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Abstract
Pyrethrum (Tanacetum cinerariifolium), a perennial herb within the Tanacetum genus, stands as a crucial source of natural insecticides pyrethrins

which have been utilized for centuries. This study delves into the historical utilization of pyrethrum and elucidates the biosynthetic pathways of

pyrethrum,  uncovering  the  majority  of  genes  responsible  for  pyrethrin  production.  Moreover,  pyrethrum  flowers  and  stems  are  rich  in

sesquiterpene lactones, known for their antifungal attributes, and they release (E)-β-farnesene, an aphid alarm pheromone that lures predators

such as ladybirds. These discoveries emphasize pyrethrum's multifaceted chemical defense against various biotic adversaries and its viability as a

companion plant in agricultural settings. Farmers have recognized and begun utilizing pyrethrum in this capacity.  The paper underscores the

need for further research to thoroughly comprehend and exploit pyrethrum defense strategies for sustainable farming practices, underscoring its

potential in ecological and agricultural spheres.
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 Introduction

Insect pests present a formidable challenge to global agricul-
ture,  accounting  for  up  to  35%  of  crop  yield  losses[1].  In
response,  synthetic  chemical  pesticides  have  been  extensively
used.  However,  their  indiscriminate  application  resulted  in
significant  environmental  harm  and  adverse  human  health
effects.  These  issues  highlight  the  pressing  need  for  eco-
friendly  and  safe  insecticides[2].  Notably,  natural  pyrethrin,
extracted  from  the  dried  flower  heads  of Tanacetum  cinerarii-
folium, along with neem oil and rotenone, plays a pivotal role in
pest  management[3].  Natural  pyrethrin  is  especially  valued  for
its  minimal  toxicity  to  mammals  and  its  rapid,  effective  action
against  a  broad  spectrum  of  insects.  However,  the  post-World
War II advent of more affordable synthetic pyrethroids led to a
decline  in  the  use  of  natural  pyrethrins  in  agriculture,  signifi-
cantly impacting their industry.

Recently, there has been a revival in the use of pyrethrins as
insecticides.  Their  lower  propensity  to  induce  pest  resistance,
compared  to  synthetic  pyrethroids,  renders  them  effective
against certain resistant pest species[4].  Pyrethrins comprise six
distinct  molecules  with  varying  efficacies,  resulting  in  lower
toxicity  but  greater  efficiency  in  pest  control,  including  effec-
tive  repellent  properties,  thus  reducing  the  selection  of  resis-
tant  alleles[5].  Moreover,  pyrethrins  are  biodegradable  and
decompose  under  UV  light,  minimizing  their  environmental
persistence  and  impact  on  non-target  organisms  due  to  their
short  active  period[6].  Used  in  safe  concentrations  and  refined
to  eliminate  sesquiterpene  lactone  residues,  pyrethrins  are
deemed  non-carcinogenic  and  safe  for  sensitive  persons  like

pregnant women or infants[7,8]. These attributes have bolstered
the  resurgence  of  this  traditional  natural  insecticide,  particu-
larly in household use and organic farming practices.

The  global  pyrethrum  industry  has  witnessed  substantial
growth,  driven  by  advancements  in  manufacturing  processes,
improved  product  quality,  and  effective  marketing  strategies.
Overcoming  its  historical  pattern  of  production  fluctuations,
the  pyrethrum  sector  now  represents  the  most  commercially
viable  and  promising  natural  source  of  environmentally  pro-
tective  insecticides.  Pyrethrum  flowers  synthesize  secondary
metabolites,  including  pyrethrins  and  terpene  volatiles,  as
defense mechanisms against insect predation[9,10].  Therefore, a
thorough  understanding  of  the  biosynthetic  pathways  and
regulatory  mechanisms  involved  in  the  production  of  these
compounds  is  crucial.  Our  focus  extends  to  exploring  the
historical  evolution  of  the  pyrethrum  production  industry,
particularly  in  terms  of  enhancing  the  natural  pyrethrin
content.  Moreover,  we  investigate  the  potential  of  employing
pyrethrum as a companion plant.

 Pyrethrum in horticulture: cultivation and
pyrethrin production

 Historical utilization of insecticidal
chrysanthemum plants and the development of
pyrethrum cultivation

The  insecticidal  properties  of  some  chrysanthemum-like
plants,  similar  to  those  observed  in  modern  pyrethrum,  have
been  recognized  since  ancient  times.  Ancient  Chinese  texts,
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such as the 'Rites of the Zhou' during the Warring States period
(475−221 BC),  describe the use of ash,  powder,  or smoke from
'Muju'  (translated  as  'male  chrysanthemum  plants')  during  the
Zhou Dynasty (1046−256 BC) to repel or eliminate noisy aquatic
insects  and  frogs,  thereby  preventing  their  sounds  from
disturbing  the  nobility.  This  application  exhibited  toxicity  akin
to  pyrethrins,  particularly  effective  against  aquatic  insects.
Zheng  Xuan,  a  Han  Dynasty  (127−200  AD)  scholar,  noted  the
self-fertilization  challenges  of  these  plants  due  to  their  lack  of
ornate  flowers,  which  affected  pollination  and  seed  quality.
Zong  Lin  (499−563  AD)  in  his  'Jingchu  Suishiji'  (Festivals  and
Seasonal Customs of the Jing-Chu Region) also mentioned the
use  of  chrysanthemum-like  plant  ashes  or  powder  as  insect
repellents  in  the  Jing  and  Chu  regions.  However,  with  the
evolution of Chrysanthemum plants into symbols of purity and
elegance and their use in ornamental, tea, and culinary applica-
tions,  the insecticidal  usage of these plants became less docu-
mented  in  later  ancient  Chinese  literature.  Therefore,  despite
some  scholarly  suggestions  that  these  plants  are  akin  to
modern  pyrethrum[11],  there  is  no  direct  evidence  to  confirm
that they are the same species.

In  historical  practices,  the  use  of  plant  extracts  and  dried
powders as insect repellents can be traced back to the Roman
Empire.  Around  400  BC,  during  Persian  king  Xerxes'  reign,
pyrethrum  was  used  for  its  dried  flower  powder  to  delouse
children[12]. Although records of this plant's insecticidal use are
limited, it is believed to have been traded along the Silk Route
to Europe, where its dried flowers became a popular means to
deter insect bites in ancient times.

The  widespread  commercial  cultivation  of  pyrethrum  as  an
insecticidal  agent commenced in the 19th century.  The initially
cultivated species, Tanacetum coccineum (commonly known as
Persian  pyrethrum),  notable  for  its  vivid,  daisy-like  red,  pink,
and white flowers[13],  exhibited genetic variability in tetraploid
(4n  =  36)  and  diploid  (2n  =  18)  forms.  Originating  from  the
Caucasus  region,  between  the  Black  Sea  and  the  Caspian
Sea[14],  the commercial cultivation of Persian pyrethrum began
in  Armenia  in  1828.  The  product,  known  as  'Persian  insect
powder'  derived  from T.  coccineum dried  flowers,  quickly
became renowned for its efficacy in delousing children[12].

Around  1840,  a  significant  shift  in  cultivation  practices
occurred  with  the  introduction  of T.  cinerariifolium,  or  Dalma-
tian pyrethrum. This shift was driven by the discovery of higher
pyrethrin  content  in  Dalmatian  pyrethrum  flower  heads
compared to Persian pyrethrum. Native to the eastern Adriatic
coast, Dalmatian pyrethrum thrives in areas like Croatia, Bosnia,
Herzegovina,  and  Montenegro[15].  After  the  phylloxera
outbreak in Dalmatian vineyards in 1910, the region pivoted to
Dalmatian  pyrethrum  cultivation,  leveraging  its  resistance  to
phylloxera and suitability for large-scale farming. Dalmatia soon
became  the  leading  global  pyrethrum  cultivation  region,
becoming the primary source of pyrethrins[16].

Global  conflicts,  notably  World  War  I,  disrupted  the
pyrethrum  industry,  hindering  exports  from  Dalmatia  and
elevating  Japan  as  a  leading  producer.  World  War  II  further
complicated  the  supply  chain,  leading  to  the  expansion  of
pyrethrum  cultivation  in  Eastern  African  regions,  including
Kenya,  Tanzania,  and  Rwanda.  During  this  period,  Kenya
became  the  top  pyrethrum  producer,  meeting  the  allied
armies'  needs.  However,  the mid-20th century saw a decline in
the pyrethrin industry due to the rise of  synthetic  insecticides.

By the late 20th century, as the demand for natural and environ-
mentally  friendly  products  grew,  interest  in  natural  pyrethrins
resurged,  driving  growth  in  the  Australian  pyrethrum  sector
with efforts towards enhancing the industry's sustainability and
efficiency[11].

Commercial cultivation of pyrethrum in China commenced in
the  1930s  in  Jiangsu  province.  By  1935,  the  planted  area  in
Jiangsu and Zhejiang provinces reached nearly 500 hectares. By
1952,  the  production  of  dry  pyrethrum  flowers  in  Jiangsu
province was recorded at 350 metric tons.  However,  a notable
decline in cultivation areas ensued due to an increased empha-
sis  on cotton farming and the advent of  synthetic pyrethroids,
persisting  until  the  onset  of  the  new  millennium.  In  the  early
21st century,  the  focus  of  pyrethrum  cultivation  shifted  to
Yunnan province due to favorable growing conditions (Fig.  1).
Since  2018,  Yunnan's  cultivation  area  has  expanded  to  about
4,000  hectares,  with  Yuxi  alone  accounting  for  over  2,000
hectares,  establishing  Yunnan  as  a  key  player  in  the  global
market[17].  Today,  Australia,  China,  and  Kenya  are  the  leading
global pyrethrin producers.

 Biological characteristics of pyrethrum
The Tanacetum genus,  part  of  the  Asteraceae  family,

comprises  approximately  160  species  of  perennial  plants,
recognized for their daisy-like flowers, these species are charac-
terized by their  deeply incised leaves and flower heads,  which
exhibit  a  spectrum  of  colors  from  white  to  pink  and  yellow.
Extracts  from Tanacetum species  display  a  range  of  biological
activities,  including  antibacterial,  anti-inflammatory,  and  anti-
cancer  properties[18].  Among  the Tanacetum genus,  only
selected  species  like T.  coccineum and T.  cinerariifolium are
renowned for their high insecticidal toxicity. T. cinerariifolium, in
particular, is globally cultivated as a commercial pesticide plant.
As an outcrossing diploid species (2n = 18), it displays high self-
incompatibility,  resulting  in  significant  pyrethrin  content  vari-
ability  within  the  same  geographic  region[19].  Dried  flower
heads of wild pyrethrum populations typically contain 0.36% to
1.3%  pyrethrins,  with  individual  levels  ranging  from  0.10%  to
1.35%[20,21].  In  comparison,  plants  grown  in  Yunnan  province,
China,  show  higher  pyrethrin  content,  ranging  from  0.45%  to
2.38%[19].

Pyrethrum  plants  can  flower  throughout  the  year  when
vernalized,  typically  producing  flowers  for  three  consecutive
years,  extendable to 4−5 years  under optimal  conditions[22].  In
China,  farmers  often  replant  pyrethrum  annually  after  harvest,
aiming to preserve its pyrethrin content and utilize the cleared
fields for rotating high-value crops.

Pyrethrins  mainly  accumulate  in  well-developed  seed
embryos,  protecting  them  from  degradation  at  elevated
temperatures[23].  The concentration of pyrethrins in pyrethrum
leaves  is  approximately  one-tenth  of  that  found  in  the  flower
heads[24].  The  industry  typically  discards  flower  stems  and
leaves,  focusing  on  extracting  essential  oils  solely  from  the
flowers.  Pyrethrum flower heads progress through eight deve-
lopmental stages (S1 to S8), with harvest timing critical for opti-
mal yield. Around 94% of pyrethrins are stored in the secretory
ducts and achenes of mature flowers, with pyrethrin accumula-
tion  per  flower  closely  related  to  the  number  of  achenes,  the
yield  per  achene  is  notably  higher  in  those  with  embryos
compared  to  hollow  ones[25].  Although  the  highest  pyrethrin
content is  observed at stage 6 (S6),  harvesting typically occurs
during more uniform stages S4−S5 for mechanical efficiency.
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 Components and insecticidal activity
In  terms of  insecticidal  activity,  pyrethrum efficacy  primarily

stems from six structurally similar ester compounds found in its
crude extract: pyrethrin I,  cinerin I,  jasmolin I (pyrethrin type I),
and pyrethrin  II,  cinerin  II,  jasmolin  II  (pyrethrin  type II)[26].  The
total  pyrethrins  typically  comprise  73%  pyrethrin  I  and  II,  19%
cinerin  I  and  II,  and  8%  jasmolin  I  and  II[27].  Pyrethrin  I  and  II
demonstrate  superior  knockdown  and  insecticidal  activity
compared to cinerins and jasmolins[28], with pyrethrin I exhibit-
ing greater lethality and pyrethrin II providing a quicker knock-
down effect[29].

Pyrethrins  target  voltage-gated  sodium  channels  in  insects,
altering  nerve  functions  by  prolonging  channel  opening[30].
Studies  suggest  that  pyrethrum  extract  induces  autophagy  in
insects non-nervous systems[31].  All six compounds inhibit fast-
channel inactivation, with varying effects on channel deactiva-
tion, and pyrethrin II is the most potent[30]. A mere 0.001% (v/v)
concentration  of  pyrethrum  extract  can  cause  100%  mortality
in  larvae  of Corcyra  cephalonica[32],  and  at  0.1%,  it  effectively
controls the cherry weevil[33].  Beyond insect control, pyrethrins
have applications in treating seborrheic dermatitis[34], and have
been shown to induce oxidative DNA damage in SH-SY5Y cells
and mediate autophagy through the AMPK/mTOR pathway[35].

 Biosynthesis and localization regulation of
pyrethrins

The  production  of  natural  pyrethrin  extract  is  a  labor-inten-
sive process, contributing to its higher cost than synthetic alter-
natives.  However,  the  prospect  of  mass-producing  natural
pyrethrins through biotechnology,  utilizing microorganisms or
plant  hosts  offers  a  potential  avenue  for  cost  reduction[36].  A
complete  understanding  of  the  pyrethrin  biosynthesis  path-
way  is  imperative  for  this  biotechnological  approach  to  be
feasible.

Pyrethrins, primarily biosynthesized in the flower heads of T.
cinerariifolium,  are  esters  formed  from  the  esterification  of  a
monoterpenoid  acyl  moiety  (pyrethric  or  chrysanthemic  acid)
with  an  alcohol  moiety  (pyrethrolone,  jasmololone,  and
cinerolone)  (Fig.  2).  The  acid  component  originates  from  the
methylerythritol-4-phosphate  (MEP)  pathway  within  plastids,
part  of  the  terpene  biosynthetic  network[37].  In  contrast,  the

alcohol moiety derives from the jasmonic acid (JA) biosynthetic
pathway, involving enzymes such as lipoxygenase (LOX), allene
oxide  synthase  (AOS),  allene  oxide  cyclase  (AOC),  oxo-phyto-
dienoic  acid  reductase  (OPR),  and  three β-oxidation
stages[38−40].  Jasmolone hydroxylase (JMH), a P450 cytochrome
oxidoreductase,  is  key  in  converting  jasmone  to  jasmolone[41].
Pyrethrolone synthesis from jasmone involves PYS (CYP82Q3), a
member of the CYP82 family[42].

The  synthesis  of trans-chrysanthemic  acid  begins  with
chrysanthemyl  diphosphate  synthase  (CDS),  which  combines
two  dimethylallyl  diphosphate  (DMAPP)  molecules  to  form
chrysanthemyl  diphosphate  (CPP).  The  conversion  of  CPP  to
trans-chrysanthemol  may  be  facilitated  by  a  Nudix-like  phos-
phatase  enzyme[43,44].  Subsequent  steps  involve  enzymes
TcADH2  and  TcALDH1,  transforming trans-chrysanthemol  into
aldehyde  and  acid  forms.  The  10-carboxychrysanthemic  acid
10-methyltransferase (CCMT) methylates the carboxyl group at
C10  of trans-chrysanthemum  acid,  producing  pyrethric  acid.
Lastly,  a  GDSL  lipase-like  protein  (GLIP)  links  the  acid  and
alcohol  moieties  to  form  the  pyrethrin  molecule[45−47].  This
complete  biosynthetic  pathway  for  pyrethric  acid  has  been
reconstructed  in Nicotiana  benthamiana and Solanum
lycopersicum[47,48].

Despite  these  advancements,  gaps  remain  in  our  under-
standing, particularly in converting Jasmonates (JAs) to jasmone
and jasmolone to cinerolone. Pyrethrolone in pyrethrin II  likely
originates  from  12-oxo-phytodienoic  acid  (OPDA),  iso-OPDA,
and cis-jasmone, rather than methyl jasmonate (MeJA) or JA[49].
This suggests partial,  but not complete,  alignment with the JA
biosynthetic pathway, raising questions about JA direct role in
pyrethrin biosynthesis versus its regulatory function.

Recent  discoveries  have  significantly  enhanced  our  under-
standing  of  pyrethrin  biosynthesis  and  its  subcellular  localiza-
tion  in  pyrethrum  plants.  Initially  believed  to  accumulate
primarily  in  the  trichomes  of  floral  ovaries,  advancements  in
isolation  and  extraction  methods  have  revised  this  view.
Contrary  to  earlier  beliefs,  the  concentration  of  pyrethrins  in
trichomes is relatively low at about 0.55%. However, trichomes
are  reservoirs  for  nearly  all  pyrethrin  precursors[50].  Enzymes
critical  for  pyrethrin  metabolism  are  predominantly  expressed
in  trichomes  covering  the  ovaries.  Importantly,  the  final  two
enzymes in the pathway, CCMT and GLIP, are located within the
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Fig. 1    Cultivation of pyrethrum. (a) Blossoming pyrethrum fields in Yunnan, China. (b) Mechanical harvesting of pyrethrum in Yunnan, China.
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ovary  tissues[41,47].  This  indicates  that  chrysanthemum  acid  is
synthesized in trichomes and then transported to the pericarp
of the achenes,  where pyrethric  acid and ultimately pyrethrins
are synthesized.

 Improvements in natural pyrethrin content

 The effect of environmental factors on pyrethrin
content and accumulation

Environmental  factors  play a pivotal  role in the content and
accumulation of pyrethrins in pyrethrum cultivation. Moderate
drought  conditions  can  expedite  the  flowering  of  pyrethrum,
facilitating  earlier  harvesting.  However,  this  may  also  limit  the
duration  of  pyrethrin  accumulation  and  reduce  the  pyrethrin
content  at  flower  maturity[25].  Soil  type  and  pH  significantly
impact  pyrethrum  yield.  Typically,  pyrethrum  prefers  well-
drained,  moderately  fertile  karst  soils  in  its  native regions.  The
optimal  soils  for  pyrethrum  production  are  volcanic  and  clay
loams,  which  tend  to  be  slightly  alkaline[51].  Nevertheless,
pyrethrum  shows  adaptability  to  various  soil  types;  in  Yunnan
province,  it  is  commonly  cultivated on less  fertile  soils,  includ-
ing barren hillsides, yet still exhibits robust growth.

Temperature  variations  markedly  influence  yield.  Field
studies indicate that pyrethrum thrives in cool climates and can

overwinter  in  the  open  fields  of  Wuhan.  The  ideal  growth
temperature  range  is  20−25  °C,  with  optimal  flowering  and
pyrethrin content observed when plants experience cool nights
and  warm  days.  Vernalization  at  lower  temperatures  can
enhance flower yield and stem elongation[52].  Conversely, high
temperatures (above 30 °C) negatively affect pyrethrin accumu-
lation[11].  In  Yunnan's  Yuexi,  with  an  average  annual  tempera-
ture  of  17.4–23.8  °C,  pyrethrum  flowers  throughout  the  year
and  show  optimal  growth.  In  contrast,  Wuhan's  hot  summers,
occasionally  exceeding  38  °C  for  around  20  d,  can  lead  to
dormancy  or  death  of  the  above-ground  parts  of  the  plant.
Moreover,  high  temperatures,  particularly  during  the  early
flowering  stage,  can  act  as  thermal  stress,  accelerating  flower
development and reducing pyrethrin content at maturity[53].

 Pyrethrins and their regulatory mechanism
Pyrethrins, naturally present in pyrethrum leaves and flowers,

are  subject  to  hormonal  regulation.  Plant  growth  regulators
such  as  gibberellins  (especially  GA3),  IAA,  and  ABA  have  been
shown  to  effectively  enhance  pyrethrum  growth  and  increase
pyrethrin  accumulation[54,55].  Furthermore,  salicylic  acid  treat-
ment elevates the expression of pyrethrin synthesis genes and
the  accumulation  of  pyrethrin  I[56].  Additionally,  JAs  play  a
particularly  significant  role,  acting  both  as  substrates  and
hormones in pyrethrin synthesis.

 

Fig.  2    The  pathway  of  pyrethrins  biosynthesis.  Solid  arrows  represent  the  steps  that  have  been  elucidated  in  the  pathway,  while  dashed
arrows indicate the steps that remain to be clarified. 13-LOX (13-lipoxygenase), AOS (allene oxide synthase), AOC (allene oxide cyclase), OPR3
(OPDA reductase 3), CDS (chrysanthemyl diphosphate synthase), ADH2 (alcohol dehydrogenase 2), ALDH1 (aldehyde dehydrogenase 1), CHH
(chrysanthemol  10-hydroxylase),  GLIP  (GDSL  lipase-like  protein),  JMH  (jasmolone  hydroxylase),  MT  (10-carboxychrysanthemic  acid  10-
methyltransferase), PYS (pyrethrolone synthase).
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JAs are crucial  to a  range of  plant  processes,  including seed
germination,  root  hair  development,  stomatal  regulation,
flower  and  hypocotyl  growth,  leaf  senescence,  chlorophyll
degradation, trichome production, and responses to biotic and
abiotic  stress[57,58].  Studies  demonstrate  a  rapid  increase  in
pyrethrin  content  in  leaves  following  mechanical  damage  or
insect  feeding.  However,  leaf  damage  during  the  flowering
stage  does  not  similarly  increase  pyrethrin  levels  in  flower
heads[24].  In  flower  heads,  pyrethrin  composition  is  primarily
regulated  by  endogenous  JAs,  with  exogenous  JAs  unable  to
significantly  boost  pyrethrin  content.  The  application  of  MeJA
mimics  the  endogenous  JA  induction  pattern,  peaking  in  the
expression  of  pyrethrin  biosynthesis  genes  6  to  12  h  post-
application[41].  Interestingly,  in  damaged  pyrethrum  plants,
besides  the  rapid  upregulation  of  JAs,  the  release  of  volatile
organic  compounds  (VOCs)  can  increase  pyrethrin  accumula-
tion in nearby undamaged pyrethrum plants[59,60], highlighting
the complex relationship between pyrethrin synthesis and JAs.

Prolonged exposure to low concentrations of MeJA has been
observed  to  increase  gland  density  in T.  cinerariifolium,  indi-
rectly  leading  to  enhanced  pyrethrin  content[61].  This  under-
scores the significant role of JAs in regulating pyrethrin synthe-
sis.  Treatment  with  JAs,  particularly  MeJA,  activates  a  series  of
transcription  factors  crucially  involved  in  pyrethrin  biosynthe-
sis. TcMYC2, a key transcription factor in the JAs signaling path-
way, shows notable upregulation following MeJA treatment. Its
protein  binds  to  and  promotes  the  expression  of  essential
genes in pyrethrin synthesis, such as TcAOC, TcCHS, and TcGLIP,
thus  playing  a  central  role  in  regulating  pyrethrin
production[61].

In  addition  to TcMYC2, TcWRKY75,  localized  in  the  glands,
also  contributes  to  the  regulation  of  pyrethrin  synthesis
through  this  pathway[62].  The  transcription  factors,  including
TcMYB8, TcbZIP60,  and TcbHLH14,  influence  genes  involved  in
pyrethrin synthesis to varying degrees[63−65].  There is a general
positive  correlation  between  MeJA  treatment  and  the  expres-
sion  of  genes  in  both  the  acid  and  alcohol  pathways  of
pyrethrin synthesis, including early alcohol pathway genes like
TcLOX and TcAOC.  However,  for  late  synthesis  genes  such  as
TcJMH, TcPYS, and TcGLIP, there is a positive correlation at lower
MeJA  concentrations,  but  a  rapid  decrease  in  expression  at
higher concentrations[61].

In  vitro studies  focusing  on TcMYB8 and TcbHLH14 genes
have  shown  their  strong  affinity  for  binding  to  the TcGLIP
promoter,  initiating  downstream  gene  expression.  Neverthe-
less, in  vivo studies  indicate  no  significant  increase  in  TcGLIP
expression  with  the  overexpression  of TcMYB8 or TcbHLH14.
This  suggests  a  complex  feedback  regulatory  mechanism
involving  JAs  in T.  cinerariifolium[64,65].  These  insights  into  the
transcriptional  regulation  of  pyrethrin  synthesis  not  only
deepen  our  understanding  of  the  plant's  secondary
metabolism  but  also  open  pathways  for  optimizing  pyrethrin
production  through  targeted  genetic  and  hormonal  interven-
tions.

 Other secondary metabolites accumulated in
the pyrethrum flower

 Sesquiterpene lactones (STLs)
In addition to pyrethrins, pyrethrum flowers are a rich source

of  secondary metabolites.  Pyrethrum extracts  typically  contain

70%−80%  pyrethrins,  along  with  a  diverse  range  of  plant-
derived  compounds  such  as  terpenes,  flavonoids,  free  fatty
acids, and high-molecular-weight alkanes. The terpene fraction,
complementing  the  pyrethrins  from  the  MEP  pathway,  mainly
consists  of  various  sesquiterpene  volatiles  and  sesquiterpene
lactones  (STLs)  originating  from  the  cytoplasmic  mevalonate
(MVA) pathway.

STLs,  particularly  pyrethrosin,  are  significant  constituents  of
pyrethrum  extracts.  First  identified  in  the  19th century,  pyre-
throsin often forms crystalline precipitates in refined pyrethrum
extracts'  isoparaffin  solutions.  Characterized  by  a  reactive α-
methylene and γ-lactone sub-structure, STLs exhibit a range of
biological  functions,  including  activity  against  herbivores  and
microorganisms  and  a  role  in  interspecific  competition[66].  In
the STL biosynthetic pathway, germacrene A, synthesized from
farnesyl  diphosphate  (FDP)  by  germacrene  A  synthase  (GAS),
acts  as  a  precursor,  followed  by  a  series  of  oxidations  and
reductions leading to STL and other oxygenated germacratrien-
12-oic  acid  derivatives.  Genes  implicated  in  STL  biosynthesis,
highly  expressed  in  trichomes,  exhibit  a  similar  expression
pattern to flower development[67].

 Sesquiterpene volatiles
Pyrethrum  flowers,  compared  to  other  Asteraceae  species,

exhibit  lower  volatility  during  flowering,  with  (E)-β-farnesene
(EβF)  being  the  predominant  sesquiterpene  volatile
emitted[59,68].  However,  in T.  coccineum,  known  for  its  striking
multicolored  appearance,  major  volatile  organic  compounds
(VOCs)  include α-farnesene[69].  EβF,  recognized  as  an  aphid
alarm pheromone, repels aphids, and attracts ladybird beetles,
natural  aphid  predators,  contributing  to  an  indirect  defense
strategy[68].  As  a  common  component  in  plant  volatile  blends,
EβF likely plays a role in a broader defensive system, signaling a
'cry for help'[68].  In response to mechanical  damage during the
vegetative stage, pyrethrum emits specific VOC blends, mainly
green leaf volatiles and EβF from wounded leaves[59,70,71]. These
induced  VOCs  act  as  biological  signals,  triggering  pyrethrin
biosynthesis  in intact  leaves,  suggesting a comprehensive role
in plant defense mechanisms[71].

Pyrethrins,  along  with  minor  constituents  like  EβF,  activate
specific  odor  receptor  neuron  types  in  Egyptian  mosquitoes.
Pyrethrum  achieves  spatial  repellency  through  a  dual-target
mechanism[72,73],  and  employs  a  defensive  mimicry  strategy
based  on  the  alarm  pheromone  EβF[68].  Furthermore,  germa-
crene  D,  another  major  volatile  compound  in  pyrethrum,  may
have regulatory effects on both defense and pollination[74].

 Challenges and future perspectives

 Pyrethrin production in bioreactor
The  average  pyrethrin  content  in  global  commercial  pyre-

thrum populations ranges from 1.8% to 2.0%[75].  However,  the
cultivation  of  pyrethrum  faces  challenges  due  to  inherent
genetic  factors  like  high  self-incompatibility  and  heterozygo-
sity,  complicating  efforts  to  stabilize  and  enhance  pyrethrin
content.  As  a  result,  developing  a  bioreactor-based  pyrethrin
synthesis process has garnered significant industrial and scien-
tific interest.

Agrobacterium  rhizogenes-mediated  hairy  roots  have  been
explored  as  an  alternative  pyrethrin  production  source[76,77].
However,  GCMS  analysis  reveals  these  hairy  roots  lack
pyrethrins,  predominantly  containing  high  concentrations  of
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EβF. Attempts to redirect the sesquiterpene biosynthetic path-
way from the MVA pathway, synthesizing EβF, to the MEP path-
way  responsible  for  pyrethrin  precursor  synthesis,  have  been
made  using  CRISPR-Cas9  technology  to  knock  out  the  EβF
synthesis gene. Despite successfully reducing EβF gene expres-
sion  and  content,  there  was  no  subsequent  detection  of
pyrethrins or their precursors[61,62,78], raising concerns about the
economic  feasibility  of  producing  pyrethrins  via  hairy  root
cultures.

Pyrethrum  cultivation  is  notably  labor-intensive,  primarily
due  to  the  targeted  harvesting  of  flowers,  which  contain  the
majority  of  the  plant's  pyrethrin  content.  Consequently,  other
plant  parts,  such  as  leaves,  are  often  discarded,  leading  to
resource  wastage  and  potential  environmental  pollution  from
disposal  practices  like  burning.  Enhancing  the  pyrethrin
content  in  leaves  to  commercially  viable  levels  could  signifi-
cantly benefit the pyrethrum industry. Studies have shown that
short-term treatments with exogenous MeJA at higher concen-
trations  can  induce  an  increase  in  pyrethrin  content  in  leaves,
although  a  subsequent  decrease  is  observed.  Conversely,
prolonged  exposure  to  low  concentrations  of  MeJA  can
increase gland density in seedlings, thereby steadily enhancing
pyrethrin  levels  in  leaves[61].  In  tobacco  leaves,  introducing
pyrethrin  synthesis  genes  enables  the  production  of  pyrethric
acid, an essential precursor[47]. However, this production is chal-
lenged  by  the  competition  for  substrates  with  carotenoids  in
plastids[79].  In  transgenic T.  cinerariifolium plants,  overexpres-
sion  of  the TcCDS gene,  driven  by  the  rubisco  promoter,
elevated pyrethrin levels but resulted in significant chlorophyll
reduction  and  slowed  plant  growth,  indicating  an  adverse
impact  on  overall  plant  health[80].  Overexpressing  pyrethrin
biosynthesis-related  genes  in  the  vegetative  organs  might
substantially  hinder  plant  growth  and  development,  presen-
ting  a  challenging  dilemma  between  boosting  pyrethrin  syn-
thesis and sustaining healthy plant growth.

An  alternative  and  more  promising  method  is  the  produc-
tion  of  pyrethrins  in  plant  fruits.  This  approach  often  hosts
biosynthetic  pathways  for  high-value  metabolites  without
impacting  overall  plant  growth  or  yield[81].  The  successful
synthesis of trans-chrysanthemum acid in tomato fruits[36], and
the  production  of  chrysanthemum  acid  in  tomato-type  VI
glands[48], highlight this approach's potential.

Despite  these  advances,  fully  reconstructing  the  pyrethrin
synthesis  pathway  in  alternative  plant  species  or  biological
reactors  remains  a  complex  challenge.  To  date,  reports  have
only  been  made  of  chrysanthemum  acid  or  pyrethric  acid
synthesis in heterologous plants,  with no complete biosynthe-
sis of pyrethrins reported in such systems. This underscores the
complexity  of  reconstructing  the  complete  pyrethrin  biosyn-
thesis  pathway.  The  synthesis  of  pyrethrins  is  complicated  by
the  final  enzymatic  step  involving  TcGLIP,  which  has  shown  a
preferential  affinity  for  pyrethrin  I/II  over  other  compounds,
such  as  cinerin  I/II  and  jasmonate  I/II[9].  Emerging  evidence
suggests  a  potential  non-competitive  interaction  between
Coenzyme  A  (CoA)  and  specific  compounds  at  the  TcGLIP
active site, particularly involving the adenosine portion of CoA.
Although  feedback  inhibition  of  CoA  in  lipases  has  not  been
documented, it is hypothesized that CoA may play a crucial role
in  modulating  TcGLIP  reactions,  possibly  influenced  by  the
hydrophobic  nature  of  pyrethrins  and  the  gene  expression
levels of TcGLIP[82].

While  TcGLIP  primarily  functions  as  a  transferase  enzyme  in
synthesizing pyrethrin I,  it  also exhibits  esterase activity,  albeit
less  prominently[83].  The  disparity  between  these  activities
presents an opportunity for genetic modification of the TcGLIP
gene,  potentially  leading  to  more  efficient  and  targeted
pyrethrin  production.  Modifying  TcGLIP  to  enhance  its  trans-
ferase activity while reducing its esterase function could signifi-
cantly optimize pyrethrin synthesis.

 Pyrethrum could be used as a companion plant in
future agriculture

The  indiscriminate  use  of  pesticides  has  led  to  significant
repercussions,  including diminished quality  and safety  of  agri-
cultural  produce,  threats  to  human health,  and environmental
disruption.  This  situation  is  exacerbated  by  degrading  benefi-
cial  organism populations,  contributing to soil  and groundwa-
ter  contamination,  and  posing  challenges  to  sustainable  envi-
ronmental  and  agricultural  development.  Although  synthetic
pyrethroids have encountered resistance issues in pest popula-
tions  due  to  intensive  use,  natural  pyrethrins  derived  from
pyrethrum  have  proven  effective  against  various  herbivores,
supporting  their  efficacy  in  pest  control[84].  However,  direct
application of natural pyrethrins on organic farms can be harm-
ful  to  insect-pollinated  species  like  honey  bees  upon  direct
contact[85], and their short half-life in direct sunlight can poten-
tially  lead  to  increased  application  frequency  and  associated
costs.  Interplanting  represents  a  viable  alternative  to  direct
application  of  pyrethrum  extracts  for  pest  management.  This
agricultural  technique  involves  cultivating  at  least  two  diffe-
rent  plant  species  within  the  same  field.  Interplanting  with
pyrethrum  offers  several  advantages  over  direct  application.
Firstly,  it  eliminates  the  need  for  labor-intensive  extraction
processes,  reducing  costs  and  preventing  the  environmental
harm  associated  with  waste  byproducts.  Secondly,  pyrethrins
are  concentrated  in  the  plant's  secretory  vessels  or  cavities,
where they are protected from photodegradation and isolated
from pollen, thus posing no risk to pollinating insects. Addition-
ally, pyrethrum plants produce a plethora of volatile secondary
metabolites,  such  as  (E)-β-farnesene,  which  repel  aphids  and
attract  beneficial  predators  like  ladybirds,  further  contributing
to pest control[68]. Moreover, pyrethrum has low nutritional and
soil quality requirements and can bloom year-round in regions
like  Yunnan  and  Guizhou  provinces.  Even  after  the  harvest  of
dry  flowers,  the  plant  can  regenerate  and  bloom  again,  offe-
ring a sustainable option for perennial crop cultivation that can
last  4−6  years.  This  long-term,  low-input  cultivation  method
not  only  provides  an  auxiliary  source  of  income  but  also
enhances the economic value of the main intercropped organic
produce.  Therefore,  pyrethrum stands  out  as  an intercropping
plant  with  significant  developmental  potential  and  practical
value in sustainable agriculture.

Historically,  pyrethrum  has  been  used  in  intercropping
systems.  Traditional  agricultural  practices  along  the  Adriatic
Sea  coast  have  utilized  pyrethrum  as  a  cover  crop  in  olive
groves[86]. In Yunnan, China, its cultivation as an annual crop in
mountainous  regions  makes  it  a  popular  choice  for  intercrop-
ping  (Fig.  3).  Pyrethrum  is  versatile,  demonstrated  by  its
integration with  various  crops  and trees.  It  is  commonly  inter-
cropped with vegetables like chili  peppers (Capsicum annuum)
and  potatoes  (S.  tuberosum).  Fruit  trees  such  as  citrus  (Citrus
spp.),  Chinese  jujube  (Ziziphus  jujuba),  pear  (Pyrus  spp.),  and
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peach  (Amygdalus  persica) are  also  integrated  into  pyrethrum
intercropping systems, as well  as with oil  crops like olive (Olea
europaea),  ornamental  plants  including  roses  (Rosa  chinensis)
and Chrysanthemums,  and field crops such as  corn (Zea  mays),
rapeseed  (Brassica  spp.),  and  tobacco  (N.  tabacum).  Intercrop-
ping pyrethrum with cabbage, for example, has been effective
in controlling approximately 80% of aphids on cabbage, bene-
fiting  from  the  synchronization  of  pyrethrum  flowering  with
pest occurrence[87].

The  agronomic  benefits  of  pyrethrum  intercropping  are
manifold.  They include increased economic returns,  optimized
land  use,  effective  weed  control,  soil  and  water  conservation,
mitigation  of  continuous  cropping  challenges,  and  achieve-
ment of ornamental and ecological layout objectives. Intercrop-
ping pyrethrum with  forestry  and fruit  trees  exploits  temporal
and  spatial  complementarity,  creating  layered  agricultural
spaces.  For  example,  the  intercropping  of  pyrethrum  with
Chinese jujube and olive forms a stratified structure, efficiently
utilizing  the  land  under  fruit  trees.  The  canopy  of  these  trees
provides  shade  for  pyrethrum  during  the  summer,  enhancing
its  survival.  Pyrethrum  shallow-rooted  perennial  nature  helps
minimize ground-level weed growth, leading to cost savings in
management.  Additionally,  its  role  in  slope  stabilization  and
soil  conservation highlights  its  potential  for  widespread adop-
tion in diverse agroecosystems.

 Unraveling and transporting the complete
pathway of pyrethrin synthesis

Although  significant  progress  has  been  made,  the  biosyn-
thetic  pathway  of  pyrethrins  still  contains  unresolved  aspects,
particularly  concerning  the  origin  of  the  alcohol  portion.  The
transformation  from cis-jasmone  to  jasmolone  is  now  better
understood[41].  But  the  precursor  of cis-jasmone  itself  remains

unclear.  Current  evidence  suggests  that  the  alcohol  moiety  in
pyrethrin  II  likely  originates  from  12-oxo-phytodienoic  acid
(OPDA),  iso-OPDA, and cis-jasmone, rather than MeJA or JA[49].
Studies in Mentha suavelons indicate that jasmonic acid and cis-
jasmone  biosynthesis  are  separate  processes,  especially  from
cis-OPDA  to  cis-jasmone[88].  Early  stages  of  JA  synthesis  invol-
ving  genes  like LOX, AOC,  and OPR,  show  co-expression
patterns  similar  to  those  in  the  pyrethrin  acid  pathway[61],
suggesting  a  potential  synthesis  of  pyrethrins  from  OPDA.
However,  it  remains  a  puzzle  how  trace  amounts  of  OPDA
contribute to substantial pyrethrin production.

The  density  of  glandular  trichomes  on  leaves  significantly
correlates  with  the  content  of  monoterpene  and
sesquiterpene[89].  Glandular  trichomes  are  widely  present  in
Asteraceae  plants[90],  and  tissue  differentiation  within  these
structures  are  essential  for  the  production  of  specific
compounds[91].  In  pyrethrum,  glands  primarily  contain
sesquiterpenes such as EβF[74]. Interestingly, while precursors of
pyrethrins  are  synthesized  in  the  glands,  the  final  enzyme,
TcGLIP,  operates  extracellularly,  meaning  that  pyrethrins  are
not  stored  within  these  structures[50].  It  is  intriguing  that,
despite the presence of established chloroplasts, no pyrethrins
or  their  distinguishable  precursors  like  chrysanthemol  and
chrysanthemic  acid  was  detected  in  the  hairy  roots  of
pyrethrum.  Instead,  only  high-purity  EβF  was  observed,  and
notably,  these  hairy  roots  lacked  glands[61].  For  certain  plants,
tissue differentiation or specific structures are prerequisites for
producing  particular  secondary  metabolites[92].  Research  in
Artemisia  annua suggests  that  the  plant  can  generate
artemisinin independently of glandular trichomes[93]. Therefore,
the question arises: Are glands indispensable structures for the
synthesis  and  accumulation  of  pyrethrins,  and  what  is  the
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Fig. 3    Pyrethrum intercropping systems. (a) Intercropping of pyrethrum with Chinese jujube. (b) Pyrethrum interplanted with olive trees. (c)
Pyrethrum combined with citrus and cabbage in intercropping. (d) Pyrethrum intercropped with roses.
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biological significance of synthesizing precursors in the glands
but not storing them there?

Pyrethrum leaves contain a variety of terpenoid compounds,
some  of  which  are  chemically  reactive  and  cytotoxic  to  plant
cells.  Understanding  the  transportation  of  these  metabolites
from  their  biosynthetic  sites  to  storage  locations  is  crucial.
Terpenoid  compounds  typically  undergo  modifications  like
glycosylation  or  acylation  and  are  stored  in  vacuoles  or  other
subcellular  compartments[94,95].  Considering  94%  of  pyrethrins
accumulate in the flower heads and achenes of pyrethrum, it is
challenging to conceive that high concentrations of pyrethrins
are  synthesized  exclusively  in  the  chloroplast-lacking  cells  of
the  flower  heads.  ATP-binding  cassette  (ABC)  transport
proteins,  known  to  participate  in  terpenoid  transport,  may  be
involved  in  pyrethrin  transportation  due  to  their  shared
hydrophobic  nature[96,97].  However,  the  specific  role  of  trans-
port proteins in pyrethrin transportation in pyrethrum remains
to be discovered.

In  summary,  while  there  has  been  substantial  progress  in
understanding  pyrethrin  biosynthesis,  challenges  remain  in
comprehending  the  intricacies  of  precursor  synthesis,  trans-
portation  mechanisms,  and  storage  within  the  plant.  Further
research  is  vital  to  unravel  the  complex  relationship  between
pyrethrin synthesis,  transport,  and storage,  thereby enhancing
our comprehension of these processes in pyrethrum.

 Conclusions

Pyrethrum  is  a  plant  of  unique  significance,  chiefly  for  its
production  of  pyrethrins,  a  potent  insecticidal  compound.
Research  on  pyrethrum  presents  numerous  challenges,  espe-
cially  in  decoding  its  expansive  genome.  Notably,  the  draft
genomes  for T.  cinerariifolium and T.  coccineum are  notably
large, exceeding 7.1 and 9.4 Gb[98,99]. This is in stark contrast to
other  Asteraceae  genera,  such  as  1.74  Gb  for Artemisia
annua[100],  and  2.53  Gb  for Chrysanthemum  indicum[101].  Even
the  hexaploid-cultivated Chrysanthemum × morifolium has  a
genome  size  of  only  8.15  Gb[102].  Notably,  pyrethrum  synthe-
sizes  pyrethrins  as  a  defense  mechanism,  a  process  intricately
regulated  by  JAs.  The  complex  relationship  between  JAs  and
pyrethrin biosynthesis poses a significant research challenge.

This  review  provides  a  comprehensive  overview  of  pyre-
thrum cultivation history and its essential biological characteris-
tics,  particularly  focusing  on  the  enhancement  of  pyrethrin
yield.  It  discusses  the  potential  of  pyrethrum  as  a  companion
plant,  emphasizing  its  biological  and  ecological  importance.
Furthermore, the review delves into the complete biosynthesis
pathway  of  pyrethrins,  which  may  aid  in  replicating  pyrethrin
biosynthesis  in  other  species.  Future  research  is  expected  to
further  elucidate  the  regulatory  mechanisms  of  pyrethrum's
defense system and explore how these traits can be integrated
into sustainable agricultural practices.
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