Ornamental
Plant Research

REVIEW

https://doi.org/10.48130/0pr-0025-0049
Ornamental Plant Research 2026, 6: €003

Germplasm resource and genetic breeding of ornamental
Madagascar periwinkle (Catharanthus roseus): a brief review

Jun He'? ®, Siyang Liu3, Shengyuan Zhong', Yan Chen'~, Yuanhua Luo'?, Ningjing Lai'2, Ronghui Fan'?,
Xiuxian Ye'?, Jianshe Wu'*, Ruigi Zhan? and Huaigin Zhong'?"

! Institute of Crop Sciences, Fujian Academy of Agricultural Sciences (Fujian Germplasm Resources Center), Fuzhou 350013, China
2 Fujian Engineering Research Center for Characteristic Floriculture, Fuzhou 350013, China

3 Tangchao Horticulture Technology (Xiamen) Co. Ltd., Xiamen 361009, China

* Correspondence: zhgeast@163.com (Zhong H)

Abstract

Madagascar periwinkle (Catharanthus roseus [L.] G. Don) is a valuable medicinal and ornamental plant, prized for its diverse alkaloid compounds and
aesthetic traits. While extensively studied for pharmaceutical applications, its current understanding of preliminary genetic inheritance of ornamental traits
and ornamental breeding research are less advanced compared to other horticultural crops. This review systematically examines the germplasm resources,
genetic diversity, and breeding advancements in ornamental periwinkle, covering the utilization of wild and cultivated varieties, mutation and polyploidy
breeding, and recent genomic sequencing efforts. The potentially genetic mechanisms underlying key ornamental characteristics such as flower color,
flower type, and plant architecture are discussed, and emerging approaches evaluated, including marker-assisted selection, interspecific hybridization, and
CRISPR-based editing integrated with multi-omics platforms, for trait decoding and precision breeding. Strategies are also highlighted to enhance
resistance to prevalent diseases such as die-back and root rot. Finally, future research directions aimed at developing resilient, high-alkaloid cultivars
suitable for sustainable ornamental horticulture are proposed. This work provides a comprehensive resource for accelerating molecular breeding and
improving ornamental traits in C. roseus.
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Introduction

Madagascar periwinkle (Catharanthus roseus [L.] G. Don) (MP) is a
perennial herbaceous plant that belongs to the Apocynaceae family,
which is indigenous to Madagascar, subsequently introduced and
naturalized in multiple countries worldwide due to its medicinal and
ornamental valuel. Owing to its rapid growth rate and minute
seeds readily dispersed by insects, wind, and water currents, the
periwinkle has been designated as an invasive species in numerous
Asian, African, American, and Oceanian nationsl. Historically, C.
roseus has garnered considerable scientific interest for its ability to
biosynthesize over 150 monoterpenoid indole alkaloids (MIAs),
including vinblastine and vincristine, which serve as principal
sources of these pharmacologically important compoundst.
Extracts derived from this plant have demonstrated therapeutic
potential in treating certain cardiovascular conditions and specific
types of cancer (Fig. 1),

Beyond its medicinal applications, C. roseus exhibits efficient
vegetative propagation predominantly by seeds, and less by the
stem cuttings, facilitating its widespread cultivation as an ornamen-
tal plant in tropical and subtropical climates. This popularity is
attributed to its prolonged flowering period, diverse floral colora-
tion, tolerance to heat and drought stress, and overall
adaptability®>®l. The periwinkle breeders have circumvented the
reproductive constraint of cleistogamy in C. roseus, focused on
breeding for dwarf or semidwarf, contrasting colored corolla with its
eye color, floriferous, high biomass, resistance to aerial blight and
dieback diseases, heat and drought tolerance as the prime targets to
develop new cultivars for wider horticultural adoption!”8l, such as
the 'Cora® XDR' series of Syngenta® flowers (the USA), and the
Vinca 'Titan-ium™' series of PanAmerican Seed (the USA). However,
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in contrast to the well-established pharmaceutical breeding
programs for Catharanthus, the development of ornamental culti-
vars remains hindered by continued dependence on traditional
hybridization techniques, the lack of high-throughput marker-
assisted selection (MAS) platforms, and insufficient integrated pest
management (IPM) strategies targeting major pathogens and insect
pests. These challenges constrain the genetic improvement and
broader horticultural deployment of ornamental MP varieties.

Consequently, this review systematically assesses the current
status of ornamental MP germplasm resources and genetic breed-
ing, predominantly highlighting the genetic regulation of prelimi-
nary traits and the limitations of current breeding methodologies.
Furthermore, the review explores prospective avenues for enhanc-
ing stress resistance and optimizing complex trait integration,
thereby contributing to the advancement of both theoretical knowl-
edge and practical approaches for the improvement of ornamental
Catharanthus cultivars.

Germplasm resources of periwinkle

Origin and distribution

Linnaeus!® initially established the genus Vinca in 1753, describ-
ing V. minor and V. major. In 1759, he incongruously included the
tropical V. rosea within this temperate genus, despite morphologi-
cal inconsistencies in stamen structure. Reichenbach first recog-
nized the generic distinctness of V. rosea from Vinca. Subsequently,
George Don redefined the taxonomy: retaining Vinca for V. minor, V.
major, and V. herbacea, while erecting the genus Catharanthus with
C. roseus (basionym: Vinca rosea L.) as its type species®.
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Fig. 1 Statistics of Catharanthus roseus research publications (1963-2025). Distribution (%) of publications on periwinkle in different subject areas during
the period 1963-2025 (search with all fields, query preview = 'Madagascar periwinkle' OR 'Catharanthus roseus' at the Web of Science).

Consequently, Catharanthus and Vinca constitute closely related  Guangdong, and Fujian province), and some eastern provinces
genera, with C. roseus historically classified as Vinca rosea. The genus  (such as Zhejiang, Jiangxi, and Taiwan province) (Fig. 2b).

name Catharanthus is derived from the Greek words katharos (pure)

and anthos (flower), collectively meaning 'pure flower’; then the  Wild species resources

specific epithet roseus originates from Latin, denoting 'red’, 'rose- The Catharanthus is a genus of herbaceous perennial or annual
like', or 'rosy"in color(l. plants, belonging to the Apocynaceae family!'#15). Moreover, eight
Madagascar periwinkle (Catharanthus roseus) is considered a  species out of the Catharanthus genus are indigenous to Madagas-
native of the West Indies, but it was originally described from  car (C. trichophyllus, C. lanceus, C. coriaceus, C. ovalis, C. longifolius, C.
Madagascarl''l. Initially, MP was introduced into Paris in 1757 and  scjtulus, and C. roseus), and one (C. pusillus) is restricted to India and
has since become naturalized in continental Africa, America, Asia,  Sri Lankal?. Previous cytogenetic analyses have established that all
Australia, and Southern Europe, as well as on some islands in the  species within the genus Catharanthus exhibit a diploid chromo-
Pacific Ocean (Fig. 2)l'2l. Subsequently, periwinkle is commonly  some number of 2n = 2x = 16[16-18], Among the eight pairs of chro-
grown as an ornamental plant throughout tropical and subtropical ~ mosomes, four pairs were identified with submedian centromeres,
regions of the world (Fig. 2a)l'3l. All Catharanthus species in China  while two pairs exhibited subterminal centromeres, and the remain-
are introduced rather than native, with no recorded native popula-  ing two pairs possessed median centromeres!'819,
tions. The C. roseus, as the only species of this genus distributed in Two distinct morphotypes of MP occur in the wild: one charac-
China, has become naturalized in southern China (such as Yunnan, terized by pink flowers and reddish stems, and another by white
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Fig. 2 Distribution map of Catharanthus roseus based on all the information available to CABI Compendium (doi: 10.1079/cabicompendium.16884). (a)
Distribution map of C. roseus across the globe. (b) Distribution map of C. roseus across China. The sample distribution map was generated using the R
package 'rnaturalearth' and RStudio (Version 2025.05.1+513).
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flowers and green stems!2021], These two forms are often found
growing sympatrically. Furthermore, the wild species of MP exhibits
remarkable tolerance to abiotic stresses such as drought and salin-
ity (up to 2,000 ppm), enabling it to thrive in diverse habitats, includ-
ing sandy soils, shrublands, grasslands, riverbanks, savanna dunes,
wastelands, residential areas, roadsides, beaches, and limestone
outcrops?223l. The extent of tolerance varies as per genotypes'
adaptability in agro-geographical zones[24.

Cultivated germplasm resources

The MP has been bred as a horticultural plant since the 1920s[20],
Interestingly, the MP has been naturalized worldwide for medicinal
applications, yet it is regarded as either an invasive weed or a
decorative ornamental in different regions!?>l. During the 1970s,
breeding efforts for Madagascar periwinkle primarily focused on
ornamental traits, particularly through natural selection for corolla
color. Popular varieties included C. roseus cv. 'Rosea’ (purple), C.
roseus cv. '‘Alba' (white), and a white-flowered form with a purple
eye—often commercialized as mixed populations exhibiting
substantial variation in alkaloid content26l. Before the 1980s,
systematic breeding programs had not yet been established, and
pure lines were generally absent in C. roseus!?”). During the 1980s,
breeding programs in MP were spearheaded largely by commercial
horticultural seed companies, with an emphasis on creating novel
recombinant lines through inter-cultivar hybridization and selective
breeding. Furthermore, the primary objectives in breeding included
the creation of novel combinations of corolla and eye zone
coloration, improvements in leaf morphology (encompassing
attributes such as shape, size, and pigmentation), and the reduction
of plant height!28],

Therefore, horticulturists and seed companies have utilized
conventional breeding techniques, particularly hybridization of C.
roseus with related species, to generate F; progeny over the past
two decades. These efforts have led to the introduction of numer-
ous horticulturally improved cultivars and varieties for bedding, pot
culture, hanging basket, and mass effect(2930, Currently, there are
over 250 known commercial varieties of periwinkle (Table 1).
Furthermore, the breeding efforts have not only enhanced floral
characteristics—such as expanding the color spectrum, increasing
bloom quantity and size, and improving plant architecture—but
have also augmented resistance to diseases and cooler climates,
while simultaneously boosting herbage production and alkaloid
yield (Fig. 3).

Furthermore, breeding objectives for mainstream cultivated vari-
eties of periwinkle diverge significantly across regions. European
and American breeders prioritize flower color, disease resistance,
and growth habit, as exemplified by the 'Titan™' series (Pan
America Seed), the 'Pacifica XP' series (Pan America Seed), and the
'Cora® Cascade XDR' series (Syngenta® Flowers). The remarkable
diversity of commercial periwinkle varieties underscores significant
achievements in targeted breeding. The 'Cora® XDR' series
(Syngenta Flowers), for instance, is distinguished by its exceptional
resistance to soil-borne pathogens such as Phytophthora and
Pythium, making it a robust choice for landscape plantings in humid
climates. Meanwhile, the 'Cora® Cascade' series (Syngenta Flowers)
is characterized by a semi-trailing growth habit and prolific bloom-
ing, traits that render it ideally suited for hanging baskets and
container gardens. Furthermore, Japanese breeding has placed a
greater emphasis on floral innovation, as exemplified by the
'Soirée®"' series (Suntory Flowers). This series includes the 'Soirée®
Double' group, which produces fully double flowers with petaloid
stamens, and the 'Soirée® Flamenco' group, noted for its distinctive
wavy petals. These cultivars, detailed in Table 1, collectively
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demonstrate how specific market demands have driven the devel-
opment of specialized traits in ornamental periwinkle.

Genetic breeding

Using the query preview (All fields = 'Madagascar periwinkle' OR
'Catharanthus roseus') a literature search was conducted for publica-
tions from nearly 60 years, spanning 1963 to 2025 (Fig. 1). The 4,348
retrieved publications showed that most studies focus on plant
sciences (44.32%), followed by biochemistry and molecular biology
(17.64%), and biotechnology applied to microbiology (16.58%).
However, there is a notable lack of research on the horticultural
aspects of MP (3.59%) (Fig. 1), which presents an important opportu-
nity for further research into the mechanisms of molecular breeding
and the development of ornamental traits (Fig. 4).

Genomics of Catharanthus roseus

Although MP is an important medicinal and ornamental species,
its terpenoid indole alkaloid (TIA) pathway, key ornamental pheno-
types, and their regulatory mechanisms remain poorly understood.
Previous studies estimated the nuclear DNA content (1C-value) of
C. roseus at 0.70 pg (696 Mbp) by Zonneveld et al."], and 0.76 pg
(738 Mbp) by Guimaraes et al.l'8l. The rapid progress of high-
throughput sequencing technologies has enabled the release of
multiple high-quality C. roseus genome assemblies, allowing for
detailed analysis of its biologically important traits (Table 2). Firstly, a
draft genome of C. roseus assembled with short-read sequencing
technology was published in 2015832, however, it remains highly
fragmented and incomplete. Then, the application of advanced
third-generation sequencing and single-cell omics technologies has
enabled the assembly of near-complete, high-quality genomes of C.
roseus33-351, These genomic resources have significantly elucidated
the biosynthetic pathway of monoterpenoid indole alkaloids (MIAs).
However, as an ornamental plant, the formation mechanisms of
many important ornamental traits in MP, such as flower color, flower
shape, and plant architecture, remain poorly understood. The acqui-
sition of a fully assembled telomere-to-telomere (T2T) genome of C.
roseus using advanced high-throughput sequencing and assembly
technologies will facilitate the elucidation of its key ornamental
traits. This effort will establish a critical theoretical framework for
screening germplasms with both ornamental and medicinal value,
and support the expansion of their industrial applications.

Interspecific hybridization and male sterility

The flower of MP exhibits cleistogamous floral morphology, char-
acterized by a stigmatic head positioned inferior to the anthers3¢l,
This receptive structure secretes adhesive exudates that capture
shed pollen. Consequently, MP demonstrates reproductive incom-
patibility with other species within the Catharanthus genus.
Although self-compatible, effective intra-floral self-pollination is
impeded by the basal localization of the stigmatic receptivity zone,
necessitating alternative pollen transfer mechanismsl’l. However,
natural interspecific hybridization has been documented between
C. roseus and related species in Madagascar, with the majority of
such crosses occurring between C. longifolius and C. roseus!37:38l,
Reciprocal crossing experiments revealed asymmetric compatibility
between C. roseus and C. trichophyllus. Specifically, when C. roseus
was used as the female parent, fruit set failed completely, resulting
in no successful introgression from C. trichophyllus into C. roseus3°.,

Male sterility refers to a condition wherein functional anthers,
pollen, or male gametes, fail to develop, whether through natural
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Table 1. The major varieties of Madagascar periwinkle.

Series

Supplier

Cultivars

Blockbuster™

Carpet
Cobra

Cooler

Cora® Cascade
XDR

Cora® XDR

First Kiss

Heat Wave

Jaio

Little
Mediterranean XP

Mega Bloom

Nirvana® XDR

Pacifica XP

Soirée®

Soirée® Crown

Soirée® Double

Syngenta® Flowers
(originally developed by
Floranova)

Sakata Ornamentals

Syngenta® Flowers
(originally developed by
Floranova)

Pan America Seed

Syngenta® Flowers

Syngenta® Flowers

Benary

HEM Genetics (originally
developed by John
Bodger & Sons Co.)

Murakami Seed Co., Ltd.

Syngenta® flowers
Pan America Seed

Ameriseed

Syngenta® Flowers

Pan America Seed

Monrovia

Monrovia

Suntory flowers

Soirée® Flamenco Suntory flowers

Soirée® Kawaii

Solar

Stardust
SunStorm®

Tattoo™
Titan-ium™

Titan™

Tropicana

Suntory flowers

HEM Genetics

Pan America Seed

Syngenta® Flowers

Pan America Seed
Pan America Seed

Pan America Seed

University of Connecticut

‘Blockbuster™ Apricot', 'Blockbuster™ Blue', 'Blockbuster™ Blush', 'Blockbuster™ Burgundy', '‘Blockbuster™
Crimson', '‘Blockbuster™ Dark Red', 'Blockbuster™ Mix', 'Blockbuster™ Patriot Mix', 'Blockbuster™ Peppermint’,
‘Blockbuster™ Punch', '‘Blockbuster™ Red With Eye', '‘Blockbuster™ White'

'Rose Carpet', 'Pink Carpet', 'Magic Carpet’, 'Dawn Carpet'

‘Cobra Apricot', 'Cobra Orchid Eye', 'Cobra Passion Fruit, 'Cobra Peppermint’, 'Cobra Purple', 'Cobra Purple Eye',
'Cobra Red', 'Cobra Red Eye', 'Cobra Rose', 'Cobra Strawberry Red', 'Cobra White', 'Cobra Lavender Halo', 'Cobra
Mix', 'Cobra Orange'

'Cooler Apricot', 'Cooler Blush', 'Cooler Coconut', 'Cooler Deep Orchid', 'Cooler Grape', 'Cooler Hot Rose', '‘Cooler
Icy Pink’, 'Cooler Lavender Halo', 'Cooler Mixture', 'Cooler Orchid', 'Cooler Orchid Deep', 'Cooler Peppermint’,
‘Cooler Peppermint Improved', 'Cooler Pink', 'Cooler Raspberry Red', 'Cooler Red', '‘Cooler Rose', 'Cooler
Strawberry'

'Cora® Cascade XDR Apricot, 'Cora® Cascade XDR Bright Rose', 'Cora® Cascade XDR Lavender with Eye',
'‘Cora® Cascade XDR Lilac', 'Cora® Cascade XDR Mix', 'Cora® Cascade XDR Polka Dot', 'Cora® Cascade XDR
Punch', 'Cora® Cascade XDR Shell Pink', 'Cora® Cascade XDR Strawberry', 'Cora® Cascade XDR Violet','Cora®
Cascade XDR White'

'Cora® XDR Apricot', 'Cora® XDR Cranberry', 'Cora® XDR Deep Strawberry', '‘Cora® XDR Hotgenta', 'Cora® XDR
Light Pink','Cora® XDR Magenta Halo', 'Cora® XDR Mix, 'Cora® XDR Orchid', 'Cora® XDR Pink Halo', 'Cora®
XDR Polka Dot', 'Cora® XDR Red Glow', 'Cora® XDR Rose Punch', 'Cora® XDR White'

'First Kiss Apricot', 'First Kiss Blueberry', 'First Kiss Blush', 'First Kiss Cherry red', 'First Kiss Coral', 'First Kiss Icy
Pink’, 'First Kiss Orchid', 'First Kiss Peach’, 'First Kiss Polka Dot', 'First Kiss Raspberry", 'First Kiss Rose', 'First Kiss
Ruby', 'First Kiss Sunrise', 'First Kiss Think Pink', 'First Kiss White'

'Heatwave Apricot', 'Heatwave Blue W/Eye', 'Heatwave Burgundy', 'Heatwave Cherry', 'Heatwave Deep Rose',
'Heatwave Formula Mixture', 'Heatwave Grape', 'Heatwave Midnight Mix', 'Heatwave Orchid', 'Heatwave
Peach’, 'Heatwave Peppermint', 'Heatwave Pink', 'Heatwave Raspberry', 'Heatwave Red', 'Heatwave Rose',
'Heatwave Santa Fe', 'Heatwave Southwest Mix', 'Heatwave White'

‘Jaio Bicolor Deep Rose', 'Jaio Cherry Red', 'Jaio Dark Red', 'Jaio Vermillion', 'Jaio Vermillion Eye', 'Jaio
Peppermint’, 'Jaio White', 'Jaio Salmon Pink', 'Jaio Sky Blue'

‘Little Linda', 'Little Salmon’, 'Little Blanche', 'Little Bright Eye', 'Little Delicata’, 'Little Pinkie'

'Mediterranean XP Burgundy Halo', 'Mediterranean XP Dark Red', 'Mediterranean XP Hot Rose', 'Mediterranean
XP Peach’, 'Mediterranean XP Red', 'Mediterranean XP Rose Halo', 'Mediterranean XP Strawberry',
'Mediterranean XP White', 'Mediterranean XP Mixture'

‘Mega Bloom Dark Red', 'Mega Bloom Polka Dot', 'Mega Bloom White', 'Mega Bloom Lavender', 'Mega Bloom
Icy Pink’, 'Mega Bloom Strawberry', 'Mega Bloom Burgundy with Eye', 'Mega Bloom Peach Pink’, 'Mega Bloom
Orchid Halo', 'Mega Bloom Grape', 'Mega Bloom Pink', '"Mega Bloom Red', 'Mega Bloom Raspberry', 'Mega
Bloom Apricot'

'Nirvana® XDR Watermelon', 'Nirvana® XDR Coral', 'Nirvana® XDR Apricot Splash’, 'Nirvana® XDR Cranberry
Halo', 'Nirvana® XDR Blackberry', 'Nirvana® XDR Blush Splash', 'Nirvana® XDR Blue Halo'

'Pacifica XP Apricot', 'Pacifica XP Blush', 'Pacifica XP Burgundy', 'Pacifica XP Burgundy Halo', 'Pacifica XP Cherry
Red Halo', 'Pacifica XP Dark Red', 'Pacifica XP Deep Orchid', 'Pacifica XP Magenta Halo', 'Pacifica XP Orange',
'Pacifica XP Pink', 'Pacifica XP Polka Dot', 'Pacifica XP Punch’, 'Pacifica XP Really Red', 'Pacifica XP Red Halo',
'Pacifica XP Rose Halo', 'Pacifica XP White', 'Pacifica XP Bold Mixture', 'Pacifica XP Mixture'

'Soirée® Cerise White Eye', 'Soirée® Hot Pink, 'Soirée® Pink White Eye', 'Soirée® Light Pink Dark Eye', 'Soirée®
White'

'Soirée® Crown Pink', 'Soirée® Crown Rose'

'Soirée® Double Appleblossom’, 'Soirée® Double Pure White', 'Soirée® Double Pink Improved', 'Soirée®
Double Orchid Improved!, 'Soirée® Double White', 'Soirée® Double Pink', 'Soirée® Double Orchid'

'Soirée® Flamenco Electric Salmon Eye', 'Soirée® Flamenco Strawberry Picotee', 'Soirée® Flamenco Plum
Velvet', 'Soirée® Flamenco Salsa Red', 'Soirée® Flamenco Salmon Glow', 'Soirée® Flamenco Cheeky Pink',
'Soirée® Flamenco Senorita Pink, 'Soirée® Flamenco Pink Twist'

'Soirée® Kawaii Hot Pink', 'Soirée® Kawaii Lilac Dream’, 'Soirée® Kawaii Paprika Red', 'Soirée® Kawaii Paprika
Red', 'Soirée® Kawaii Berry Blast', 'Soirée® Kawaii Lady Liberty', 'Soirée® Kawaii Blueberry Kiss', 'Soirée® Kawaii
Coral Reef', 'Soirée® Kawaii Red Shades', 'Soirée® Kawaii White Peppermint’, 'Soirée® Kawaii Light Purple’,
'Soirée® Kawaii Pink', 'Soirée® Kawaii Lavender’, 'Soirée® Kawaii Coral'

'Solar Apple Blossom', 'Solar Apricot', 'Solar Blueberry', 'Solar Blush Pink', 'Solar Cherry with Eye', 'Solar Formula
Mixture', 'Solar Fresh Red', 'Solar Lilac', 'Solar Orange with Eye', 'Solar Orchid with Eye', 'Solar Pink’, 'Solar
Raspberry with Eye', 'Solar Red', 'Solar Red with Eye', 'Solar White'

'Stardust Orchid', 'Stardust Pink', 'Stardust Mix', 'Stardust Rose'

'SunStorm® Apricot', 'SunStorm® Blush', 'SunStorm® Bright Red', 'SunStorm® Deep Lilac', 'SunStorm® Deep
Orchid', 'SunStorm® Deep Orchid', 'SunStorm® Deep Pink’, 'SunStorm® Light Blue', 'SunStorm® Mix,
'SunStorm® Orchid Halo', 'SunStorm® Pure White', 'SunStorm® Purple', 'SunStorm® Red', 'SunStorm® Red
Halo', 'SunStorm® Rose With Eye', 'SunStorm® Tropical Mix', 'SunStorm® White With Eye'

‘Tattoo™ Black Cherry', 'Tattoo™ Blueberry', 'Tattoo™ Orange', Tattoo™ Papaya', Tattoo™ Raspberry',
‘Tattoo™ Tangerine', 'Tattoo™ American Pie Mixture'

‘Titan-ium™ Apricot', 'Titan-ium™ Blush', 'Titan-ium™ Dark Red', 'Titan-ium™ Polka Dot', 'Titan-ium™ Punch’,
‘Titan-ium™ Really Red', 'Titan-ium™ White', 'Titan-ium™ Mixture'

‘Titan™ Apricot', Titan™ Blush', 'Titan™ Burgundy', 'Titan™ Cranberry', 'Titan™ Dark Red', 'Titan™ Icy Pink',
'Titan™ Lavender Blue Halo', 'Titan™ Lilac', 'Titan™ Polka Dot', 'Titan™ Punch', 'Titan™ Pure White', 'Titan™
Really Red', 'Titan™ Rose', 'Titan™ Rose Halo', 'Titan™ Bubble Gum Mixture', Titan™ 'Clear Mixture', Titan™
Mixture', 'Titan™ Summer Breeze Mixture'

‘Tropicana Apricot', Tropicana Blush', 'Tropicana Bright Eye', 'Tropicana Pink’, ‘Tropicana Rose'
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Table 1. (continued)
Series Supplier Cultivars
Valiant™ Pan America Seed ‘Valiant™ Apricot', 'Valiant™ Burgundy', 'Valiant™ Lilac', 'Valiant™ Magenta', 'Valiant™ Orchid', 'Valiant™
Punch’, 'Valiant™ Pure White', 'Valiant™ Mixture'
Victory Sakata Ornamentals 'Victory Apricot', 'Victory Blue', 'Victory Bright Eye', 'Victory Carmine', 'Victory Carmine Rose', 'Victory Cranberry',
"Victory Deep Apricot', 'Victory Deep Pink', 'Victory Grape', 'Victory Lavender', 'Victory Light Pink', 'Victory Pure
White', 'Victory Purple', 'Victory Red', 'Victory Mix'
Viper Sahola flowers 'Viper Apricot', 'Viper Grape', 'Viper Orchid Halo', 'Viper Pink', 'Viper Purple', 'Viper Purple Halo', 'Viper Red',
‘Viper Red Eye', 'Viper Rose', 'Viper Watermelon'
Virtuosa Sakata Ornamentals 'Virtuosa White', 'Virtuosa Polka Dot', 'Virtuosa Peach’, 'Virtuosa Apricot', 'Virtuosa Deep Purple’, 'Virtuosa
Raspberry', 'Virtuosa Deep Red', 'Virtuosa Cranberry', 'Virtuosa Lavender', 'Virtuosa Pink', 'Virtuosa Punch’,
'Virtuosa Rosa', 'Virtuosa Orchid', 'Virtuosa Mix'
Vitesse Syngenta flowers 'Vitesse Apricot', 'Vitesse Blue', 'Vitesse Dark Red', 'Vitesse Lavender Morn', 'Vitesse Orange', 'Vitesse
(originally developed by  Peppermint’, 'Vitesse Pink', 'Vitesse Purple’, 'Vitesse Rose', 'Vitesse Rose Morn', 'Vitesse White'
Floranova)
a
Different

petal color

cultivars

Different
eye zone color

cultivars

Wavy petal

cultivars

Fig. 3 The abundant cultivars of flower color and shape in Madagascar periwinkle (Catharanthus roseus). (a) Different colors of MP cultivars petals. (b)
Different eye zone colors of MP cultivars. (c) Wavy petal of MP cultivars. (d) Double-flowered and tiny-flowered MP cultivars. (The publicly accessible

websites for downloading these images are listed in Supplementary Table S1).

mechanisms or artificial induction041, Although Schnell*2
reported that MP has both self-compatible and self-incompatible
lines within the genus, Veyret3’] later observed that all interspecific
hybrids were self-fertile—a finding further supported by Levy et
al*3l, The absence of self-incompatibility, dioecy, or male sterility in
any known Catharanthus species renders commercial hybrid seed
production expensive. Subsequently, a functionally male-sterile
mutant (EMS1-10) derived from the parental variety 'Nirmal' exhibits
non-dehiscent anthers while retaining fertility through artificial self-
ing, enabling its use in hybrid seed production without the need for
a restorer linet*4. The EMS1-10 mutant displays a wavy leaf margin
and reduced anther size with fewer pollen grains, yet sets normal fruit
and seed upon self-pollination. Field trials demonstrated effective
hybrid seed yield when the male-sterile line was used as the female
parent surrounded by the pollinator variety*5.. Sterility is controlled
by a recessive gene linked to early-expressing morphological
markers, allowing for pre-transplant identification. The mutant can

He et al. Ornamental Plant Research 2026, 6: €003

be propagated via selfing, stem cuttings, or micropropagation(“c,
These materials would provide valuable resources for heterosis
breeding in Catharanthus.

Mutation breeding

Over the past three decades, mutation breeding techniques have
successfully generated numerous new MP varieties with different
characteristics, many of which have been commercialized. Subse-
quently, three phenotypically distinct reduced-height mutants,
designated as 'dwarf', 'semi-dwarf', and 'bushy', have been identi-
fied in MP, exhibiting height reductions of approximately 60%, 40%,
and 30%, respectively, compared to the parental cultivar 'Nirmal'™7],
The 'dwarf' and 'semi-dwarf' mutants are conferred by monogenic
recessive genes, named dw1 and dw2, respectively, which are allelic.
Both mutants accumulated significantly higher root alkaloid content
than the parental variety!8l,
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Fig. 4 Current major areas in ornamental Madagascar periwinkle research (I-V). (@) Hyper-branched leafless inflorescence of 'lli' genotype and wild type,
and field view of some new ornamental genotypes of periwinkle C. roseus carrying the 'lli' mutation (adapted from Kumar et al.®?). (b) Different
ornamental applications of ornamental periwinkle, such as potted flowers, flower baskets, cutting flowers, flower border, and ground cover. (c) Different
colors of ornamental periwinkle cultivars (adapted from Makki et al.°®). (d) Different eye zone color of ornamental periwinkle cultivars (adapted from Tsai
et al.*)). (e) Double-flowering phenotype of C. roseus cv. Taoyuan No. 1 Rose Girl' (adapted from Chen & Yeh and Chen et al. ['77)). (f) Top view of flowers
of the pollen parents, seed parents, and F, individuals selected for F, generation wavy flower from segregation analysis (adapted from Huang et al.’?). (g)
Clonal fidelity of in vitro regenerated plantlets of C. roseus revealed by RAPD (TDG-CU-5), ISSR (18[GT], and 65[AG]), and ISSR (GTGTGTGT and AGAGAGAG)
markers, respectively (adapted from Das et al.’”)). (h) Morphological characteristics images of 25 accessions of C. roseus. (adapted from Rani et al.°”). (i)
Chromosomal position of the detected MQTL on the C. roseus genome associated with morphological traits and pharmaceutical alkaloids with 95%
confidence interval (adapted from Shariatipour et al.l°®)). (j) Chromosome-level features of C. roseus (BioProject: PRINA841429) (adapted from Sun et al.>))
(k) The progressive improvement of the single-cell multi-omics era in C. roseus (adapted from Li et al. and Burlat et al.?%°?), (I) Disease symptoms induced
in C. roseus plants 2 months after inoculation with Xylella fastidiosa (right) (adapted from Lacava & Azevedo!'%?). (m) Differences in CLas symptoms of
Citrus sinensis and its agent C. roseus, and their proposed genetic basis (adapted from Xu et al.?3)). (n) Botrytis stem canker on vinca (C. roseus) (adapted
from Daughtrey et al.l'")). (0) Performance assessments between disease-resistant C. roseus cv 'Cora® XDR' series against existing commercial varieties
(www.syngentaflowers.com/ams/coraxdr).

The MP is also widely appreciated as an ornamental garden plant
owing to its diverse floral coloration. Consequently, mutants influ-
encing floral attributes such as color, bloom density, and longevity
have attracted considerable research interest. A notable mutant of
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Catharanthus roseus, characterized by the development of flowers
on nodes devoid of leaves and referred to as the 'leafless inflores-
cence' phenotype, has been reported. The genetic locus responsi-
ble for this trait, designated as 'lIi", has been successfully mapped“9.
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Table 2. Genome assemblies and annotations among sequenced Catharanthus species.

G N N ey e oo fepert R
Catharanthus roseus 541.13 0.08 2.60 96.00% No 34,363 90.70% - Kellner et al.BZ
C. roseus 581.45 12.20 12.20 97.10% No - - - Cuello et al.l®"
C. roseus 572.90 2.90 71.90 91.53% Yes 37,297 - - Sun et al.l?*]
C. roseus cv. 572.20 11.30 71.20 98.50% Yes 26,347 96.10% 70.25% Li et al.l?¥
'Sunstorm Apricot'

C. roseus cv. 'Pacifica 561.70 20.90 71.10 98.00% Yes 30,085 96.90% 73.71% Xu et al.B?

XP Burgundy'

The mutant produced more flowers per plant than its parent, thus
further increasing its horticultural value. Additionally, a double-flow-
ered mutant, designated 'TYV1' (‘Taoyuan No.1-Rose Girl'), was
obtained from a cross between a self-pollinated C. roseus cv. 'Paci-
fica Polka Dot' population and a line derived from self-pollinated C.
roseus cv. 'Titan Burgundy'l'l. This mutant was isolated and charac-
terized for the morphology and genetic inheritance of its double-
flowered trait. Consequently, new horticultural cultivars with
enhanced ornamental characteristics were generated through
hybridization of this mutant with genotypes exhibiting distinct
flower colors and plant architectures.

Polyploid induction

In the previous studies, colchicine has become a widely used
mutagenic agent for polyploidy induction in plantsi®%57. Thus,
polyploid induction breeding in C. roseus, a species with significant
ornamental and medicinal value, is expected to facilitate the devel-
opment of elite germplasm exhibiting both enhanced ornamental
traits and increased secondary metabolite accumulation.

Numerous studies on polyploidy in MP have been published in
previous related researchl'652, Seeds or apical buds of young
seedlings were treated with colchicine solutions at concentrations
ranging from 0.01% to 1.0% to conduct the polyploid induction of
MP71. Furthermore, the treatment of apical buds resulted in higher
tetraploid induction efficiency compared to seed treatment(>3l, In
addition, the stamen length and pollen grain diameter were con-
sidered as the two most reliable characters to identify autote-
traploids of MPB4, Additionally, the autotetraploids of periwinkle
were also found to have low pollen fertility (32%-43%), poor fruit set
(17.5%-22.5%), and low seed production as compared with
diploids!'654., Pre-fertilization abnormalities, such as undeveloped
ovules, aberrant or delayed embryo sac development, and delayed
fertilization, were recognized as primary causes of seed failure
(haplontic sterility) in autotetraploids of MP3],

Polyploid induction technologies provide an excellent way to
increase yields of valuable metabolites. Previous studies have indi-
cated that autoploidization can enhance secondary metabolism
in MP, thereby promoting the accumulation of terpenoid indole
alkaloidst8). Furthermore, the vincristine and vinblastine content
were significantly altered and markedly increased in autotetraploids
of C. roseus cv. 'Pacifica XP Red Really' and C. roseus cv. 'Pacifica XP
Polka Dot', compared to their diploid counterparts®7l. This finding
provides a theoretical foundation for implementing polyploid
induction in cultivated varieties of C. roseus, screening elite
germplasms with both ornamental and medicinal value, and further
enhancing the industrial chain and added value of the species.

Next-generation breeding of Catharanthus roseus
Advances in next-generation sequencing (NGS) technologies over
the past decade have dramatically enhanced the efficiency and
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cost-effectiveness of DNA sequencing, greatly accelerating genomic
researchl8l, Furthermore, the rapid integration of advanced tech-
nologies in recent years, such as third-generation long-read
sequencing (Oxford Nanopore, Pacbio), integrated single-cell multi-
omics, biosynthetic engineering, and high-throughput phenomics,
has propelled crop breeding into a new era of intelligence-driven
improvement59,

As an important medicinal and ornamental species, C. roseus has
encountered significant challenges in the next-generation molecu-
lar breeding stage due to a lack of high-throughput genomic data.
In 2006, Murata et al.%% built cDNA libraries from the leaf base and
root tips of C. roseus and generated expressed sequence tags (ESTs).
This work provided the initial platform for identifying microsatellite
markers, thereby paving the way for molecular breeding efforts in
this species. Although the first whole-genome assembly of C. roseus
cv. 'Sunstorm Apricot' has been made publicly available; however,
the current version remains fragmented, with 68,690 gaps that
present opportunities for further refinement3261],

The MAS is an advanced breeding approach that integrates
molecular biological techniques with conventional plant breeding
practices62l, The MAS strategy allows breeders to precisely and effi-
ciently identify plants carrying target genes or quantitative trait loci
(QTLs) during early developmental phases, thus streamlining culti-
var development and enhancing the overall effectiveness of breed-
ing programs. The initial genetic linkage map for C. roseus was
constructed by Gupta et al.[3], which integrated six morphological
markers and 125 molecular markers (79 RAPD,7 ISSR,2 EST-SSR,37
other PCR-based DNA markers) into 14 linkage groups covering a
total length of 1,131.9 cM. Subsequent linkage maps were estab-
lished by Shokeen et al.l5%, featuring 114 markers distributed across
eight linkage groups (632.7 cM), and by Chaudhary et al.*I—later
expanded by Sharma et al.l5—incorporating both morphological
and molecular markers. These foundational maps facilitated the
detection of QTLs associated with alkaloid production in various
plant tissues. Further advancing this work, Chaudhary et al.l’¢! iden-
tified 20 QTLs linked to the accumulation of key alkaloids such as
catharanthine and vindoline, underscoring the potential for marker-
assisted selection in MP breeding. It should be noted, however, that
the expression and effects of these QTLs may vary across different
genetic backgrounds and growing conditions, highlighting the
need for further validation. The relatively slow adoption of marker-
assisted breeding in C. roseus likely reflects its secondary economic
status compared to major global crops.

Nevertheless, the development of molecular markers linked to
key ornamental traits in MP remains limited®’), By employing
genetic markers tightly linked to agronomically important traits,
MAS enables precise identification and selection of individuals
possessing desirable alleles, thus significantly enhancing the effi-
ciency of developing improved cultivarsi®8l, Utilizing the recently
established high-quality reference genome to identify markers asso-
ciated with traits such as flower color, floral morphology, and plant
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architecture could greatly enhance the efficiency of marker-assisted
breeding in MP. This strategy promises to facilitate broader applica-
tion within the ornamental breeding sector.

Genetic regulation of important
ornamental traits

Molecular breeding techniques have facilitated the successful
transfer of genes in numerous ornamental species, resulting in the
development of transgenic plants with targeted traits. Progress in
molecular biology has transcended historical cross-species ability
limitations, enabling gene exchange among previously incompati-
ble species. Recognized for its precision and efficiency, molecular
breeding offers a superior alternative to conventional breeding and
induced mutagenesis. It allows specific traits to be altered in a
highly directed manner while preserving the integrity of other desir-
able characteristics. Ornamental qualities such as flower color and
morphology, plant architecture, postharvest durability, disease resis-
tance, control of flowering, and tolerance to abiotic stress, repre-
sent viable targets for genetic enhancement through this approach,
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serving as key focal points for modern ornamental breeding
programs (Fig. 5).

Genetics of flower color

Developing novel and appealing flower colors remains a key
objective in ornamental plant breeding, driven by its profound influ-
ence on consumer choices and commercial value!®., Flower (corolla)
color represents one of the most visually prominent and highly vari-
able traits in MP populations. The horticultural significance of MP
largely stems from its diverse and varied floral coloration, which
provides valuable resources for ornamental breeding. In natural
populations of MP, three predominant corolla color patterns are
typically observed: pink, white, and a distinct red-eyed form charac-
terized by a white corolla with a prominent red central eyel70l
Beyond the common corolla variants, less frequent hues, including
violet, orange-red, scarlet-red, magenta, and rose, have also been
reported. The full spectrum of observed colors (spanning pink, red-
eyed, pale pink, white, violet, orange-red, scarlet-red, magenta, and
rose) is regulated by interactions among alleles across seven genetic
loci: A, R, W, B, I, 0/0O™, and JU7'.72 Initially, a phenotypic segregation
ratio of nine pink:three red-eyed:four white was observed in a cross
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Fig. 5 The hypothetical comprehensive breeding scheme for ornamental periwinkle integrating conventional with modern breeding strategies. Icons
were created using Excalidraw (https://excalidraw.com), and Al-Doubao (www.doubao.com/chat).
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between pink- and white-flowered plants!’3l. Genotypically, the pink
phenotype was associated with R.W,, the red-eyed phenotype with
R.ww, and the white phenotype with both rrWW. and rrww. The | allele
also promotes anthocyanin accumulation, though at reduced levels,
and in the absence of the W allele, it produces pale pink corollas
with a red eyel’?l. Gene B acts as a co-pigmentation factor that
induces a spectral blue shift in anthocyanin pigments. Additionally,
genes A and R act as complementary genes essential for corolla
pigmentation; the absence of either gene results in the formation of
a white corollal74l. For another inhibitory gene J, while non-pigment-
ing on its own, partially suppresses gene O™, resulting in the forma-
tion of rose-colored corollas’®. Moreover, recent studies have
demonstrated that the F, progeny from a cross between the inbred
lines 'Vi-15-1' (which has magenta corollas with white centers)
and 'Vi-29' (white-flowered) consistently produced pale purple
corollas. Additionally, segregation analysis of the F, generation
identified three distinct phenotypic classes aligned with a typical
1:2:1 monogenic ratio: (i) magenta with white center (O™O™); (ii)
pale purple (O™W); and (iii) white (WW)®!, Similar results were found
by Awad Hamza et al.2', where crosses between pink- and white-
flowered parents in periwinkle yielded light pink F; progeny, with
the F, generation segregating in a 1:2:1 ratio, indicating monogenic
inheritance with incomplete dominance of the pink flower color
allele.

Although the inheritance patterns governing flower color in MP
have been elucidated, the molecular mechanisms underlying petal
pigmentation remain inadequately characterized. A recent multi-
omics study on three C. roseus varieties with white (CW), red (CR),
and purple (CP) petals identified 10 anthocyanins as key color
determinants’>. The petals of CP were characterized by malvidin 3-
O-glucoside and petunidin 3-O-glucoside, while petals of CR accu-
mulated peonidin 3-O-glucoside and delphinidin 3-O-glucoside.
Transcriptome analysis revealed 4173 differentially expressed genes
(DEGs), including 1,003 genes commonly regulated across samples,
with notable upregulation of chalcone synthase (CHS), flavonoid 3"
hydroxylase (F3'H), and dihydroflavonol 4-reductase (DFR) in colored
petals. Furthermore, the expression patterns of MYB and bHLH tran-
scription factors exhibited significant correlations with observed
color phenotypes. The competitive enzymatic interaction between
flavonol synthase (FLS) and flavonoid 3'-hydroxylase/flavonoid 3',5'-
hydroxylase (F3'H/F3'5'H) for the substrate dihydrokaempferol (DHK)
likely impedes anthocyanin biosynthesis in the petals of CW. Collec-
tively, these findings elucidate the molecular framework of petal
coloration in periwinkle and identify potential genetic targets for
the development of pigmented varieties. Therefore, the combined
application of multi-omics approaches, genome editing techniques,
and traditional breeding methods holds significant potential to
enhance the comprehension of corolla color development, eluci-
date the biochemical mechanisms underlying floral pigmentation,
and enable the creation of new flower color phenotypes of MP.

Flower shape

The growth and development of angiosperms (flowering plants),
particularly of their floral organs, are fundamental characteristicsl7l.
Similar to numerous species within the Apocynaceae family, the
flower of MP exhibits a five-lobed, planar corolla that emerges from
a tubular structure enclosing the stamens and pistil¢.. Commercial
MP cultivars currently exhibit limited variation in flower morphol-
ogy, as most feature a common flat-petaled structure that reduces
their novelty. In 2001, a double-flowered mutant designated
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‘Taoyuan No.1-Rose Girl (TYV1)' emerged from self-pollinated (S1)
lines of the C. roseus cv. 'Pacifica Polka Dot'"l. Subsequently, this
mutant provided the genetic foundation for breeding the commer-
cial doubled-flower cultivarl’7l, Owing to its exceptional ornamental
value, the double-flowered trait has received a great deal of atten-
tion from breeders in the MP industry. Many horticultural compa-
nies, such as Suntory Flower Co. (Japan), have introduced specialty
MP varieties like the 'Soirée® Kawaii' series, featuring miniature flow-
ers, and the 'Soirée® Flamenco' series, known for its wavy petals(20l,
However, studies on the description or inheritance pattern of the
wavy flower and miniature flower form in MP remain scarce.

Wavy petals are common in many ornamental flowers due to their
enhanced aesthetic appeal, making them a frequent target for
breedersl’8l, Neither resulting from the typical homeotic conversion
of stamens into petals nor following a dominant inheritance pattern,
the 'TYV1' mutation was identified as being governed by a single
recessive allele. Recent research indicates that the inheritance of
these flower morphologies is governed by a single allele, WAVY
(Wv), proposed to exhibit incomplete dominancel’. Specifically, the
non-wavy, extreme-wavy, and medium-wavy phenotypes result
from the recessive homozygous (wvwy), dominant homozygous
(WWv), and heterozygous (Wvwv) genotypes, respectively,
enabling breeders to predict offspring flower-type ratios based on
parental genotypes. Furthermore, notable characteristics such as
broadly wrinkled leaves, an acute leaf apex, and a loose bud struc-
ture allows for early identification and selection of extreme-wavy MP
flowers during breeding. Consequently, these results would provide
a foundational framework for breeders to design crossing strategies
aimed at generating a broader range of flower forms, thereby
enhancing the diversity available to consumers.

However, the molecular regulatory mechanisms behind the
diverse floral morphologies (such as wavy and double petals) in MP
remain poorly understood. In contrast, studies in the model orna-
mental plant petunia have shown that different MADS-box tran-
scription factors and TCP transcription factors mainly control the
development of its double and wavy petals!89-82l, Therefore, discov-
ering and functionally validating homologous genes within this
transcription factor family in periwinkle will offer important insights
into the molecular basis of its floral morphology development, while
also helping to clarify the conservation and specificity of floral
patterning pathways across species.

Plant architecture

Plant architecture, defined here as the three-dimensional organi-
zation of the shoot system in higher plants, is primarily shaped
by shoot branching patterns, plant height, and inflorescence
morphology!®l. In particular, plant height plays a fundamental role
in plant architecture, collaborating with shoot branching and inflo-
rescence morphology to define the overall structure®4., As a domi-
nant ornamental crop widely used in landscaping for borders,
bedding, and pot culture, the MP remains poorly understood genet-
ically, particularly regarding the inheritance of key traits and their
correlation with quantitative characters such as flower yield, yet
elucidating the co-segregation of these traits could greatly facilitate
crop improvement.

An extremely tall mutant (EMS 18-12), a bushy mutant (EMS 24-5),
their parental variety 'Nirmal', and a double mutant recombinant
derived from these materials were used to examine the individual
and combined effects of genes that exert opposing influences on
plant height in MP[*8], The results demonstrated that plant height in
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the extremely tall mutant (EMS 18-12) is regulated by an epistatic
inhibitory interaction between two independently inherited domi-
nant genes, Et and H, where Et promotes extreme height while H
suppresses its expression. Moreover, both genes were observed to
segregate independently of the plant height-reducing recessive
gene present in the bushy mutant (EMS 24-5). At various develop-
mental stages, the double mutant recombinant (Etby) exhibited
greater height than the bushy mutant (EMS 24-5) and the variety
'Nirmal', but remained shorter than the extremely tall mutant (EMS
18-12). Recently, a study was performed using 30 F, segregating
lines of Catharanthus developed from diallel crossing of six geneti-
cally dissimilar parents varied in many traits. Phenotyping of the
population results indicated a significant positive association
between days to flowering and plant height. Although major horti-
cultural companies have introduced varieties with diverse plant
architectures, such as 'Solar' (Hem Genetics, Netherlands) and
'Cora® Cascade XDR' series, which are suitable for hanging baskets,
the molecular mechanisms controlling their growth habits are still
not fully understood. Therefore, using multi-omics approaches to
uncover the molecular regulatory mechanisms behind different
plant architectures in ornamental MP will help develop more precise
selection and hybrid breeding strategies in the future.

Although these traits follow monogenic recessive inheritance,
their underlying molecular determinants remain uncloned. Research
in other ornamentals provides strong mechanistic clues: dwarf phe-
notypes often implicate gibberellin biosynthesis, or signaling genes
(e.g., GA200x, GA3ox in chrysanthemum)®], and bushy phenotypes
frequently correspond to strigolactone signaling deficiencies (e.g., in
MAX2 orthologs)i8¢l. Consequently, a critical next step for MP archi-
tecture research is hypothesis-driven functional validation of can-
didate genes within these conserved pathways.

Resistance to disease

Periwinkle plants are known to be susceptible to phytoplasma
infection from different crops, and exhibit highly distinctive symp-
toms such as root necrosis, water-soaked lesions on stem tissue, and
uniform wilting. Especially for die-back disease, induced by Pythium
aphanidermatum or Phytophthora nicotianae, severely affects tropi-
cal and subtropical regions during the rainy season, with docu-
mented mortality rates reaching 70%-80%!27¢71, The Phytophthora
aerial blight in annual MP advances quickly under environmental
conditions such as high soil moisture, prolonged rainfall, or frequent
irrigation(®8l, The MP wilting and death may occur as quickly as 1-2
weeks after initial symptom emergence; however, the root systems
of infected plants often remain intact!®, Notably, a die-back-resis-
tant variety, C. roseus cv. 'Nirmal' was developed through pure line
selection from an individual plant that survived a severe die-back
epidemicl®0],

The genetic basis of die-back resistance was investigated employ-
ing a resistant dwarf mutant originating from the green-stemmed
cultivar 'Nirmal', in comparison with a susceptible purple-stemmed
accession designated 'OR'®l, Furthermore, the qualitative analyses
consistently demonstrated that resistance is governed by a single
gene, exhibiting a broad-sense heritability of 0.85, and is inherited
independently of loci controlling dwarfism and stem pigmentation.
The over-flowering 'lli' trait was combined with variation in plant
height, petal and eye colors, and tolerance to the common fungal
diseases!®2. Consequently, a growing number of new cultivars with
superior ornamental traits, including enhanced tolerance to
common fungal diseases, heat, and drought, have been widely
commercialized. Notable examples include the 'Cora® Cascade XDR'
series.
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Trends and implications in commercial
periwinkle breeding

An integrated analysis of current commercial varieties (Table 1),
and relevant literature reveals several distinct trends in the current
commercial breeding of Madagascar periwinkle. First, innovations in
plant architecture have significantly expanded its horticultural appli-
cations. Breeders have successfully developed series with trailing
habits (e.g., 'Cora® Cascade' series), transforming the plant from a
traditional bedding flower into a premium material suitable for
hanging baskets and container cultivation. Second, the continuous
diversification of floral aesthetic traits represents another major
driver, including double and mini flowers (e.g., the 'Soirée® Double'
and 'Soirée® Kawaii' series), wavy petals (e.g., the 'Soirée®Flamenco'
series), and unique eye patterns and complex color formations, all of
which markedly enhance its ornamental value and market appeal.
Furthermore, disease resistance has become a core breeding objec-
tive, particularly for open landscape applications. For example,
Syngenta's 'Cora® XDR' series aims to address key production
constraints such as die-back caused by pathogens like Phytophthora.
Driven by market globalization and the proliferation of e-commerce
platforms, these breeding trends underscore the genetic gains
achieved through market forces. Leading commercial series effi-
ciently integrate multiple desirable traits to meet the demands of
the modern horticulture industry.

However, this intensive commercial breeding exerts a dual influ-
ence on the genetic diversity of Catharanthus roseus. While reliance
on elite parental lines, risks genetic erosion and a narrowed genetic
base, modern techniques such as interspecific hybridization and
gene editing, create novel combinations. Thus, future strategies
must balance the use of advanced technologies with the conserva-
tion of traditional germplasms to ensure long-term breeding
sustainability.

Conclusions and perspectives

Although multi-omics approaches have profoundly advanced the
study of medicinal alkaloid biosynthesis in Catharanthus roseus, the
molecular basis of its ornamental traits remains largely
unexploredB43%], Key aesthetic characteristics of periwinkle, includ-
ing corolla pigmentation, petal morphology (such as minuteness,
waviness, and doubleness), and plant architecture, are still poorly
defined genetically. The integration of CRISPR-mediated gene edit-
ing with multi-omics profiling provides a powerful strategy to
systematically unravel these traits®394, Notably, the recent applica-
tion of an intron-optimized Cas9 (zCas9i) system in C. roseus has
enabled highly efficient multiplex editing of jasmonate-responsive
transcription factors (JAM2, JAM3, RMTT1), achieving 100% editing
efficiency via Agrobacterium-mediated hairy root transformation®3.
This breakthrough not only validates the cross-species applicability
of the intron-optimized Cas9 platform but also provides a critical
toolset for targeting key genetic regulators in future functional stud-
ies, such as MADS-box genes for flower form, MYB factors for
pigment patterning, and susceptibility genes like MLO for stem rot
resistance.

As an important bedding plant, the MP maintains a stable pres-
ence in the global ornamental market, with increasing adoption in
tropical and subtropical regions owing to its extended bloom period
and thermal resiliencel’®.. Its widespread commercial presence is
evidenced by the extensive variety series developed by major inter-
national breeders such as Syngenta®Flowers, PanAmerican Seed,
and Suntory Flowers.
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Future commercial growth will largely hinge on the introduction
of novel cultivars with improved visual and performance-related
traits. In parallel, enhancing resistance to major diseases such as die-
back and stem rot through integrated strategies, combining biologi-
cal controls and genome-edited resistance, will be crucial for
sustainable production.

In summary, the overarching goal for next-generation periwinkle
breeding lies in the holistic design of elite cultivars that harmonize
ornamental appeal, durable disease resistance, and high alkaloid
content, thereby maximizing the dual horticultural and pharmaceu-
tical potential of this multifaceted species.
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