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Abstract

Platycodon grandiflorus (Jacg.) A. DC., a well-known traditional Chinese medicinal herb, is particularly abundant in saponins. The cytochrome P450
monooxygenase (CYP450) superfamily constitutes the key group of enzymes responsible for regulating saponin biosynthesis. To date, a comprehensive
analysis of CYP450 genes associated with saponin biosynthesis in P. grandiflorus has not been conducted. In the present study, 175 PgCYP450 genes were
systematically identified in P. grandiflorus. Phylogenetic analysis classified these genes into nine distinct clans. Transcriptome (RNA-seq) data further
demonstrated that the majority of genes within the CYP71 family were upregulated in response to methyl jasmonate (MeJA) treatment. qRT-PCR revealed
that PgCYP71BE217 had the highest expression level after MeJA induction, which was over 60 times higher than the control, and displayed elevated
expression primarily in the roots. Subcellular localization and yeast self-activation experiments indicated that PgCYP71BE217 was localized to both the
plasma membrane and cytoplasm, and lacked self-activation activity. Overexpression of PgCYP71BE217 using a hairy root transformation system enhanced
the transcript levels of PgHMGS (3-hydroxy-3-methylglutaryl-CoA synthase), PgbAS1 (f-amyrin synthase 1), and PgSS (squalene synthase), while
simultaneously elevating the accumulation of saponins such as platycodin D, platycoside E, and platycodin D3. The identification and functional analysis of
the CYP450 gene family in this study enhances understanding of saponin synthesis and provides valuable genetic resources for P. grandiflorus breeding.
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Introduction

Platycodon grandiflorus (Jacq.) A. DC., commonly referred to as the
balloon flower, is a perennial herb belonging to the family Campan-
ulaceae and is indigenous to East Asial'l. It is widely valued, not only
as an ornamental plant, but also as a medicinal herb. Its ornamental
appeal lies in its distinctive balloon-shaped buds that open into
star-shaped flowers, available in various colours such as blue,
purple, pink, and white. With a long blooming period from June
through early autumn, it is popularly used in gardens, rockeries, and
containers!23l, Meanwhile, the root of P. grandiflorus contains bioac-
tive saponins with demonstrated efficacy against respiratory and
inflammatory diseases!?. In recent years, especially during the
COVID-19 pandemic, its medicinal applications have attracted
increasing attention, leading to growing demand®!.

Saponins, as the primary active components of P. grandiflorus, are
important indicators for evaluating its medicinal quality. The
saponin skeleton of triterpenoid saponins is primarily synthesized
through two pathways: the MVA and MEP pathways®-7). Several
cytochrome P450 monooxygenases (CYP450) and glycosyltrans-
ferases (GT) catalyze the hydroxylation, oxidation, and glycosylation
of the saponin skeleton to produce saponin monomers, including
platycodin D, platycoside E, and platycodin D381, Notably, saponin
accumulation is subject to transcriptional regulation by phytohor-
monal elicitors. Among these, MeJA has emerged as a potent
inducer of triterpenoid saponin biosynthesis in diverse medicinal
species. Exogenous MelJA application can activate biosynthetic
pathways by upregulating key genes involved in both early
skeleton formation and late-stage modification steps, including
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CYP450s!'9), This established role makes MeJA induction a valuable
experimental approach for probing the regulatory mechanisms
underlying saponin production, and for identifying candidate
biosynthetic genes. Cytochrome P450 is one of the classes of heme-
containing B-type cytochrome superfamily proteinsi''l. Through
evolutionary expansion, it is widely distributed in cells of animals,
plants, bacteria, and fungil’?.. Currently, more than 300,000 CYP450
genes, and over 50,000 CYP450 proteins have been discovered. They
are divided into 11 clans, including four multi-family clans (CYP71,
CYP72, CYP85, and CYP86), and seven single-family clans (CYP51,
CYP74, CYP97, CYP710, CYP711, CYP727,and CYP746)[3],

CYP71 is a multi-family clan and contributes to approximately
50% of members in the plant CYP450 family!'4l. It comprises several
families that are heavily involved in the production of triterpenes,
monoterpenes, and sesquiterpenes, including CYP71, CYP81-84, and
CYP920'5.161, The CYP71 gene family is the most abundant and func-
tionally diverse family in the CYP71 clanl'”], Several members of the
CYP71A, CYP71D, CYP71AR, and CYP76B subfamilies are involved in
monoterpene metabolism!’8l, Meanwhile, CYP71AV, CYP71BA,
CYP71BL, CYP71D, and CYP71Z play a crucial role in sesquiterpene
oxidation!'?., In addition to their involvement in the biosynthesis of
monoterpenes and sesquiterpenes, genes from the CYP71 family
participate in the biosynthesis of triterpene saponins. In Sapindus
mukorossi, combined analysis of metabolites and transcriptome, and
molecular biology experiments revealed that SmbHLH2, SmTCP4,
and SmWRKY27 directly regulate the transcription of SmCYP71D-3 to
affect the saponin content%, However, it is still unclear whether
CYP71 genes in P. grandiflorus is involved in saponin biosynthesis.
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The secondary metabolites of traditional Chinese medicinal plants
are difficult to obtain through artificial synthesis due to their
complex structuresi?'l, Inducing hairy roots using Agrobacterium
rhizogenes-mediated transformation is considered a sustainable
and effective method to study the biosynthesis of secondary
metabolites in plantsi?2, In addition, this method is proven to be
effective in validating gene function, particularly in the case of regu-
latory key genes that play a role in specific biosynthetic pathways of
secondary metabolites?3l. To date, this method has been success-
fully employed in various plants, including Panax ginseng, Salvia
miltiorrhiza, and Astragalus membranaceus*2>\. However, it requires
tissue culture, increasing the difficulty and cost of operation. To
solve this problem, the cut-dip-budding (CBD) delivery system is
established, which can generate transformed roots and trans-
formed buds under non-sterile conditions, and without the need for
tissue culture. This approach has been successfully applied to vari-
ous plants, including Aralia elata and Coronilla varial?®). However,
there have been no studies using this method to obtain transgenic
roots in P. grandiflorus.

Although CYP450 genes have been identified and functionally
verified in various plant materials, the identification of the CYP450
gene family in P. grandiflorus has not been conducted. Nine clans
were formed from the identification of 175 PgCYP450s genes in P.
grandiflorus. The expression patterns of 175 PgCYP450s genes under
MelJA treatment were then investigated, and a hairy root transfor-
mation system was used to confirm PgCYP71BE217 gene's function.
This study offers valuable insights into the expression dynamics of
the CYP450 gene family in response to MeJA induction, therefore
establishing a foundation for future investigations into the roles of
CYP450 genes in saponin biosynthesis.

Materials and methods

Identification and phylogenetic analysis of the
PgCYP450 gene family in P. grandiflorus

The National Genomics Data Center (https://ngdc.cncb.ac.cn/
gwh) provided the genome data for P. grandiflorus'?’). First, poten-
tial PgCYP450s in the genome of P. grandiflorus were found using the
hidden Markov model profile of the p450 domain (PF00067) as a
reference file. Second, the members of the CYP450 gene family in P.
grandiflorus were identified using a BLASTP search with query
sequences derived from Arabidopsis thaliana CYP450 genes. Ulti-
mately, the P450 nomenclature committee (http://drnelson.uthsc.
edu/CytochromeP450.html) received the acquired amino acid
sequences of the PgCYP450s to assign nomenclature. For a thor-
ough understanding, the ExPasy website (https://web.expasy.
org/protparam/) was used to study the properties of the PgCYP450
sequences, including their amino acid length, molecular weight
(MW), isoelectric point (pl), and other pertinent data. The phyloge-
netic tree with 1,000 bootstrap repetitions was built using the
neighbor-joining (NJ) method in MEGA7.0 software. Based on the
genomic annotation of the P. grandiflorus genome, the chromoso-
mal position map was plotted using TBtools softwarel28],

Analysis of phylogenetic tree, cis-acting
elements, and conserved domains of the
PgCYP71s

The motif patterns of the PgCYP71s protein sequences were
examined using the MEME website (https://meme-suite.org/tools/
meme). The nmotif parameter was set to 10; the minw parameter
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was set to 6, and the maxw parameter was set to 50. The ggtree
platform was used to illustrate the conserved domains and
phylogenetic tree of PgCYP71s. TBtools was employed for the extrac-
tion of a 2,000 bp sequence upstream of the start codon for every
PgCYP450 member. The PlantCARE website (https://bioinformatics.
psb.ugent.be/webtools/plantcare/html/) was used to identify the
cis-acting elements in the promoter region.

Treatment of P. grandiflorus roots with MeJA

P. grandiflorus seedlings were cultured uniformly on 1/2 MS
medium (pH 5.8) supplemented with 100 uM MeJA and 30 g/L
sucrose, and 5 g/L agarPl. Control groups received equivalent
volumes of dimethyl sulfoxide. MelA-treated samples were
harvested at 0, 12, 24, and 48 h post-exposure.

qRT-PCR assay

Total RNA was isolated from P. grandiflorus tissues and MeJA-
treated roots using TransZol UP (TransGen Biotech, Beijing, China).
cDNA synthesis employed the SuperMix kit for gRT-PCR (TransGen
Biotech). Gene expression quantification utilized the BIO-RAD CFX96
Touch system (Hercules, CA, USA), with 18S rRNA as the endoge-
nous reference (Supplementary Table S1).

Establishment of a genetic transformation
system for hairy roots

A hairy root system was developed for P. grandiflorus to speed up
the evaluation of gene function. The TY solid medium (50 mg/L
kanamycin) was used to cultivate Agrobacterium rhizogenes K599
transformed with the empty vector pBI121 for 36-48 h. A5 mL of TY
liquid medium was used to incubate a few selected single colonies
for the entire night. A 100 plL culture was then added to 50 mL of TY
liquid that had been treated with 200 umol/L AS and 50 mg/L
kanamycin. Centrifugation (for 10 min at 4,000 rpm) was used to
pellet the cells once they reached an ODgy, =0.8. They were then
resuspended in activation buffer (200 pmol/L AS, 10 mmol/L MES,
and 10 mmol/L MgCl,), and dark-incubated for two hours at room
temperature. The activated solution was used to infect root-free
sterile 30-day-old seedlings via vacuum infiltrationPl. After 60 d,
transformed plants were moved to sterile soil, and positive transfor-
mants were found for target gene expression and saponin
measurement.

Subcellular localization and self-activation of
PgCYP71BE217 in yeast

Cloning the PgCYP71BE217 coding gene without a termination
codon into the pCAMBIA1300-GFP BamHI/Kpnl sites. In tobacco
epidermal cells, the recombinant construct (pCAMBIA1300-
PgCYP71BE217-GFP), and the empty vector were both simultane-
ously expressed. Subcellular localization was analyzed using
confocal microscopy (Olympus FV3000; 488 nm excitation). For
yeast two-hybrid assays, PgCYP71BE217 CDS was fused to pGBKT7
and transformed into the Y2H Gold strain. Self-activation testing
followed established protocols291,

Analysis of the function of PgCYP71BE217 in the
hairy root of P. grandifilorus

The recombinant pCAMBIA1300-PgCYP71BE217-GFP construct
was introduced into Agrobacterium rhizogenes K599 for P. grandi-
florus transformation. Transgenic hairy roots were initially screened
via GFP fluorescence detection using a chemiluminescence imaging
system (Tanon 5200, Shanghai, China). Subsequently, genomic DNA
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from positive lines was amplified with GFP-specific primers. Lastly,
the transcript levels of PQCYP71BE217 and related pathway genes
were measured using RT-qPCR assay (Supplementary Table S1),
while HPLC assessed platycodin D, platycoside E, and platycodin D3
contents as described previously39,

Results

PgCYP450 identification and phylogenetic analysis
In total, 175 PgCYP450s genes with conserved p450 domains
were identified in P. grandiflorus. The P450 nomenclature commit-
tee received the protein sequences of 175 CYP450s to provide
nomenclature. Their characteristics, including amino acid length,
MW, and pl, are listed in Supplementary Table S2. The amino acid
number varied from 219 (PgCYP71654) to 940 (PgCYP71AT281); MW
varied from 24.89 kDa (PgCYP71654) to 107.32 kDa (PgCYP71AT281),
and pl varied from 5.79 (PgCYP71AT281) to 9.41 (PgCYP72A1005).
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Phylogenetic analysis divided PgCYP450s into nine clans (Fig. 1),
including five single-family, and four multi-family clans. Among the
nine clans, the clan with the largest number of members was the
CYP71 clan, which consisted of 78 members, with the CYP71 family
containing the highest members (18), followed by the CYP85 (30),
CYP72 (29), and CYP86 (17) clans. The remaining clans exclusively
consisted of single-family clans, with the CYP710 clan having the
highest number of members.

Phylogenetic analysis and analyses of conserved
domains and cis-acting elements of PgCYP71
genes

MeJA has been demonstrated to enhance the accumulation of
triterpenoid saponinsl. MeJA significantly increased the expression
level of the PgCYP71s gene in the PgCYP450 family, according to an
analysis of transcriptome data from previously published studies
(Supplementary Fig. S1)BL This finding suggested that PgCYP71s
may play a role in the MeJA-mediated biosynthetic of triterpenoid

bd
6587Z.dAD6d
PgCYP710A165v2
9CYP710A165y1

LVPZLdAD
Py

PgCYP76T47
PgCYP76T52
PCYP76T46
PaCYP76T51

Bd
Bd

PgCYP84A186
PgCYP703A90
G/2¥26dAD!

Qan

Fig. 1 Phylogenetic relationships of the Platycodon grandiflorus CYP450 proteins. A neighbor-joining phylogenetic tree was generated based on the
alignment of full-length amino acid sequences of the 175 PgCYP450 proteins in P. grandiflorus.
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saponins. Moreover, 18 PgCYP71s were determined in P. grandi-
florus, which were divided into four subfamilies, namely, CYP71As,
CYP71Ats, CYP71Ds, and CYP71BEs. Analysis of the conserved
domains of PgCYP71 genes revealed that most genes had 9-10
motifs, except the PgCYP71BG21 gene, exhibiting five motifs (Fig. 2).
Promoter cis-acting element analysis revealed that PgCYP71 genes
are mainly involved in growth and development, light response,
plant hormone signaling, and stress response. Among these genes,
PgCYP71BE217 contained the highest number of plant hormone

PgCYP71BE217 regulates saponin biosynthesis

signaling elements (Fig. 3). These results revealed that MeJA appears
to regulate saponin accumulation by inducing PgCYP71s expression.

qgRT-PCR analysis of the expression patterns of
PgCYP71s under MeJA treatment

MelJA treatment could increase the total saponin and monomeric
saponin contents in the root of P. grandiflorus>3', The expression
pattern of the PgCYP71 gene family was analyzed using RT-qPCR.
It can be loosely classified into three different classes on the basis

a -PgCYP71D766 I B N B
-PgCYP71D767 OE OO0 B OO )
-PgCYP71D506 N S I I B I B N [ BN
PgCYP71D768 O O B OO ) - motif1
PeCYPIBE2IS Dl D B COC T ] otz
PoCYP71BE216 O B O )
PeCYP7IBE?1S O e o ) B motrs
PgCYP7IBE217 O e e o) ) B motita
-PgCYP71BG21 O | ) D motif5
PgCYP714155 O O B O ) D motifé
PgCYP714153 I e I S N B8 N S B 000 | — - motif7
-PgCYP714154 O OO0 5B COCO )
PeCYP7IBK20 N EEEE B T [ mowe
PgCYP71BKI9 Ol o B CoOC ) e ] motife
PgCYP71BK18 O E OO0 B OO0/ e - motif10
-PgCYP71BK17 O - O )
[PgCYP71AT281 B O B O )
-PgCYP71AT282 O B O e
0 200 400 600 800
[]

Al A

S EoTelsTss

______ S ik

______________

3 Ol

TeorThRNARRY

=l v

Y

Fig. 2 Phylogenetic relationships and conserved motifs of P. grandiflorus PgCYP71 proteins. 18 PgCYP71s in P. grandiflorus have their full-length amino
acid sequences aligned to generate a neighbor-joining phylogenetic tree. (a) Phylogenetic tree and onserved motifs distribution of PgCYP71 proteins.

(b) Composition of the conserved motifs in PgCYP71 proteins.
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Fig. 4 The gRT-PCR has shown the expression pattern of the PgCYP71 gene family at 0 (control), 12, 24, and 48 h after 100 pmol MeJA treatment. Different
letters indicate significant differences (p < 0.05).

of expression trend. MelJA upregulated PgCYP71BK20 and  were inhibited by MelA. PgCYP71AT281 and PgCYP71BE218 were
PgCYP71BE217, which were included in the first category. The included in the third category; their expression levels first
second category included PgCYP71A153 and PgCYP71D506, which  decreased, then increased, and finally decreased (Fig. 4). Compared
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Fig. 5 PgCYP71BE217 expression patterns in P. grandiflorus. (a) PgCYP71BE217 multiple sequence alignment. (b) Subcellular localization of PgCYP71BE217.
PgCYP71BE217 was primarily seen at the plasma membrane and in the cytoplasm; (Top) subcellular localization of the empty pCAMBIA1300-GFP vector
used as the positive control; (Bottom) Bright field, dark field, and merged field are represented by the left, center, and right panels, respectively.
() Evaluation of self-activation of PgCYP71BE217. (d) The expression level of PgCYP71BE217 in eight different tissues as revealed by qRT-PCR. (e) The eight

different tissues of P. grandiflorus subjected to qRT-PCR of (d).

with the control group, PgCYP71BE217 exhibited upregulation by
more than 60-fold under MeJA treatment at 12 h, implicating it as a
pivotal MeJA-responsive regulator of saponin biosynthesis.

Expression analysis and self-activation of
PgCYP71BE217 in yeast

The 504 amino acid-encoding CDS section of the PgCYP71BE217
gene was cloned. The presence of p450 domains in this gene was
discovered through multiple sequence alignment (Fig. 5a). Subcellu-
lar localization analysis in tobacco leaf epidermal cells revealed that
PgCYP71BE217-GFP fluorescence was predominantly observed at
the plasma membrane and in the «cytoplasm (Fig. 5b).
PgCYP71BE217 did not exhibit self-activation activity (Fig. 5c). More-
over, tissue-specific analysis revealed that the PgCYP71BE217 gene
was highly expressed specifically in the roots (Fig. 5d, e).

PgCYP71BE217 overexpression enhanced P.
grandiflorus's saponin content

P. grandiflorus was effectively used to develop a hairy root trans-
formation system, and positive transgenic hairy roots with an 82%
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transformation efficiency were produced (Fig. 6). PgCYP71BE217 was
successfully introduced into P. grandiflorus (Fig. 7a, b).
PgCYP71BE217 expression levels in OE1, OE7, and OE12 were

Fig. 6 Establishment of hairy root transformation system and GUS
validation. Top - Schematic diagram illustrating the procedure for hairy
root transformation. Bottom - GUS assay results confirming transgenic
hairy roots.
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Fig. 7 Functional verification of PgCYP71BE217. (a) Phenotypic characterization of PgCYP71BE217-OE transgenic hairy roots using GFP detection. (b) DNA
verification of PgCYP71BE217-OE vector. (c) qRT-PCR analysis of PgCYP71BE217 expression in transgenic and wild-type hairy roots. (d) The expression levels
of PgHMGS, PgbAS1, and PgSS were significantly increased in the transgenic hairy roots of plants with PgCYP71BE217 overexpression. (e) Changes in
saponin content after PgCYP71BE217 overexpression. The asterisk denotes a statistically significant difference compared to the WT (p < 0.05).

substantially higher than those in the wild type (Fig. 7c). Moreover,
the expression levels of PgHMGS, PgbAS1, and PgSS (responsible for
the biosynthsis of saponin) were significantly elevated compared
with wild type (Fig. 7d). According to HPLC examination, compared
to the roots of wild-type plants, the roots overexpressing
PgCYP71BE217 had significantly larger concentrations of platycoside
E, platycodin D3, and platycodin D (Fig. 7e). These results clearly
demonstrated that PgCYP71BE217 participated in saponin
biosynthesis.
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Discussion

Identification of 175 PgCYP450 genes in P.
grandiflorus

In recent years, with the development of genome sequencing
technology and bioinformatics, researchers could identify CYP450
genes from 66 plant species, including A. thaliana, Solanum lycoper-
sicum, and Zea maysB32. The model plant A. thaliana has 286 CYP450
genes, which can be categorized into nine clans consisting of
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45 families, and 72 subfamilies®3l, A total of 175 PgCYP450s genes
were found in this investigation. According to evolutionary analysis,
the PgCYP450 genes could be divided into nine clans: five single
gene family clans (CYP51, CYP74, CYP97, CYP710, and CYP711), and
four multiple gene family clans (CYP71, CYP72, CYP85, and CYP86).
The CYP727 and CYP746 clans were not present. This is consistent
with the majority of dicotyledonous plants'el,

PgCYP71BE217 controls P. grandiflorus's
production of triterpenoid saponins

Among the key inducers that control plant growth and secondary
metabolite synthesis is MeJA. Furthermore, it is crucial in controlling
the production of saponinsB4. RNA-seq analysis revealed that
PgCYP71s are induced by MeJA (Supplementary Fig. S1). Several
plant hormone-responsive elements, including MeJA cis-acting
elements, were present in the promoter of PgCYP71 genes (Fig. 3).
PgCYP71BE217 was significantly induced by MeJA as revealed by
gRT-PCR (Fig. 4). These data demonstrated that PgCYP71BE217 is
involved in regulating the synthesis of plant signaling molecules,
which is consistent with the observations in Ginkgo biloba and P.
ginseng!3539], In addition to the response elements for MelA, the
promoter of this gene contained response elements for other
hormones such as abscisic acid and gibberellins, suggesting that
PgCYP71BE217 is regulated by other hormones (Fig. 3)B37,

The CYP71 clan, which was often considered the cradle for the
synthesis of monoterpenes and sesquiterpenes, participates in the
biosynthesis of diterpenes and triterpenes3839l, In Lotus japonicus,
CYP71D353 belonged to the CYP71 clan, which was significantly
upregulated in the roots, and participated in triterpene
biosynthesisi38l. In P. grandiflorus, PgCYP71BE217 overexpression in
transformed hairy roots improved the content of saponins, indicat-
ing that PgCYP71BE217 participated in saponin biosynthesis (Fig. 7).
These data demonstrated that the CYP71 clan in P. grandiflorus was
involved in saponin biosynthesis. Our subsequent studies will be
focused on functional validation of other potential genes in this
clan.

Transcription factors specifically bind to DNA sequences to regu-
late transcription. Through attaching themselves to the promoters
of structural genes, they might control the production of triter-
penoid saponins. The promoter of PgCYP71BE217 contained numer-
ous transcription factor binding sites, such as AP2/ERF%, bHLH“1,
and WRKY transcription factor familiesi?l. This indicated that
PgCYP71BE217 may be regulated by these transcription factors to
regulate saponin accumulation (Fig. 3; Supplementary Table S3).

Rapid analysis of gene function using the hairy
root transformation system

Transgenic plants are typically obtained using two methods:
Agrobacterium-mediated transformation or the gene gun. However,
both methods have low transformation efficiency and require tissue
culturel?6], Tissue culture is a significant obstacle for obtaining trans-
genic plants of species that are difficult or impossible to genetically
transform. Hence, the development of an efficient method that does
not rely on tissue culture is currently a prominent area of
researcht3l,

For medicinal plants, the transformation of hairy roots is a fast and
stable method, characterized by genetic stability, rapid growth, and
easy cultivation. Related extensive research has been conducted on
medicinal plants such as Catharanthus roseus and P. ginsengl*+45],
However, it requires tissue culture, increasing the difficulty and cost
of operation. To reduce the complexity of the process and develop a
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transformation system that does not rely on tissue culture, a
tissue-culture-independent hairy root transformation system was
established (Fig. 6). The establishment of this method will provide
technical support for the rapid analysis of gene function in P.
grandiflorus.

Conclusions

In this study, 175 PgCYP450 genes in P. grandiflorus were identi-
fied. They were divided into nine clans, excluding the CYP727 and
CYP746 clans. Saponin accumulated after MeJA treatment, and
PgCYP71BE217 was clearly stimulated in roots, suggesting that
PgCYP71BE217 may be involved in the production of saponin in
roots. The PgCYP71BE217 overexpression may promote saponin
accumulation in P. grandiflorus, according to the hairy root transfor-
mation. Furthermore, novel technical assistance for quick evalua-
tion of gene function in P. grandiflorus was made possible by the
development of a hairy root transformation system that does not
require tissue culture.
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