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Abstract

The microbiome is the integrated information on the composition, functional potential, and environmental determinants of a microbial
community within a defined ecosystem. High-throughput omics technologies, cutting-edge bioinformatic tools, and extensive databases
have accelerated microbiome research in diverse environments and host organisms. Over the past decade, microbial ecologists have
explored microbiomes associated with macrofungi (including mushroom-forming fungi) as well as arbuscular mycorrhizal fungi. In this
review, current knowledge on the taxonomic composition and functional properties of microbiomes associated with mushroom-forming
fungi are summarized. Future research directions to deepen and expand our knowledge of mushroom fungi-microbiome interactions are
further discussed. Collectively, this review provides a conceptual and empirical foundation for advancing mushroom microbiome studies,
and for developing microbiome-based strategies and platforms to enhance mushroom production and manage environments.
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Introduction

High-throughput sequencing, omics technologies, large-scale and
information-rich databases, and prominent bioinformatic tools enable
researchers to extensively explore not only individual microbial enti-
ties but also entire communities in various environments. Taxonomic
and functional structures, associations among microbial members,
and environmental factors that shape community properties have
been increasingly documented over the last decade, providing
comprehensive biological and ecological information. This compre-
hensive biological and ecological information, including the genome,
transcriptome, proteome, lipidome, and metabolome of the micro-
bial communities, is collectively referred to as 'Microbiome'l'l.

Among the environments, our understanding of the micro-
biomes associated with macroorganisms (plants, animals, and
humans) has advanced significantly. Typically, in the macroorgan-
ism-associated microbiomes, host factors, including individual
genetic?-7), and epigenetic factors®-12 within the host populations,
host compartments(?'314, environmental cues!'>-19, which are
adjacent to the host, and their combined effects!”.'”] have been
examined. Successional changes and inheritance of host-associated
microbiomes during the growth and development of the host entity
have also been widely studied['420-23], Evolutionary relationships
between hosts and microbiomes have been investigated(24-28],
paving the way to construct food production strategies combined
with wild host genetic sources and associated microbial partners
(known as microbiome rewilding)293%, Recent studies have focused
on disease-associated microbiomes (or host-associated microor-
ganisms associated with reduced health status) called the
'Pathobiome'31:32] to develop personalized therapeutics and health
management platformsB3.34],

More recently, it has been evident that microorganisms, includ-
ing fungi, as well as macroorganisms, can host distinct microbiomes
within their unique microhabitats. For instance, filamentous fungi,
including arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal
fungi (EcMF), are able to form a specialized microhabitat adjacent to
their hyphae, called the hyphospherel5. Similar to the plant rhizo-
sphere, fungi can recruit specific groups of microbes in the hypho-
sphere, which can support fungal growth and development3637],
and even influence fungal fitness!3él. Recent studies revealed that
the hyphosphere microbiomes are key players affecting soil food
webs, soil resource cycling, and further impacting the physiology of
the plants where the host fungi are associated[3°-42], Taken together,
it can be inferred that the classical understanding of mycorrhizal
systems, represented by binary associations between host plants
and mycorrhizal fungi, should be expanded to include multi-domain
associations among plants, mycorrhizal fungi, and microbiomes.
Especially, the ecological similarity between the hyphosphere and
plant microbiomes suggests the possibility of the agricultural appli-
cations of the hyphosphere microbiomes to improve the productiv-
ity of edible or medicinal fungi via sustainable cultivation
approaches, as in the plant rhizosphere microbiomes.

In this context, numerous studies have aimed to reveal the micro-
bial individuals“3! or microbiomes associated with edible and
medicinal fungi, which form mushrooms or fruiting bodiest#4-46l.
Recent advances have shown that mushroom-forming fungi harbor
distinct and diverse microbiomes in the hyphosphere and other
compartments, including fruiting bodies*447.48], Mounting evidence
indicates that both the composition and dynamics of these micro-
biomes can directly affect fungal growth, health, and mush-
room productivity®8], similar to the ecological impacts of plant
microbiomes. In this review, recent advances and findings in our
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understanding of microbiomes associated with mushroom-forming
fungi (hereafter mushroom microbiome) are comprehensively
summarized, with particular focus on their diversity and functional
roles. Current understandings are further synthesized to clarify how
these microbiomes influence mushroom growth, health, and
productivity through their dynamic relationships with the fungal
hosts. By providing an integrated ecological perspective, this review
aims to inform and guide the development of sustainable mush-
room production systems under controlled (or semi-controlled)
and natural conditions.

Current understandings of mushroom
microbiomes

Microbial composition and diversity
Hyphosphere and mycosphere

Fungal hyphae are evidence of vegetative growth of filamentous
mushroom-forming fungi. Analog to plant roots, which play roles in
absorbing nutrients and secreting metabolites, they are crucial for
most fungal biological activities, including nutrient acquisition, envi-
ronmental exploration, reproduction, and infection (for symbiotic or
pathogenic fungi) (Fig. 1a)#9. Given that fungal ecological success-
reproduction and survival-highly relies on the hyphal growth>%, it is
important to understand the microbiomes surrounding fungal
hyphae, which directly affect fungal physiology. Hyphosphere is
a specialized microhabitat directly influenced by fungal hyphae
(Fig. 1b). Similar to plant root exudates in the rhizosphere, fungal
exudates, including various carbohydrates (fructose, glucose,
trehalose, etc.), organic acids (citric acid, succinic acid, oxalic acids,
etc.), amino acids (aspartic acid, glutamic acid, leucine, etc.), pheno-
lic compounds, and alcohols, shape soil microbiomes adjacent to
hyphael*?l. These metabolites contribute to attracting and coloniz-
ing microbes distinct from those found in bulk soils, ultimately lead-
ing to the formation of specialized microbiomes known as the
hyphosphere microbiome. Compared to the hyphosphere, the
mycosphere is a broader space influenced by fungal mycelia (a mass
of branching, thread-like hyphae). The hyphosphere was dealt with
as the mycosphere, since previous studies on mushroom micro-
biomes did not examine the microbiomes in soils collected from
extraradical hyphae.

Bacteria Previous studies have mainly examined the microbiomes
in the mycosphere (Supplementary Table S1). Previous studies
conducted under natural conditions, such as forests, reported that
the mycosphere of mushroom-forming ECMF and saprophytic fungi
(SAP) is typically dominated by Proteobacteria (present Pseudomon-
adota), Acidobacteriota, and Actinobacteriota (present Actinomyce-
tota), although the abundances varied with fungal species, sampling
sites, and sampling pointsi4#51-34. Previous studies commonly
reported that mycosphere soils host distinct microbiomes with
fungal species-associated taxonomic variations, compared to bulk
soils or soils where mushroom-forming fungi were less colonized.
For example, Actinomycetota and Bacteroidota were generally more
abundant in the mycosphere soils®'l. In the shiro of Tricholoma
matsutake, Firmicutes (present Bacillota) were significantly higher,
compared to the non-shiro soilsl>3l. Meanwhile, Pseudomonadota,
Acidobacteriota, Planctomycetota, and Verrucomicrobiota were
significantly higher in the mycosphere soil of Russula
griseocarnosal>®l. At the genus level, however, Bradyrhizobium, Pseu-
domonas, Burkholderia (including  Burkholderia-Caballeronia-
Paraburkholderia), Mycobacterium, Bacillus, and Paenibacillus were
mostly identified as the bacterial genera enriched in the
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mycosphere or similar soil environments, irrespective of geographi-
cal regions and fungal species!*451-54, Considering that taxonomi-
cally close bacteria normally share functional characteristics, the
taxonomic similarity in the enriched bacterial genera across various
mushroom-forming fungi suggests the commonality in the
metabolic demands of fungi under natural conditions.

Similar to the mycosphere in natural conditions, the microbiomes
in compost and casing where mushrooms are artificially grown have
been studied. Compost, a product of the natural microbial break-
down processes of substrate materials (rice straw, manure, etc.), is a
nutrient medium where fungal mycelia are grownl¢l, Casing is a
cover material, including peat and calcium carbonate, for fruiting
body formationl>”], Several studies identified bacterial communities
inhabiting compost or casing soils, as the artificial bed materials act
like soil environments. In compost, typically, Pseudomonadota
(Pseudomonas), Actinomycetota, and Bacillota (Bacillus) were abun-
dant during and after the mycelium colonization in the compost of
Agaricus bisporus, A. subrufescens, and Pleurotus ostreatus>8-61,
Meanwhile, Pseudomonadota (Pseudomonas), Bacteroidota
(Flavobacterium), Bacillota (Bacillus), and Actinomycetota domi-
nated the bacterial communities in the casing layer, irrespective of
casing materials, cultivation conditions, and even fungal
speciesl62-651, Surprisingly, the compost and casing microbiomes
showed higher compositional homogeneity regardless of the fungal
species, compared to the mycosphere in the natural conditions.
Previous studies suggest that the observed homogeneity may be
driven by substrate-driven filtering during the compost fermenta-
tion (microbes able to degrade and utilize recalcitrant organic
matter are selected), facility standardization (leading to the homo-
geneous external environments), and interactions between mush-
room-forming fungi and microbes!>8:66-68],

Fungi Most studies of mushroom microbiomes focus on bacterial
communities, while fungal communities associated with mush-
rooms or individual fungi have received less attention. This may be
due to the predominance of the mushroom-forming fungi under
natural and controlled conditions. Previous studies on T. bakamatsu-
take and T. matsutake have shown that the fungus outcompetes
other fungi, resulting in a decrease in fungal richness and
diversity>3:541 (Supplementary Table S1). This phenomenon has also
been reported in another ECM fungus, Russula griseocarnosa®®. The
fungal communities of the compost and casing layers also showed
the dominance of a mushroom-forming fungusf>86061.701 (Supple-
mentary Table S1). Despite the predominance of mushroom-form-
ing fungi, a few fungi are frequently co-detected. For example, in
the mycosphere of Tricholoma spp., Mucoromycota (Umbelopsis and
Mortierella), and Ascomycota (Penicillium) were frequently found in
conjunction with each otherl>2-54, This suggests that these minor
fungi, which survive from competitive exclusion, may provide addi-
tional or complementary metabolic activities to the microbial
members, including the predominant fungus, potentially contribut-
ing to the stability of microbial associations. Moreover, the initial
fungal community composition in natural soils, compost, and casing
layers has the potential to predetermine mushroom productivity
and yield, as suggested in the study of the bacterial community©'l,
Previous studies reported that the initial compost and casing layers
harbor diverse fungal members, including Lecanicillium, Mycother-
mus, Thermomyces, Collectotrichum, Pichia, Trichoderma, Fusarium,
Cladosporium, and Mortierellal6>7",  Although these fungi are
outcompeted by the mushroom fungi, their debris can act as necro-
mass, and their metabolites can positively or negatively influence
subsequent colonization of the mushroom fungi. Considering these
ecological and agricultural aspects, the fungal communities in the
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Fig. 1 Macro- and micro-habitat structures of mushroom-forming fungi. (a) Macrohabitats in which mushroom-forming fungi reside. Cultivated
mushroom fungi, such as Agaricus bisporus, are generally grown under the standardized conditions consisting of compost soils, spawn, and casing layers
(left panel). In contrast, most wild mushroom-forming fungi naturally inhabit forest environments, where saprotrophic species are found in the litter and
humus layers, and mycorrhizal species associate with the root zones of host plants (right panel). (b) Microhabitats where mushroom fungi-associated
microbiomes are generally found. The hyphosphere is the soil region affected by fungal hyphae (left panel; space indicated with the dashed line).
Mushroom fungi secrete hyphal exudates acting as nutrient sources or signal molecules to attract microbes that can provide nutrients or protect fungi
from other harmful microbes, similar to the plant microbiomes in the rhizosphere soils. Another microhabitat is the fruiting body (sporocarp). The
distinguished anatomical structure of the fruiting bodies is depicted in the right panel. Mushroom-associated microbiomes could be found on the outer
layer of the fruiting bodies (ectosphere) as epiphytes or inside them (endosphere) as endophytes. The figure was created in BioRender

(https://biorender.com).

initial compost, casing layer, and even natural soils need to be
examined as extensively as the bacterial ones.

Fruiting body (or sporocarp)

The fruiting body or sporocarp is the most important fungal struc-
ture for reproduction, leading to the persistence of their popula-
tions. Depending on fungal species, fruiting bodies can be dissected
into several anatomical structures. The fruiting bodies of many
Basidiomycota fungi consist of a cap (also known as pileus), a
hymenophore (such as gills/lamellae, pores, or teeth), and a stalk (or
stipe), with some species, including Amanita muscaria, also possess-
ing a ring (or annulus) and/or volva. In contrast, hypogeous fungi
(e.g., truffles), which have a closed fruiting body, possess different
structures called peridium (outer wall) and gleba (interior spore-
bearing tissue) (Fig. 1b). Similar to the seeds and reproductive
tissues of plants, which are colonized by diverse microbes72-74],
fungal fruiting bodies are not sterile but form additional microhabi-
tats or niches for microbes. In this section, we will address previous
findings of the fruiting body (or sporocarp) microbiomes of mush-
room-forming fungi.

Bae et al. Panfungi 2026, 1: e002

Bacteria Compared to soil microhabitats, including bulk and
mycosphere soils, fruiting body microbiomes are more
simplified7>76l. Pent et al.’3! suggested that the differences in
chemical properties, including pH and nutrient levels, may be
involved in the diminished diversity in the fruiting bodies. Typically,
bacterial microbiomes associated with fruiting bodies are frequently
represented by Pseudomonadota, Actinomycetota, Bacteroidota,
Bacillota, and Acidobacteriotal*®l. These fruiting body microbiomes
are known to be derived from external soil environments, both in
natural and controlled conditions[#446:647576 Among them, Pseu-
domonadota has been identified as the most abundant bacterial
phylum, though variations exist depending on the fungal species,
environmental conditions, and fungal lifestylesi447.77.78], In particu-
lar, the bacterial genera Bradyrhizobium, Burkholderia, Pseudomonas,
Acinetobacter, Sphingomonas, and Massilia are frequently found in
the fruiting bodies (Supplementary Table S2). This taxonomic simi-
larity suggests similar factors enriching specific groups of bacteria.

Fungi The fruiting body can also host other fungal members,
although limited information is available. In the sporocarps of
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wood-decaying fungi, fungi belonging to Ascomycota (Helotiales
and Hypocreales), Basidiomycota (Atheliales and Cantharellales),
and Mucoromycota (Mucorales and Umbelopsidales) are detected
with species-dependent variations!’9l. A previous study of T. magna-
tum and T. macrosporum demonstrated that yeast-like fungi, includ-
ing Geotrichum and Diutina, are commonly distributed on the
surface and in the gleba of the truffle fruiting bodies of both
fungi®® (Supplementary Table S2). As in bacteria, the compart-
ments of fruiting bodies also influence the fungal community
compositionl#68%, Compared to the mushroom-forming fungi in
natural environments, such information is barely available in those
commercially grown in controlled facilities. While most fungal
community analyses of mushroom cultivation systems focus on
compost or casing layers, recent metagenomics and functional gene
profiling studies are beginning to reveal subtle but potentially
important differences in the low-abundance fungal taxa present in
different tissues of fruiting bodies728, The exceedingly low abun-
dance of non-host fungi in fruiting bodies, except for notable
pathogens or contaminants, limits the detection and ecological
analysis of the fruiting body-associated fungal communities—
underscoring the need for high-resolution, multi-omics or targeted
approaches in future work.
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Factors influencing mushroom microbiomes

As reported in other macroorganism-associated microbiomes, the
composition and diversity of the mushroom microbiomes are influ-
enced by external environments and host factors, such as endoge-
nous genetic differences (Fig. 2). Biogeography and the external
environment are the shaping factors of the mushroom microbiome
composition and diversity. Ge et al.l82 showed that the bacterial
composition in both the mycosphere and fruiting bodies of
Cantharellus cibarius is shaped by geographic differences. In particu-
lar, the geographic differences in soil chemical factors, such as avail-
able nitrogen and total phosphorus levels, are significantly involved
in the observed compositional variations of the mycosphere bacte-
rial communities(®2l, Despite the geographic differences in the fruit-
ing body chemistry in the original study, we found that the total
nitrogen (FTN) and phosphorus levels (FTP) in the fruiting bodies
were significantly varied depending on the sampling sites (one-way
ANOVA: FTN, p = 0.0305; FTP, p = 0.00108), when we analyzed it
using a publicly available dataset of the work by Ge et al.l82,
Combined with the previous findings, this suggests that geographic
differences may induce the variations in fungal properties, influenc-
ing the composition and assembly of fruiting body microbiomes.
Considering that chemical environments and surrounding micro-
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Fig. 2 Abiotic and biotic factors influencing mushroom microbiome diversity. Microbiomes associated with mushroom-forming fungi are shaped by
abiotic (brown-filled cells), host-related (blue-filled cells), and microbe-associated factors (red-filled cells). Although each factor is depicted separately,
these factors are tightly linked to each other. The figure was created in BioRender.
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biomes influence each other interactively, the combined effects of
both factors should be considered.

External environments, such as soil, atmosphere, hydrosphere,
and other micro- and macro-organisms, act as regional microbial
pools, where fungicolous bacteria and fungi originate. Previous
studies repeatedly reported that fruiting body microbiomes are
derived from nearby soill4647.7577.7980  and casing layer micro-
biomes[>6l. Compared to macroorganism-associated microbiomes,
mushroom microbiomes derived from external environments,
except for soils, have received less attention. Previous studies of
pathogenic fungi infecting mushrooms showed that fungal taxa,
such as Trichoderma and Aspergillus, to which known mushroom
pathogens belong, are found in the indoor atmosphere of Lentinula
edodes cultivation factories(®84, Considering the facts that external
environmental microbiomes form surface microbiomes, including
skinl® and phylloplane®d], a holistic exploration of the whole mush-
room microbiome, including microbiomes in or on mushroom-form-
ing fungi and in the external environment where the fungi
encounter, is necessary.

Host factors, such as host genetic variations, host tissues (or
compartments), and growth and development, also significantly
affect associated microbiomes. By minimizing environmental varia-
tions, Maurice et al.l’! revealed that fungicolous fungal community
composition and diversity were primarily shaped by the host
species. The life strategies of mushroom-forming fungi (ECMF and
SAP) also influence community composition and diversity79l. Specif-
ically, using fungal-fungal cooccurrence patterns, long-lived EcMF
are generally associated with specialists, which show host speci-
ficity. Meanwhile, short-lived SAP showing higher fungal diversity
than EcMF form significant co-occurrence connections with general-
ists, which are associated with multiple host fungi”9. Maurice et
all’9! proposed that physical durability (fleshy and soft with high
water content in short-lived SAP vs resistant with low water content
in long-lived EcMF) and chemically distinct features, including
secondary metabolites, of the fungal fruiting bodies play essential
roles in determining fungicolous fungal diversity and community
structures. Similar to fruiting body microbiomes, the fungal species-
driven discrepancy of the exudates leads to the differentiation of
mycosphere microbiome structures and diversity. While such stud-
ies in mushroom-forming fungi remain limited, this pattern has
been clearly demonstrated in AMF. For instance, Zhou et al.[8”) used
a split-root system to inoculate different AM fungal species (Funneli-
formis mosseae and Gigaspora margarita, or Rhizophagus intraradices
and G. margarita) onto a single plant root system under controlled
conditions, demonstrating that different AM fungal species recruit
distinct hyphosphere microbiomes with different predicted func-
tional potentials through species-specific hyphal exudates. Species-
level differences in the hyphal exudates of Rhizophagus clarus and R.
irregularis under P starvation conditions, including sugars, amino
acids, and amines, have also been proven using metabolite
profiling’8l. These previous findings suggest that hyphal exudates
are likely to be different in other ECMF or SAP fungi, driving species-
level differences in bacterial and fungal community compositions.
To prove this speculation, further in-depth experiments combined
with meta-omics and metabolomics under controlled or semi-
controlled conditions are necessary. Collectively, host fungal
species-associated selection pressure, such as physically and chemi-
cally driven variations in niche environments, leads to the differenti-
ation of host-associated microbiomes in diverse mushroom-form-
ing fungi.

As in plants, compartments or host tissues are key factors result-
ing in microbial variations within each host. Liu et al.8"l reported
that fruiting body compartments of Tuber indicum contribute to the
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bacterial and fungal microbiome differentiation. In detail, from bulk
soil to gleba, microbial diversity and the complexity of microbial
associations are significantly decreased. A total of four bacterial
phyla, including Rokubacteria, Nitrospirae, Chloroflexi, and Plancto-
mycetes, are excluded from the gleba. Based on these findings, the
authors suggested that niche-based selection occurs during the
microbial colonization inside and outside of the fungal fruiting
body. This compartment effect has also been verified in other Tuber
spp.[89, The peridium may act as a primary physical barrier restrict-
ing microbes from indiscriminately invading the fruiting body, as
the rhizoplane of plants' roots does!®). Bacterial isolates obtained
from the surface-sterilized fruiting body of T. matsutake, belonging
to Paenibacillus, Serratia, and Stenotrophomonas, possess fungal cell
wall-degrading enzymes, including chitinase®l. The presence of the
chitinase has also been reported in the endobacteria that colonize
the interior of fungal hyphael®'l. These findings suggest that bacte-
ria that possess the ability to break the physical obstacle may be
selected first, and other bacteria that do not have the ability may
use the pre-built gate. After the invasion, changes in niche condi-
tions may contribute to microbial selection. A recent advance
suggests that changes in nutrient status between the soil (nutrient-
poor condition) and the fruiting body (nutrient-rich condition) may
contribute to microbial selection in the fruiting bodies!”. To colo-
nize in the interior of the fruiting body, furthermore, microbes
should evade fungal defense systems[®293, such as antimicrobial
peptides, phenolic compounds, toxins, etc., which are accumulated
in the fruiting body. Given that some endobacteria possess type |l
(T2SS) and type Il secretion systems (T3SS) to release effectors,
fungicolous bacteria and fungi in the fruiting body may also have a
similar ability. How endofungal microbes in the fruiting bodies can
evade these fungal defenses is another interesting question to be
addressed in future work.

Functional landscape of mushroom microbiomes

Understanding microbial functions at both individual and
community levels is crucial for understanding why the observed
microbiome structures are assembled and further developing micro-
biome-driven or engineered management systems. To uncover the
functional properties of microbiomes in diverse environments,
culture-dependent approaches and meta-omic tools are extensively
introduced and applied. Despite the limitations of culturing natural
microbes, culture-dependent approaches have revealed that fungi-
colous bacteria and fungi influence host fungal growth and devel-
opment, including fruiting body formation, via biochemical interac-
tions. For example, A. bisporus can produce self-inhibitory volatile
compounds, such as 1-octen-3-ol or 2-ethyl-1-hexanol®4. Pseu-
domonad populations consisting of Pseudomonas putida, P. veronii,
and P. poae metabolize these compounds, promoting primordium
formation as well as vegetative growth®3 (Fig. 3). Previous studies
also revealed that the mycelial growth of the mushroom fungus can
be promoted by mycelium growth-promoting bacteria via remov-
ing ethylene with the 1-aminocyclopropane-1-carboxylic acid (ACC)
deaminase activity®l.  N-fixing Bradyrhizobium japonicum
improved mycelial growth and protein contents in P. osteratus®7l,
Apart from removing mushroom-inhibitory compounds and provid-
ing nutrients, some mushroom fungi-associated microbes are
reported to improve the growth of mushroom fungi by inhibiting
mushroom-pathogenic fungi, such as Trichoderma spp. Previous
studies reported that Bacillus spp. can hinder the colonization of
Trichoderma spp. by producing antifungal lytic enzymes, such as
protease, chitinase, and cellulase, and metabolites, including
siderophore and HCNP8%L,  Similar to artificially cultivated
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Fig. 3 Functions of mushroom-forming fungi-associated microbiomes. The functions of mushroom microbiomes have been investigated using culture-
dependent and independent methods. Culture-dependent studies revealed that some bacteria, including Pseudomonas fluorescens, remove self-
inhibitory metabolites produced by mushroom-forming fungi, such as Agaricus bisporus, improving the fungal growth and fruiting body formation. In
addition, the Laccaria bicolor-P. fluorescens model demonstrated that fungal trehalose attracts the bacterium, which can produce thiamine required for
fungal growth. Shotgun metagenomics, marker gene-based functional prediction, and metabolomics have further expanded our knowledge of the roles
of mushroom microbiomes. A metabolic approach showed that mushroom-forming ectomycorrhizal fungi can provide plant-derived carbohydrates
(photosynthates) to nearby soil microbes. The general functionality of the hyposphere bacterial microbiomes, including C and N fixation, methane
metabolism, degradation of organic compounds (chitin, cellulose, peptidoglycan, aromatic compounds, etc.), and stress tolerance, has been reported. In
particular, from the findings of arbuscular mycorrhizal fungi-associated hyphosphere microbiomes (the provision of inorganic P by hyphosphere
microbiomes), it is expected that microbes associated with mushroom-forming fungi may show similar functional roles. On the other hand, the
knowledge of biological mechanisms governing the interactions between a mushroom fungus and other fungi in the hyphosphere or adjacent bacteria
and fungi inhabiting the fungal fruiting bodies remains lacking, although some studies showed that they promote host fungal growth under in vitro

culture conditions. The figure was created in BioRender.

mushroom fungi, microbial functions similar to those in mushroom-
forming fungi have been proposed in natural habitats. A culture-
dependent study showed that bacterial isolates obtained from the
fruiting body of T. matsutake, belonging to Paenibacillus, Serratia,
and Stenotrophomonas, possess fungal cell wall-degrading enzymes,
including chitinasel®, Some isolated bacteria belonging to
Ewingella, Pseudomonas, and Serratia further showed antifungal
activities against other fungi, such as Mucor, Penicillium, and Sarocla-
dium, under in vitro conditions, although exact mechanisms were
not addressed®l. Truffle-associated culturable bacteria taxonomi-
cally affiliated to Mesorhizobium, Klebsiella, Ochrobactrum,
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Acinetobacter, and Arthrobacter have also been reported to show N-
fixing or P-solubilizing activity('%, proposing the potential to
improve nutrient accessibility of mushroom-forming fungi under
natural conditions. Specifically, these bacteria showing beneficial
effects on the growth and development of mycorrhizal fungi are
called 'mycorrhiza helper bacteria (MHB)'. Among the mushroom-
forming mycorrhizal fungi, the Laccaria bicolor-Pseudomonas fluo-
rescens association model has shown molecular mechanisms under-
lying the fungal-bacterial interactions. The MHB P. fluorescens alters
the expression of the fungal genes represented by the upregulation
of transport and protein synthesis-related genes and
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downregulation of stress response and post-translational modifica-
tion-related genes!'?'l, Deveau et al.l'%2 revealed that L. bicolor accu-
mulates trehalose in its mycelia, attracting P. fluorescens and
promoting the growth of the bacterial population, while the
bacterium produces thiamine, which improves the fungal growth
(Fig. 3). Cusano et al.l'%3! further showed that the T3SS of P. fluo-
rescens is necessary for promoting the mycorrhizal formation of L.
bicolor. These findings suggest that the molecular mechanisms
underlying mycorrhizal-bacterial interactions should be further
explored through integrated approaches combining genomics,
metabolomics, and ecological studies. Apart from these MHB activi-
ties, recent evidence shows the potential contribution of fungi to
the biology of the mycorrhiza. Some microfungi, which belong to
Mortierella, Mucor, Penicillium, and Umbelopsis, isolated from the
fairy ring of T. matsutake promoted the mycelial growth of T. matsu-
take under in vitro conditions!’%¥, Another study also showed that P.
citreonigrum could promote the f-glucosidase activity of T. matsu-
take, suggesting the improved cellulose-degrading ability of the
host fungus by adjacent microfungil'%, However, the compounds
produced by P. citreonigrum that are involved remain unclear.
Although mushroom-forming fungi generally predominate their
habitats after colonization, microfungi research in T. matsutake habi-
tats suggests the need to explore the functional properties of fungi
associated with mushroom-forming fungi.

To date, to broaden our understanding of microbial communities'
functions in a particular environment, meta-omics-based
approaches have been extensively applied. Although such research
in the mushroom microbiome field remains insufficient compared
to other microbiome fields, some functional features of mushroom
microbiomes have been uncovered. Liu et al." revealed the succes-
sional dynamics of the compositions and functions of the compost
microbiome of P. ostreatus using shotgun metagenomics. In particu-
lar, during the mushroom cropping, bacterial functions related to
glycine metabolism, carbon fixation, methane metabolism, and
degradation of recalcitrant compounds, such as cellulolytic, hemi-
cellulolytic, chitinolytic, and peptidoglycanlytic enzymes, were
enriched in the short composting substrate conditions®®, Another
metaproteomic approach of Tuber melanosporum-inhabiting soils
showed that microbial functions involved in abiotic stress
responses, organic compound degradation, and carbohydrate and
sulfur metabolisms are enriched compared to non-inhabiting
s0ils['], In addition to the meta-omics-based findings, marker gene-
based functional prediction has also provided insights into the func-
tional properties of mushroom fungi-associated microbiomes. Oh et
al.b3l showed that bacterial functions involved in amino acid uptake,
carbohydrate metabolism (two-component regulatory system), and
T3SS are more abundant in T. matsutake-dominant soils compared
to T. matsutake-minor soils. Such an approach was also applied in
the T. bakamatsutake microbiome study. In the soil where T. baka-
matsutake was colonized, bacterial genes linked to glucan and chitin
degradation, fatty acid and beta oxidation, and stress tolerance, as
well as increased chemoheterotrophy and aromatic compound
degradation were abundant, while more N-fixation-related func-
tions were less abundant®®4. Although these studies mainly rely on
gene abundance predictions, which do not always directly translate
to active functions, they collectively suggest that bacterial micro-
biomes associated with mushroom-forming EcMF and SAP possess
stress-tolerant traits and may perform specialized saprophytic activi-
ties. These functions could support nutrient scavenging from
organic substrates, potentially aiding host fungi in nutrient acquisi-
tion. The finding that AMF-associated hyphosphere bacteria can
solubilize inorganic P, which the fungi consume, with phytases or
phosphatases!381071 suggests the similar roles of EcMF-associated
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hyphosphere bacteria. A recent study reported that oxalotrophic
bacteria in the ectomycorrhizosphere (soil space affected by ecto-
mycorrhizal fungi) contribute to P mobilization under P-deficient
conditions, and their activity was promoted with the exogenous
oxalatel'98l, It was proposed that ECMF may secrete oxalate as a part
of hyphal exudates to promote the P-solubilizing activity of
oxalotrophic bacteria; meanwhile, the bacteria provide inorganic P
to the fungil'8 (Fig. 3). Compared to bacteria, community-level
functional traits of the fungi associated with mushroom-forming
fungi remain poorly explored. Given culture-dependent study find-
ings, microfungi associated with mushroom-forming fungi might
play yet underappreciated ecological roles, highlighting an impor-
tant avenue for future research. To gain a comprehensive under-
standing, more meta-omics-based, large-scale studies are warranted
to reveal common functional characteristics of mushroom micro-
biomes across diverse host fungi and geographical regions. This
knowledge can aid in developing microbiome-informed cultivation
strategies for mushroom fungi that are difficult to cultivate artifi-
cially.

Expanding understanding of
mushroom-microbiome association

Although a deeper understanding of bacteria and fungi associ-
ated with mushroom-forming fungi is still necessary, a more holistic
framework that incorporates microbial components across domain
of life in the environments of mushroom-forming fungi, functional
metabolic analyses, and predictive modeling approaches is essen-
tial to broaden our knowledge of mushroom-forming fungi and
surrounding microbes at the community and ecosystem levels. In
this section, we propose a conceptual framework that can unravel
ecological mechanisms underlying mushroom-microbiome interac-
tions and ultimately guide the design of stable, productive micro-
bial communities for sustainable mushroom cultivation.

Phage community, a significant component in
environmental microbiomes

Phages are key members of environmental microbiomes. They
modulate bacterial populations through direct lysisl'%%, contribut-
ing to carbon and nutrient recycling via the viral shunt('%, Phages
also influence ecosystem functions by transferring auxiliary
metabolic genes (AMGs), which enhance host metabolic capacities,
to their hosts through lysogeny!''"l. Thus, phages affect processes
such as nutrient cycling, energy flow, and stress responses in soil
ecosystems. The importance of phages was initially recognized in
aquatic environments(''2, such as oceans, where the availability of
soluble nutrients is limited. More recently, increased attention has
been directed toward the role of phages within terrestrial ecosys-
tems!13.114, Considering that terrestrial fungi, including mycorrhizal
fungi, are associated with soil bacteria, phages are likely to play criti-
cal roles in those terrestrial fungi-mediated microbial associations.
The latest theoretical advancement emphasized the importance of
phages in mycorrhizal symbiosis systems with three hypotheses: (1)
leaky goods hypothesis (phage lysis releases nutrients that enhance
mycorrhizal-plant symbioses through direct nutrient provisioning or
indirect pathogen suppression); (2) auxiliary recruitment hypothesis
(lysogenic conversion of MHB introduces AMGs that promote
mycorrhizal symbioses); and (3) phage attenuation hypothesis
(phage-mediated lysis of MHB weakens mycorrhizal symbioses, but
may increase bacterial diversity with potential indirect benefits)['15]
(Fig. 4). Together, these hypotheses suggest that phages can
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mushroom microbiomes, we proposed two agendas: phage communities (left panel) and microbial community-scale metabolic model (MCMM) (right
panel). The phage communities are expected to contribute to the ecological functions of mushroom microbiomes by directly regulating bacterial
populations and introducing auxiliary metabolic genes (AMGs) to bacterial populations. Phage-induced bacterial cell lysis can improve soil nutrient
conditions by viral shunt (Leaky goods hypothesis). Furthermore, during lysogenic interactions, phage's AMGs can be introduced to bacterial hosts,
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case of mushroom-forming mycorrhizal fungi, bacterial lysis can lead to decreased mycorrhizal formation or diminished mycorrhizal activity (phage
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thorough experimental approaches should be performed to prove or disprove the suggested hypotheses. Please note that the figure describing the
phage-associated hypotheses (left panel) is modified from the artwork in by Berrios!' ", Please see this latest insightful forum article for more information
on mycorrhizal fungi-bacteria-phage interactions. Another experimental approach is MCMM, a powerful tool for examining metabolic associations among
microbes at the community level (right panel). From metagenome data, genome-scale metabolic models (GEMs) of each metagenome-assembled
genome (MAG) can be reconstructed. Using these GEMs, potential cross-feeding interactions and transporter-mediated metabolic exchanges can be
inferred, enabling the identification of putative key metabolites required for mushroom-forming fungi. Furthermore, community-scale metabolic gap-
filling of GEMs, including host fungi, enables a mechanistic understanding of the observed microbial associations by revealing essential metabolic
interdependencies and complementary pathways in the examined mushroom microbiomes. Finally, metatranscriptomics and metabolomics can help
researchers assess whether the predicted metabolic interactions are biologically active and whether the predicted key metabolites are present in the
samples. For more information of MCMM, please see a cutting-edge review article addressed by Quinn-Bohmann et al.''?), The figure was created in

BioRender.

influence nutrient accessibility for mycorrhizal fungi and nearby
plants, while also regulating the population dynamics and
metabolic capacities of MHB. As described in the above sections,
mushroom-forming fungi are also intimately associated with diverse
bacteria, which influence fungal growth and fruiting body forma-
tion, under natural and controlled conditions. It can be inferred that
similar phage-mediated mechanisms are likely to occur in the mush-
room fungi-microbiome association systems. Nutrient leakage from
phage lysis could directly or indirectly influence fungal nutrient
acquisition, while lysogenic phages may shape microbial functional
networks through AMG transfer. Despite these plausible interac-
tions, phage dynamics and their ecological functions remain largely
unknown in mushroom-forming fungal systems. Phage research in
the mushroom-forming fungi is mainly limited to the phage ther-
apy against bacterial pathogens, such as Pseudomonas tolaasii, a
causal agent of brown blotch diseasel''6117], A deeper understand-
ing of phage-bacteria—fungus interactions will provide new insights
into nutrient cycling, fungal physiology, and potentially offer
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innovative strategies for improving the stability and productivity of
mushroom-associated ecosystems.

Microbial community-scale metabolic modeling
With the advancement of meta-omics, particularly shotgun
metagenomics, corresponding bioinformatic methodologies, such
as metagenome assemblers, metagenome-assembled genome
(MAG) binners, taxonomic classifiers, and gene prediction and anno-
tation tools, are being improved. One of the emerging methodolo-
gies is the metabolic modeling based on genomic information,
called a genome-scale metabolic model (GEM) (Fig. 4). GEMs are
built by coupling an annotated genome to a database of known
gene-transcript-protein-metabolic  reaction  associations!!8119,
GEM s are potent tools for predicting and analyzing metabolic flows
(or fluxes) and identifying critical metabolic pathways affecting
microbial behavior under abiotic and biotic environmental
changes!'9l, Such models help researchers expand the knowledge
of the physiology of individuals regardless of organism types!20-123],
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although there are hurdles to overcome for generating accurate and
precise GEMs!''9L, In particular, the advent of binning tools that
enable obtaining high-quality MAGs provides promising opportuni-
ties to explore the metabolic potentials of each genome in a particu-
lar communityl'24, Recently, researchers have aimed to understand
microbial communities in diverse environments, including soils and
human guts(25-128], by combining microbial GEMs at the commu-
nity level (known as microbial community-scale metabolic models;
MCMM:s). Given that MCMMs are constructed by integrating each
genome based on its metabolic capabilities and potential metabolic
exchanges among GEMs, MCMMs are powerful tools for predicting
metabolite-level microbial interactions and designing optimal
synthetic microbial communities for further applications. In a
human gut microbiome study, individual-specific short-chain fatty
acid (SCFA) production profiles, which vary with dietary, prebiotic,
and probiotic inputs and are essential as a health index, were
successfully predicted using the MCMM, finally proposing a rational
microbiome framework for potentially applying precision nutrition
and personalized healthcarel'?7], A similar approach was also
performed in the plant rhizosphere research. Mataigne et al.l'29
constructed a metabolic network using the MCMM, revealing
metabolic dependencies and cooperation among bacteria
contributing to compensating environmental constraints and main-
taining co-existence in the complex Arabidopsis root microbiome.
Thus, such previous studies have enhanced our understanding of
microbes, their metabolic roles, and interactions in a particular envi-
ronment. In this context, MCMMs of mushroom microbiomes will
provide ecological and biological insights into metabolic interac-
tions among mushroom-associated microbes under natural and
controlled conditions. Compared to higher organisms (humans,
animals, and plants), in particular, many mushroom-forming fungi
have practical experimental advantages for genomic studies, includ-
ing relatively smaller and less complex genomes, which facilitate the
integration of host genomes into MCMM:s. This integration enables
the identification of microbiome-derived metabolites that support
host fungal growth and development, the mapping of nutrient
exchange between the fungi and fungicolous microbes, and the
prediction of how microbial metabolic activities and interactions
influence host fungal physiology. Collectively, MCMMs provide a
predictive scaffold to translate genomes into metabolite exchange
networks, enabling hypothesis-driven tests of how specific microbes
and metabolites affect fungal growth, fruiting, and stress tolerance
under natural and controlled conditions.

Concluding remarks

The rise of high-throughput meta-omics, along with scalable
bioinformatics pipelines and databases, has accelerated research on
microbiomes in natural environments and host organisms. Recent
advancements in understanding the associations between mycor-
rhizal fungi, plants, and microbiomes show that the traditional
binary view of symbiosis needs to be expanded to consider commu-
nity- and ecosystem-level interactions. Although there are practical
challenges in studying mushroom-forming fungi and their micro-
bial partners, this review suggests complementary approaches that
will help researchers gain a better understanding of these fungi and
their associated microbiomes. Achieving this agenda will require
integrated designs: compartment-resolved, longitudinal sampling
of the hyphosphere and fruiting bodies; strain-resolved meta-omics
connected to metabolomics; isolation and synthetic community
experiments; and iterative model-experiment loops in which MCMM
predictions are validated and adjusted. Ultimately, a thorough

Bae et al. Panfungi 2026, 1: e002

Panfungi

understanding of mushroom microbiomes can transition the field
from mere description to practical intervention. This knowledge can
inform the design of stable, productive, and resilient microbial
consortia for sustainable mushroom cultivation, especially in the
context of climate variability, while also advancing our understand-
ing of symbiosis and ecosystem functions.
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