc.), miR169 regulates
the  NF-Y  complex  to  activate  the  bud  dormant  release[101].  In
Lilium  pumilum,  several  miRNAs  were  identified  to  be  poten-
tially  involved in  bulb  dormancy,  e.g.,  miR159,  miR160,  mi166,
miR168  and  miR396[90].  In  apple,  miR159  represses  the  trans-
criptional  level  of MdMYB33 and MdMYB65 and  mediates  bud
dormancy  release  by  balancing  endogenous  ABA  homeo-

stasis[102].  Other  dormancy-associated  genes,  like DAM and
CDPK1,  are  also  reported  to  be  regulated  by  miR6390  and
miR390, respectively[103,104].

 Small molecular chemicals promoting GDR

 Nitric oxide
Nitric oxide (NO) is reported to be involved in various abiotic

and  biotic  stress  and  plant  physiology[109,110].  In  potatoes,  NO
mediates tuber dormancy release and sprouting by regulating
ABA  metabolism  that  exogenous  NO  dramatically  stimulates
the  expression  of StCYP707A1 and  inhibits  the  expression  of
StNCED1[111].  Although  NO  is  accumulated  in  buds  during
dormancy  release  in  grapevine  and  peach,  the  role  of  NO  in
GDR requires further investigation[112,113].

 Bromoethane
Similar  to  NO,  bromoethane  accelerates  tuber  dormancy

release in potato[114]. After bromoethane treatments, ABA cata-
bolic  genes  (StCYP707A1,  StCYP707A2 and StCYP707A3)  were
up-regulated while ABA biosynthesis genes (StNCED1, StNCED2
and ZEP family genes) were down-regulated, and resulted in a
low ABA content that accelerated dormancy release[115].

 Glycerol
In  some geophytes,  glycerol  is  enriched in  dormant  storage

organs,  such  as  Easter  lily  and  yam[75,116].  During  GDR  in  lily,
glycerol  content  is  decreased  in  scales  along  with  dramatic
changes  in  glycerol-related  genes.  Moreover,  exogenous  gly-
cerol  treatment  significantly  enhances NCED expression  and
delays  dormancy  release  as  well  as  flower  transition[75].  How-
ever,  the  effect  of  glycerol  on  dormancy  release  in  other
geophytes is less documented.

 Wounding treatments activating GDR

Wounding treatments are stress signals which can stimulate
a series of complex physiological  and biochemical  reactions in
plants, regulating DNA synthesis, respiration rates and wound-
induced  hormones  (e.g.,  ethylene  and  ABA)[117].  Wounding
treatments by cutting, pruning, stabbing, etc, have been found
to  be  practical  ways  to  promote  the  dormancy  release  in
geophytes  (onion  and  potato),  vine  buds  (grapevine),  and
seeds (Arabidopsis)[113,118−120].

The  wounding  treatments  significantly  promote  GDR  by  in-
creasing cell respiration in dormant organs. The wounding res-

Table 2.    miRNA related to bud dormancy.

miRNA Targets* Species Function Reference

miR156 SPL Paeonia suffruticosa Bud dormancy release [105]
miR159 MdMYB33 and MdMYB65 Malus domestica ABA homeostasis [102]
miR159 MYB/TCP Lilium pumilum Bulb dormancy release [90]
miR160 ARF Lilium pumilum Bulb dormancy release [90]
miR169 HAP2 Populus tremuloides Vegetative bud dormancy [106]
miR169 NF-YA Prunus mume Bud dormancy release [101]
miR172 AP2 Paeonia suffruticosa Bud dormancy release [105]
miR319c TCP2 Camellia sinensis Apical bud burst [107]
miR390 TAS3 Pyrus pyrifolia Endodormancy release [108]
miR390 CDPK1 Solanum tuberosum Tuber dormancy [104]

miR6390 DAM Pyrus pyrifolia Dormancy transition [103]

* AP:  APETALA;  ARF:  AUXIN RESPONSE FACTOR;  CDPK:  CALCIUM-DEPENDENT PROTEIN KINASE;  DAM: DORMANCY-ASSOCIATED MADS-BOX;  HAP:  HAPLESS;
MYB:  MYELOBLASTOSIS;  NF-YA:  Nuclear  Transcription  Factor  Y  Subunit  Alpha;  SPL:  SQUAMOSA  PROMOTER  BINDING  PROTEIN-LIKE;  TAS:  TRANS-ACTING
SIRNA3; TCP: TEOSINTE BRANCHED1/CYCLOIDEA/PCF.
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piration  is  in  collaboration  with  wound  healing  reactions  and
promotes  callus  formation,  lignin,  and  xanthan[121].  Accompa-
nied  by  carbohydrate  catabolism,  respiration  activates  glyco-
lysis and pentose phosphate pathways and provides energy for
dormancy release[122]. In potatoes, respiration stimulates starch
glycolysis  and  leads  to  faster  tuberous  sprouting  and  thick
sprouts[122,123].

Due to the wounding treatments, phytohormone levels (like
ethylene and ABA) are changed which further affects the speed
of  dormancy  release.  Wound-induced  ethylene  is  well  docu-
mented and that the ethylene precursor ACC is accumulated in
injured  tissues[124].  Elevated  ethylene  could  regulate  GDR  as
described  above.  Wounding  treatments  can  decrease  endo-
genous  ABA  in  potato  tubers[125].  A  similar  observation  occurs
in  dormant  corms  in  Gladiolus  where  cutting  treatment  also
represses  the  expression  of NCED and  ABA  content.  But
regulating  networks  between  the  wounding  signal  and  ABA/
ethylene are still unclear.

Wounding treatments also increase the capacity of dormant
tissues  to  meet  with  oxygen  and  water  and  cause  early
sprouting. These methods are technically useful for seeds with
compact  seed  coats  or  pericarp-testa  like  lotus  and  celery
seeds.  Heme-binding  proteins  can  function  as  sensors  for
oxygen and nitric oxide, which can directly repress the activity
of DOG1 (DELAY OF GERMINATION) protein and further release
seed dormancy[89].  Once water uptake has occurred, the water
potential  thresholds  for  radical  were  changed,  resulting  in
germination[126].  The  detailed  mechanism  of  wounding-
induced  seed  germination  is  well  documented  but  is  not  the
main focus of the current review.

 Conclusions and perceptions

In  nature,  plants  have  to  make  changes  to  adapt  to  harsh
environmental  conditions,  and  varieties  of  dormancy  have  e-
volved for different organs, like seed dormancy, bud dormancy,
and  geophyte  dormancy.  Here,  we  mainly  summarize  recent
progress  on  how  geophytes  sense  and  respond  to  environ-
mental factors (temperature and light)  during GDR, the effects
of  endogenous  hormones,  carbohydrates,  and  epigenetics  on
GDR,  and  the  mechanism  of  some  small  molecular  and
wounding treatments on GDR.

Despite our growing knowledge of seed dormancy in model
plants,  e.g.,  Arabidopsis,  rice,  and  wheat,  many  secrets  remain
to be decoded in  the field  of  geophytes.  Currently,  we cannot
find  an  accurate  physiological  symbol  to  divide  the  dormancy
and the start  point  of  dormancy release.  In  lily,  it  is  suggested
that  the  inflection  point  of  soluble  sugars  refers  to  the  start
point  of  dormancy  release[78].  However,  we  lack  the  necessary
evidence and has not been proven in other geophytes. Due to
large genome sizes (~1 Gb to 50 Gb), long juvenile periods, and
low  genetic  transformant  efficiencies  for  geophytes,  the
regulating  network  for  GDR  is  largely  unclear.  Compared  with
seed dormancy, developing gene markers of the dormant trait
in  geophytes  is  lacking.  With  the  rapid  advance  of  high-
throughput omics sequencing (genomics, proteomics, metabo-
lomics,  ChIP-seq,  and  others)  and  achievements  of  transgenic
strategy  in  geophytes,  it  will  generate  a  broad  and  detailed
picture  of  geophyte  dormancy which contributes  to  distingui-
shing geophyte dormancy with other types of dormancy on the
aspect  of  plant  evolution,  response  to  environmental  factors,

changes  in  specific  cells  (metabolism,  epigenetics,  transcripts)
and  molecular  breeding  for  new  cultivars  of  geophytes  with
various degrees of dormancy.
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