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Abstract

Denphal-group Dendrobium, a globally renowned orchid variety cultivated for both cut flowers and potted plants, is primarily distributed and grown in
tropical regions but remains highly susceptible to low-temperature injury in many subtropical areas. To improve the cold tolerance of Denphal-group
Dendrobium, in this study, a cold-responsive protein gene, DhCOR413PM1, was identified from the cultivated variety Denphal-group Dendrobium Sonia
'Hiasakul'. The DhCOR413PM1 ORF (612 bp) encodes a 203-amino-acid protein, containing five transmembrane domains and a conserved COR413 domain,
showing the closest homology to DtCOR413PM1 (Den. thyrsiflorum). DhCOR413PM1 is ubiquitously expressed across all tissues of the plant, with pre-
dominant transcript accumulation in roots and reproductive organs. DhCOR413PM1 expression was significantly upregulated not only under low tem-
perature (4 °C) but also in response to drought (15% PEG-6000) and salinity (50 mM NaCl) stresses. Transgenic Arabidopsis lines overexpressing
DhCOR413PM1 exhibited markedly enhanced tolerance to multiple stresses, including higher survival under freezing stress, increased germination rates, and
longer roots under osmotic and salt stress, indicating significantly enhanced tolerance to cold, drought, and salt stresses and demonstrating the unique role
of the gene in conferring multi-stress resistance. These results suggest that DhCOR413PM1 is a stress-responsive gene potentially involved in multiple
abiotic stress tolerance pathways in Dendrobium. Further functional characterization of DhCOR413PM1 may provide valuable insights into the molecular
mechanisms underlying stress adaptation in orchids.
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Introduction

Dendrobium is one of the largest genera of orchids, with most
species distributed in tropical and subtropical Asia and eastern
Australial'l. Importantly, interest in Dendrobium species is broad,
ranging from traditional medicine and specialized cosmetic materi-
als to ornamental horticulture-4, Nowadays, Dendrobium orchids
have become increasingly popular for ornamental use due to their
floriferous nature and availability in a wide range of colors, sizes,
shapes, and prolonged flowering periods. Among the large number
of species and cultivars of Dendrobium, two groups are suited
for ornamental sale: the Nobile-group and the Denphal-group. The
Nobile-group produces inflorescences and flowers that are dis-
tributed along the pseudobulbs, while the Denphal-group produces
one or more terminal inflorescences from the tip of pseudobulbsfl.

The Denphal-group Dendrobium is most commonly distributed in
tropical regions such as the Philippines, Malaysia, Indonesia, and
other South Pacific island countries, and is most cultivated in tropi-
cal and subtropical regions such as Thailand, Singapore, Malaysia,
etc., where the overall temperature is suitable for growth. The opti-
mal ambient temperatures for Denphal-group Dendrobium spp. and
their hybrids occur when night temperatures stay above 18 °C, with
daytime temperatures ranging between 24 and 29 °C. Low tempera-
tures (below 15 °C) result in significant limitations on the growth
and development of Denphal-group Dendrobium spp. and their
hybrids, such as leaf discoloration, foliage loss, and diminished
vegetative growth. Moreover, lower temperatures and shorter day-
light periods have been observed to alter the concentration of

© The Author(s)

internal growth regulators, prompting the initiation of flowering in
Dendrobium orchidstl. Therefore, in the majority of subtropical
regions, uncertain cold waves cause low temperature damage to
Denphal-group Dendrobium plants, including gradual leaf yellow-
ing, slower growth, and decreased flower longevity”l. Under low
temperature stress, the relative electrical conductivity (REC), as well
as soluble protein, soluble sugar, free proline, malondialdehyde
(MDA) content, and defoliation rate of Denphal-group Dendrobium
cultivars increased with the decrease of treatment temperature and
the extension of treatment time, while the content of chlorophyll
decreased gradually.

Dendrobium Sonia 'Hiasakul', a representative cultivar of the
Denphal group and a popular commercial variety at present, is
highly sensitive to low temperatures. Its cold damage symptoms
include rapid yellowing and falling of leaves, damage to mem-
brane structure, decline in photosynthetic capacity and metabolic
disorder!”). Comparative physiological and transcriptomic studies
with the cold-tolerant cultivar Den. 'Hongxing' revealed that Den.
Sonia 'Hiasakul' suffers more acute morphological damage under
low-temperature conditions, characterized by a higher leaf abscis-
sion rate, accelerated leaf yellowing, a more rapid increase in REC
and MDA content, and a sharper decline in chlorophyll levelst®!. Tran-
scriptomic investigations have further identified significant enrich-
ment of cold-responsive genes and metabolic pathways associated
with the observed physiological traits, including those involved in
signal transduction, plant hormones, transcription factors, protein
translation and modification, functional proteins, biosynthesis and
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metabolism, cellular structure, light signaling, and the circadian
rhythm(&9l, Compared with other Dendrobium species, the drought
and salt tolerance of Sonia 'Hiasakul' remains uninvestigated. Its
tropical origin, however, suggests potential sensitivity to both
drought and salinity—a hypothesis that awaits further experimen-
tal validation.

Previous studies have shown that plant chilling stress involves
cooperative regulation of multiple transcription factors. The three
main cold-responsive gene families in plants are Inducer of CBF
Expression (ICE), C-repeat Binding Factors (CBFs), and the Cold-
Regulated genes (CORs)!'?l, These three abovementioned key play-
ers form an imperative signaling pathway, the ICE-CBF-COR cascade,
which alleviates cold stress in plants!''l, Nowadays, the ICE-CBF-COR
signal transduction pathway has been widely studied and has been
shown to play a crucial role in the regulation of plant chilling
tolerancel'?. In the pathway, COR genes, as key regulators, are
considered to be those most closely related to the cold stress
response. COR413, a member of the COR gene family, is a subfamily
of low-temperature-responsive genes unique to plants. The COR413
protein is classified into three forms based on its subcellular localiza-
tion: COR413PM in the plasma membrane, COR413TM in the inner
capsule membrane, and COR413IM in the chloroplast inner
membranel’3], Since being first identified in Arabidopsis, COR413
genes have been identified in several other plants, such as peachl'4,
wintersweetl'%], tomatol'®'7], Saussurea involucratal'sl, Saccharum
spontaneum!'9, and Phlox subulata?®l. These studies showed that
COR413 genes respond to low temperature and enhance plant cold
tolerance, as well as other abiotic stresses such as drought and salt.

Studies on the COR413 gene have been conducted in various
plant species; however, this gene has not been investigated in
Dendrobium. Therefore, in this study, DhCOR413PM1, a member of
the COR413 family, was identified in Denphal-group Dendrobium.
The expression pattern of DhCOR413PM1 was analyzed across vari-
ous organs and under different abiotic stresses. Transgenic Arabid-
opsis thaliana plants overexpressing DhCOR413PM1 were evaluated
under low-temperature, drought, and salt stress conditions. Collec-
tively, the findings provide insights into the role of DhCOR413PM1 in
the cold, drought, and salt stress resistance mechanisms of Denphal-
group Dendrobium.

Materials and methods

Plant materials and growth conditions

The Dendrobium Sonia 'Hiasakul' used in this study was cultivated
at the Tropical Flower Resource Garden, Tropical Crops Genetic
Resources Institute, Chinese Academy of Tropical Agricultural
Sciences (CATAS), located in Danzhou, Hainan Province, China.

Wild-type Arabidopsis thaliana (ecotype Columbia-0, Col-0) for
genetic transformation was maintained by the Tropical Crops
Genetic Resources Institute, CATAS. Arabidopsis seeds were surface-
sterilized with 15% (v/v) sodium hypochlorite (NaClO) for 10 min
and rinsed five times with sterile distilled water. Sterilized seeds
were then plated on solid Murashige and Skoog (MS) medium
supplemented with Hygromycin B (30 mg/L) for the selection of
transformants. After two weeks, positive seedlings were trans-
planted into the soil. All Arabidopsis plants were grown in a
controlled environment growth chamber under the following
conditions: 22 °C, 85% relative humidity, and a 16 h light/8 h dark
photoperiod cycle.
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Cloning and bioinformatic analysis of
DhCOR413PM1

The sequence information for DhCOR413PM1 was obtained from
the transcriptome of the Dendrobium cultivar Sonia 'Hiasakul'. The
full-length coding sequence (CDS) of DhCOR413PM1 was subse-
quently cloned from Sonia 'Hiasakul' cDNA using gene-specific
primers (F: 5'-ATGGGAAAACTAGGGTTCCTAGCG-3', R: 5'-CTAAATC
AAAATGACAATGAGTCC-3)).

Amino acid sequences of COR413 proteins from diverse plant
species were retrieved from the National Center for Biotechnology
Information (NCBI) database. The deduced DhCOR413PM1 amino
acid sequence was aligned with homologous sequences from
closely related species using DNAMAN 6.0 software. A phylogenetic
tree was constructed from this alignment using the neighbor-join-
ing (NJ) method implemented in MEGA 11 software, with boot-
strap values set to 1,000 replicates. Conserved domain analysis of
the DhCOR413PM1 protein was performed using the NCBI Con-
served Domain Database (CDD, www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi). Transmembrane domains were predicted using the
TMHMM Server v.2.0 (www.cbs.dtu.dk/services/TMHMMY/). The sub-
cellular localization of DhCOR413PM1 was predicted using a suite
of online tools: WoLF PSORT (https://wolfpsort.hgc.jp/) for general
localization; TargetP-2.0 (https://services.healthtech.dtu.dk/services/
TargetP-2.0/) for N-terminal signal peptide analysis; and LOCALIZER
(http://localizer.csiro.au/) for the specific detection of chloroplast,
mitochondrial, or nuclear localization signals. All analyses were run
with default parameters.

Expression analysis of DhCOR413PM1 in
Dendrobium

For tissue-specific expression analysis of DhCOR413PM1 in
Dendrobium, the roots, stems, and leaves from young seedlings
and middle-aged plants were collected. For mature plants, samples
included roots, stems, leaves, peduncles, inflorescences, and flower
buds at different development stages.

For abiotic stress expression analysis of DhCOR413PM1, middle-
aged plants were subjected to low temperature (4 °C), high salt
(50 mM Nacl), and drought (15% PEG-6000) treatments. Leaves from
five plants per treatment were harvested at 0, 1, 2, 4, 8,12, 24, 48,72,
96, and 120 h post-treatment. All samples were immediately frozen
in liquid nitrogen and stored at —80 °C.

Total RNA was extracted using the RNAprep Pure Plant Plus Kit
(TIANGEN, Nanjing, China). First-strand cDNA synthesis was per-
formed with the PrimeScript™ FAST RT reagent Kit (Takara, Dalian,
China). Quantitative real-time PCR (qRT-PCR) assays were conducted
using TB Green® Premix Ex Tag™ Il FAST (Takara, Dalian, China) with
p-actin (F: 5'-CTTCGTCTTCCACTTCAG-3' and R: 5'-ATCATACCAGT
CTCAACAC-3)) as the reference genel?'l. The primer sequences used
for qRT-PCR were F: 5-GGATTCGGCACATACTTTCTC-3' and R: 5'-
CCATTTTCCAACCTCACCTC-3' respectively. The 2-44Ca method was
employed to calculate relative expression levels. Three biological
replicates were analyzed, with technical triplicates for each sample.

Vector construction and plant transformation

To validate the function of DhCOR413PM1, the full-length cod-
ing sequence was cloned into the pBWA(V)HS vector using the
Eco31l (Bsal) restriction sites, generating the recombinant plasmid
pBWA(V)HS-DhCOR413PM1. After confirmation by PCR and Sanger
sequencing, the construct was transferred into Agrobacterium tume-
faciens strain GV3101.
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Arabidopsis thaliana transformation was performed using the flo-
ral dip method[?2, T1 transgenic plants were selected on Murashige
and Skoog (MS) medium supplemented with 30 mg/L hygromycin
B. Integration of the transgene was confirmed by PCR amplifica-
tion with vector-specific primers (F:5'-CTTCGCAAGACCCTTCCTC-3";
R:5'-ATGACAATGAGTCCCCAGA-3'). In addition, the expression of
DhCOR413PM1 in T3 homozygous lines was quantified by gRT-PCR
using the Arabidopsis Actin gene as the reference (F:5'-CTTCGTCTTC-
CACTTCAG-3"; R:5'-ATCATACCAGTCTCAACAC-3"). Three indepen-
dent overexpression lines (OE1, OE3, OE9) exhibiting high trans-
gene expression levels were selected for subsequent abiotic stress
assays.

Abiotic stress tolerance assay of DhCOR413PM1
transgenic Arabidopsis

To assay freezing tolerance in DhCOR413PM1 transgenic Arabid-
opsis, wild-type and T3 generation transgenic seedlings were grown
on MS medium for 12 d. The plates with the plants were then placed
at 4 °C for 12 h in the dark, followed by exposure to —7 °C for 12 h.
After the low-temperature treatment, the plates were transferred
to normal growth conditions (22 °C, 16 h light/8 h dark) for 5 d of
recovery. Photographs were taken before freezing, and after recov-
ery, respectively, and the survival rate was calculated.

For dehydration and salt stress treatments, the transgenic and WT
seeds were sown on MS medium containing 250 mM mannitol and
150 mM Nadl, respectively. After 3 d of cold vernalization at 4 °C,
the seeds were then transferred into an artificial climate box for
culture. Germination rate was scored after two weeks, and a radicle
length of 1T mm was used as a criterion for germination. Seeds
grown under non-stress conditions served as the control. In addi-
tion, one-week-old transgenic and wild-type seedlings were verti-
cally cultured on MS medium containing 150 mM mannitol or
50 mM Nadl, respectively. And then the primary root length was
measured after one week. Drought and salt tolerance in the trans-
genic seedlings were assessed through phenotypic evaluation
under these stress treatments.

Data analysis

Statistical analysis was conducted using SPSS Statistics 24. All data
were obtained from three independent biological replicates and are
presented as the mean. Statistical differences among treatments
were analyzed by one-way ANOVA followed by Duncan's New Multi-
ple Range Test (DNMRT).

Results

Cloning and sequence analysis of DhCOR413PM1

The complete CDS sequence of the cold-adapted protein gene
from Dendrobium Sonia 'Hiasakul' was successfully amplified (Fig. 1a).
This gene is presumed to belong to the COR413-PM subclass of the
COR413 protein family and was therefore named DhCOR413PM]1.
Sequence analysis indicated that DhCOR413PM1 contains 612 bases
and encodes 203 amino acids with a calculated molecular weight of
22.42 kDa.

Using the NCBI database, 14 evolutionarily conserved COR413
protein sequences from diverse plant species were identified and
selected for phylogenetic analysis. BLASTP analysis revealed that
DhCOR413PM1 shares extremely high amino acid sequence identity
(96.55%) with DtCOR413PM1 from Den. thyrsiflorum (Accession:
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KAL0915893.1). Phylogenetic analysis showed that Den. Sonia
'Hiasakul' clustered in the same branch as Den. thyrsiflorum (Fig. 1b).
The results showed that DhCOR413PM1 is most closely related
to DtCOR413PM1 from Den. thyrsiflorum. Furthermore, multiple
sequence alignment revealed a high degree of evolutionary conser-
vation and significant homology between DhCOR413PM1 and
COR413 proteins from other species (Fig. 1c). Analysis using the
NCBI CDD and TMHMM online tools indicated that DhCOR413PM1
contains one full COR413 conserved domain (amino acids 10-190)
and five transmembrane domains (Fig. 1¢, d), which are characteris-
tic features of the COR413 protein family. WoLF PSORT predicted
that DhCOR413PM1 is localized to the plasma membrane. TargetP-
2.0 and LOCALIZER further showed that it lacks chloroplast, mito-
chondrial, and nuclear targeting signals but possesses a signal
peptide. These consistent results confirm its plasma membrane
localization, supporting its classification as a COR413PM protein.

Expression patterns of DhCOR413PM1 in
Dendrobium

The tissue-specific expression pattern of DhCOR413PM1 was
examined by qRT-PCR to characterize its potential function in
Dendrobium. The results showed that DhCOR413PM1 was ubiqui-
tously expressed across all tissues but exhibited significant spatial
divergence. The highest transcript accumulation occurred in roots at
three developmental stages (juvenile, vegetative, and reproductive),
while leaves of mid-vegetative and mature plants showed minimal
expression (Fig. 2a). This gene exhibited high expression in repro-
ductive organs. Its transcript level was relatively high in 1 cm inflo-
rescence meristems (IM), followed by an upward trend peaking in
3 ¢m IM, and subsequently declined gradually. Notably, detecta-
ble expression persisted even in 9 cm IM (Fig. 2b). During floral
bud development, significant expression was observed, with the
highest level in 1 mm diameter buds. Expression progressively
decreased from 1 to 9 mm diameter buds (Fig. 2b). To further
analyze expression dynamics during floral development, four devel-
opmental stages of floral organs were examined. DhCOR413PM1 was
expressed throughout all floral whorls, with the strongest signals
detected in the labellum and gynandrium of 5 mm floral buds. In
contrast, all organs exhibited reduced expression in fully opened
flowers (Fig. 2¢).

Abiotic stresses inducible expression of
DhCOR413PM1

To further investigate the potential roles of the DhCOR413PM1 in
response to abiotic stress, transcript abundance was analyzed
in leaves of middle-aged plantlets of Dendrobium Sonia 'Hiasakul'
under low temperature (4 °C), drought (15% PEG-6000) and salt
(50 mM Nacl) stress. Under 4 °C treatment, DhCOR413PM1 expres-
sion was initially suppressed (1-2 h) but strongly induced at 4-12 h.
The highest expression level was observed at 8 h, reaching 2.13
times that of the control group (Fig. 3a). Under 15% (w/v) PEG-6000-
induced osmotic stress, DhCOR413PM1 expression was significantly
downregulated during 1-12 h, but upregulated at 24-48 h, peaking
at 24 h with 1.57-fold induction compared to the control (Fig. 3b).
Under 50 mM NaCl treatment, DhCOR413PM1 expression was
rapidly upregulated within 1 h, followed by a slight decrease from
2-4 h. It peaked initially at 8 h, then gradually declined, ultimately
reaching its highest level (1.88-fold higher than controls) at 120 h
(Fig. 30).

In contrast to low-temperature (4 °C) and drought (15% PEG-
6000) treatments, where upregulation occurred only after 8 and
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Fig. 1 Amplified CDS product, phylogenetic analysis, and sequence comparison of COR413 in Dendrobium. (a) Amplification of the DhCOR413PM1 CDS
from Dendrobium. M, Marker; 1, DhCOR413PM1. (b) Phylogenetic analysis of DhCOR413PM1. (c) Sequence alignment of COR413 proteins across plant
lineages. Conserved transmembrane domains (TMD1-5) were presented in lines. (d) The putative transmembrane domains of DhCOR413PM1.
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stages (3-7 mm diameter flower bud and fully open flower). S, Sepals; P, Petals; L, Labellum; G, gynandrium. Error bars represent + SE of the three
biological replicates.
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24 h, respectively, NaCl induced rapid transcriptional activation
of DhCOR413PM1 within 1 h. These findings demonstrate that
DhCOR413PM1 is potentially involved in responses to multiple
abiotic stresses. Notably, its transcriptional activation under salt
stress (50 mM NaCl) occurred more rapidly than under cold (4 °C) or
drought (15% PEG-6000) treatments.

Cold tolerance analysis of DhCOR413PM1
overexpression transgenic Arabidopsis

To functionally characterize DhCOR413PM1, Arabidopsis thaliana
overexpressing DhCOR413PM1 was generated via the floral dip
transformation. Ten independent T1 transgenic lines were con-
firmed by PCR amplification using primers targeting the 355CaMV
promoter and DhCOR413PM1 coding sequence (Fig. 4a). Subse-
quent qRT-PCR analysis revealed DhCOR413PM1 expression in eight
lines, with OE1, OE3, and OE9 exhibiting the highest transcript levels
(Fig. 4b). The T3 homozygous progenies of these three high-expres-
sion lines were selected for the subsequent freezing, dehydration,
and salttolerance assays.

Under normal conditions, no morphological differences were
observed between the transgenic plants and wild type (Fig. 5a).
Following cold acclimation (4 °C for 12 h) and subsequent freezing
stress (=7 °C for 12 h), transgenic plants suffered less severe freez-
ing damage than wild-type (WT) controls. After a 5-d recovery

Yi et al. Ornamental Plant Research 2026, 6: €007

period, WT plants showed significantly higher mortality (44%)
than transgenic lines (Fig. 5b). The survival rates of the transgenic
plants (68.4% for OE9, 68% for OE3, and 64.7% for OE1) were higher
than that of WT plants (56%) (Fig. 5c). These results demonstrate
that overexpression of DhCOR413PM1 enhances cold tolerance in
Arabidopsis.

Overexpression of DhCOR413PM1 enhanced
dehydration and salt tolerance in Arabidopsis

Abiotic stress expression analysis showed that DhCOR413PM1
expression was induced not only by low temperature treatment, but
also by salt and drought treatments in Sonia 'Hiasakul'. Therefore,
the drought and salt tolerance of transgenic Arabidopsis overex-
pressing DhCOR413PM1 was evaluated using mannitol (simulated
drought) and NaCl treatment, respectively.

At 12 d post-sowing, DhCOR413PM1 overexpressing lines exhib-
ited higher germination rates than the wild-type (WT) under
osmotic stress (250 mM mannitol) and salinity stress (150 mM NaCl)
(Fig. 6b-e), with no phenotypic difference observed in the controls
(Fig. 6a). Moreover, radicle emergence in wild-type (WT) was signifi-
cantly inhibited compared to transgenic lines on media containing
these stressors (Fig. 6b, c).

There was no significant difference in root length between the
transgenic lines and the wild type under normal conditions (Fig. 7a).
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However, compared with the root length of DhCOR413PM1 overex-
pression transgenic lines, wild type plants showed shorter roots
when exposed to 150 mM mannitol (Fig. 7b, d). Under 50 mM NacCl
stress, the root length of both the WT and DhCOR413PM1 overex-
pression transgenic plants was significantly reduced compared with
normal conditions, but the wild-type plants were significantly more
sensitive to salt stress than the transgenic lines (Fig. 7¢, e). Collec-
tively, these results suggest that overexpression of DhCOR413PM1
confers enhanced drought and salinity stress tolerance in trans-
genic Arabidopsis thaliana.

Discussion

Low temperature is an important environmental stress that
directly affects the survival and development of plantsiz324, Low
temperature stress mainly affects plants by causing damage to the
membrane system, resulting in increased membrane permeability,
inactivation of membrane-associated enzymes, and ultimately
inducing disorder of cell metabolism and function2>-271,
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Therefore, maintaining the integrity and stability of the membrane
system is crucial for plants to withstand chilling stress. COR413, as a
member of the COR gene family, represents a group of plant-
specific, low-temperature-responsive genes(28. COR413 proteins
are mostly located in the membrane of organelles in plant cells:
COR413PM in the plasma membrane, COR413TM in the inner capsule
membrane, and COR413IM in the chloroplast inner membranel'3,
Moreover, the COR413 protein family is evolutionarily conserved
across diverse plant lineages, including cereal crops such as
wheat??L In this study, DhCOR413PM1 was determined to encode
a 203-amino-acid protein with a calculated molecular mass of
22.42 kDa. The protein contains a completely conserved COR413
domain (residues 10-190) and five transmembrane domains
(Fig. 1c, d). Subcellular localization predictions indicate that
DhCOR413PM1 is located in the plasma membrane. The analysis of
conserved and transmembrane domains in this study is consistent
with previous reports in other plant species, e.g., wintersweet('*l and
wheat29,

The low temperature sensitivity of different plant tissues
varies'530, In the present study, the expression levels of

Yi et al. Ornamental Plant Research 2026, 6: e007
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DhCOR413PM1 showed tissue-specific variation. The highest expres-
sion levels were detected in the roots of plants at three develop-
ment stages, a pattern similar to that observed in wintersweet,
which also exhibited the highest expression of CpCOR413PM1
(Chimonanthus praecox) in roots!'5l, This may indicate that the roots
of Dendrobium are more sensitive to low temperatures than other
tissues. In leaves, the expression level of DhCOR413PM1 in seedling
plants was higher than that in middle-aged plantlets and mature
plants of Dendrobium. Previous studies have shown that the leaves
of young Dendrobium plants suffer more severe damage from low
temperature than those of middle-aged and mature plantsl’9,
indicating that the leaves of young seedlings are more sensitive to
low temperature than those of middle-aged and mature plants.
DhCOR413PM1 expression peaked in inflorescence meristems (at the
3 and 5 cm stages) and in labellum and gynostemium tissues of
5 mm floral buds, exhibiting significantly higher transcript levels than
other sampled tissues. Tissue expression analysis of CpCOR413PM1
in wintersweet showed higher expression levels in the stamen, pistil,
and inner petalsl'?], suggesting that the labellum and gynostemium
of Dendrobium are the most vulnerable to low-temperature chilling,
similar to the inner organs of wintersweet.

The expression of DhCOR413PM1 in response to abiotic stresses
showed that it was induced by cold stress and reached its highest
expression level after 8 h of treatment at 4 °C. As a cold-responsive
gene, COR413PM is most extensively induced by cold stress.
For example, CpCOR413PM1 in wintersweet peaked at 12 h of 4 °C
treatment('%], PsCor413pm2 in Phlox subulata also showed highest
expression at 12 h of 4 °C treatment(2%], SsCor413 in leaves of Saccha-
rum spontaneum peaked at 24 h under cold treatment!'d, and
SikCOR413PM1 in Saussurea involucrate reached its highest expres-
sion at 6 h of low temperature treatmentB'], Functional characteriza-
tion confirms that DhCOR413PM1 mediates cold stress regulatory
pathways.

Previous studies showed that COR473PM is not only induced
by low temperature, but also induced by drought or salt stress,
as observed in PsCor413pm2 in Phlox subulata?®, LeCOR413PM2
in wild-type tomato3?, SsCor413 in Saccharum spontaneum['?,
SikCOR413PM1 in Saussurea involucratel3', and GbCOR413 in Gossyp-
ium barbadensel?3, In this study, the expression of DhCOR413PM1
increased under drought (15% PEG-6000) and high salt (50 mM
NaCl) stress treatment. Under drought stress, DhCOR413PM1 expres-
sion was downregulated from 1-12 h but upregulated at 24-48 h,
with a peak at 24 h (Fig. 3b). Under salt stress, expression was rapidly
induced at 1 h, decreased slightly (2-4 h), and reached its maximum
at 120 h after an initial peak at 8 h (Fig. 3c). As mentioned above,
the research indicates that COR413PM is functionally implicated in
drought and salt stress responses.

Previous studies have shown that heterologous overexpression
of CpCOR413PM1 from wintersweet enhances cold and drought
tolerance in Arabidopsis'®l. Overexpression of LeCOR413PM2 from
tomato enhances the cold tolerance of transgenic tomato32, Over-
expression of SikCOR413PM1 from Saussurea involucrata enhances
cold and drought tolerance in tobacco and cotton!'831], Overexpres-
sion of PsCor413pm2 from Phlox subulata enhances cold tolerance in
Arabidopsis?9. In this study, overexpression of DhCOR413PM1 from
Den. Sonia 'Hiasakul' not only enhanced cold tolerance in Arabidop-
sis, but also improved drought and salt tolerance. These results
suggest that DhCOR413PM1 is involved in the response to low-
temperature, drought, and salt stress in Denphal-group Dendro-
bium cultivars.

In this study, it was found that under cold and drought stresses,
the expression of DhCOR413PM1 was first down-regulated and then
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up-regulated at 4 and 12 h after treatment, respectively. This pattern
suggests that DhCOR413PM1 is crucial for maintaining membrane
integrity during normal growth and stress responses, but its induc-
tion under stress is maintained by other regulators. This process may
involve physiological and biochemical adjustments in the plasma
membranel34, Furthermore, molecular regulatory networks fine-
tune gene expression and modification to maintain metabolic
stability. These networks integrate multiple signaling pathways to
mount a coordinated defense.

As a plasma membrane-localized protein, COR413PM1 may serve
as a membrane stabilizer under stress-countering lipid phase transi-
tions during freezing and mitigating osmotic and oxidative damage
during droughtBsl, Plasma membrane fluidity is closely linked
to cold tolerance, and stress-induced rigidification can trigger
COR gene expression, as shown in Medicago sativa and Brassica
napusB6-38l. COR413PM1 may also contribute to osmotic adjust-
ment and oxidative balance. For example, SsCor413-1(Saccharum
spontaneum) overexpression increased proline accumulation,
enhanced activities of sodium dismutase (SOD), catalase (CAT), and
ascorbate peroxidase (APX), and reduced MDA content under
stressB9l,

This study demonstrates that overexpression of DhCOR413PM1
leads to an increase in the survival rate of transgenic Arabidopsis
thaliana under freezing conditions, an improvement in germination
rate under osmotic conditions, and a longer primary root under salt
stress conditions. These phenotypic enhancements highlight the
functional importance of the COR413PM1 protein in coordinating
broad-spectrum stress resistance. The molecular and cellular basis of
this cross-protection effect may involve the synergistic action of
multiple mechanisms. Expression of the COR413PM is often regu-
lated by the ICE-CBF-COR signaling pathway!''l. Promoter analyses of
COR413PM1 homologs in Prunus persica and Chimonanthus praecox
confirm enrichment of cold- and dehydration-responsive elements
(DRE/ABRE), supporting their function as transcriptional hubs in
stress responses!'413l, Abscisic acid (ABA) signaling also contributes
critically: in Arabidopsis, AtCOR413PM1 is strongly ABA-induced, and
its loss disrupts downstream ABA responses, linking it to hormone
signaling and membrane protection“041l. Similarly, OsCor413tm1
(Oryza sativa) improves drought tolerance in rice via an ABA-depen-
dent pathway directly activated by OsABF1“2. Calcium signaling
represents another regulatory layer- PSCOR413PM2 in Phlox subulata
amplifies cold-responsive gene expression, including CBFs, by
enhancing Ca?* signaling, forming a positive feedback loop2°.
Furthermore, COR413 proteins help maintain osmotic homeo-
stasis through osmoprotectants such as LEA proteins, thereby
reducing dehydration damagel'843-451, Therefore, the expression of
DhCOR413PM1 is likely achieved by integrating these multiple
signaling pathways (CBF, ABA, Ca?*), enabling it to make precise
responses to various stresses.

In summary, DhCOR413PM1 is crucial for combined cold, drought,
and salt stress tolerance. Under multi-factor regulation, it stabilizes
membranes, maintains homeostasis, and sustains metabolism to
enhance resistance. Future studies are needed to fully elucidate its
molecular mechanisms.

Conclusions

DhCOR413PM1 encodes a 203-amino-acid protein with a calcu-
lated molecular mass of 2242 kDa. The protein contains a
completely conserved COR413 domain (residues 10-190) and five
transmembrane domains. DhCOR413PM1 is ubiquitously expressed
across all tissues of the plant, with predominant transcript
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accumulation in roots and reproductive organs, notably within 3 cm
inflorescence meristems and in the labellum and gynandrium of
5 mm floral buds. DhCOR413PM1 exhibited significant transcrip-
tional upregulation in response to low temperature (4 °C), drought
(15% PEG-6000), and salinity (50 mM NacCl) stresses, with peak induc-
tions of 2.13-fold at 8 h under 4 °C, 1.57-fold at 24 h under 15% PEG,
and 1.88-fold at 120 h under 50 mM NaCl. Furthermore, transgenic
Arabidopsis lines overexpressing DhCOR413PM1 exhibited markedly
enhanced tolerance to multiple stresses: higher survival under freez-
ing stress, increased germination rates, and longer roots under
osmotic and salt stress, indicating significantly enhanced tolerance
to cold, drought, and salt stresses, and demonstrating the gene's
unique role in conferring multi-stress resistance. These results
suggest that DhCOR413PM1 is a stress-responsive gene, potentially
involved in multiple abiotic stress tolerance pathways in Dendro-
bium. Further functional characterization of this gene may provide
valuable insights into the molecular mechanisms underlying stress
adaptation in orchids.
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