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Abstract

The dictyostelids (also called cellular slime molds) are a group of spore-producing eukaryotic microorganisms. Unlike other eukaryotic
microorganisms, such as fungi and myxomycetes, in which spores appear to be largely dispersed by air currents, the spores produced by
dictyostelids appear to have a rather limited potential for dispersal. The purpose of this paper is to consider the evidence of spore dispersal
in dictyostelids by animal vectors, both vertebrates and invertebrates. Furthermore, the morphological characteristics of spores are
elaborated upon herein. This review is intended to elucidate the relationship between the morphological traits of dictyostelid spores and
their dispersal mechanisms, thereby offering a novel perspective for a more comprehensive understanding of the ecological functions and

evolutionary adaptations of dictyostelids.
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Introduction

The dictyostelids (also called cellular slime molds) are a group of
eukaryotic microorganisms whose primary microhabitat is the
soil/humus layer of forests, although they also occur in other types
of terrestrial ecosystems such as grasslands!'-2l. Dictyostelids occur
worldwide and are known from the Arctic and subantarctic to the
tropics®-51. The most comprehensive treatments of their biology
and ecology are those provided by Raper!® and Liu et al.”l.

The dictyostelids belong to the Eumycetozoa, a taxonomic group
in which the members have an amoeboid stage in their life cycle.
About 200 species of dictyostelids have been formally described,
but recent investigations in understudied areas and habitats indi-
cate that there are numerous species as yet unknown to
sciencel®-191, For reproduction, dictyostelids produce fruiting bodies
called sorocarps, and at the apex of each sorocarp, the spores occur
in a thick, sticky, rounded mass known as a sorus (plural: sori)l'",12,
Dictyostelids exhibit motility during their amoeboid vegetative
phase, though the actual distance they traverse in this state is
extremely limited. Once these amoeboid cells aggregate to form a
pseudoplasmodium, the latter can migrate over a greater distance
in certain species; even so, this migration only reaches a maximum
of a few centimeters, even when conditions are optimal.

Dictyostelid spores

The morphological features of spores are an important criterion
for the classification and identification of dictyostelids. Once spores
reach maturity, they germinate when environmental conditions
are favorable, giving rise to amoeboid cells referred to as either

'myxamoebae’ or simply 'amoebae'” (Fig. 1a). When studying
spores, well-developed and intact fruiting bodies (sorocarps) should
be selected from a culture as viewed with a stereomicroscope. These
should be placed on a glass slide, a drop of sterile water added,
covered with a coverslip, and the slide sealed. The spores can then
be observed using a light microscope equipped with a 10x eyepiece
and a 100x oil immersion objective, and the features of the spores
determined. These include spore shape and size, spore length-width
ratio, and the presence or absence of polar or other granules (Fig.
1b). After capturing images with a color camera on the microscope,
these images can be uploaded to a specimen identification archive
database. Aspects of spores to be considered in a full description are
color, shape, polar granules, inclusion vacuoles, vesicles, substances,
stickiness, cell wall, and spore germination rate.

Spore color

The spores of most dictyostelids are hyaline and colorless, but
some species produce spores with some color. For example, the
spores of Dictyostelium annularibasimum are sometimes colorless or
pale purplel'3], those of D. dichotomum are yellow!'¥, and the spores
of Polysphondylium acuminatum range from hyaline to vinaceous!'.
The smaller spores (2-4 pm) of Acytostelium aggregatum are
opaquel'®, Spore color tends to fade over time. This is especially
true for those with a yellow tint.

Spore shape

Spores of species of dictyostelids exhibit significant morphologi-
cal diversity, with variations in shape, size, and specific morphologi-
cal features among different genus and species. The characteristics
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Fig. 1 (a) The amoebae of D. discoideum persist across the organism's complete life cycle. (b) The steps involved for observing spores.

can be summarized from four dimensions: common morphology,
special morphology (Fig. 3), size variation, and length-breadth (L/B)
ratio, as outlined in the sections that follow.

Common morphology

The predominant spore morphologies in dictyostelids are ellipti-
cal or oblong. Only a few species produce spherical spores, includ-
ing Dictyostelium rosarium, D. globisporum, D. minimum,
Heterostelium equisetoides, and Tieghemostelium lacteumt7-21, |n
addition, spores of most species in the genus Acytostelium are
mainly globose to subglobose (Fig. 2a-c).

Special morphology

Spores of some species possess highly distinctive special
morphologies. Some species of dictyostelids exhibit spore deforma-
tion. Deformed spores are usually larger than normal ones and
mostly appear reniform or sigmoid. This characteristic was docu-
mented in early studies and represents an important aspect of
morphological variation in dictyostelid spores®22, For example,
spores of Cavenderia boomerangispora are long, elliptical, and often
curved into a boomerang shape (Fig. 2d), a feature that is particu-
larly prominent in older cultures(?3, Spores of species such as
Heterostelium pallidum and Raperostelium tenue can be reniform
(kidney-shaped)24251, Spores of Dictyostelium dimigraforme and
Polysphondylium laterosorum may also exhibit sigmoid (S-shaped) or
recurved forms!26l,
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Other special morphologies

Spores of Heterostelium naviculare are elliptical to navicular, with
some individuals being sharply pointed or reniform (Fig. 2e)l7;
spores of Hagiwaraea coeruleostipes and H. lavandula have a capsule
shape, with only occasional slightly reniform spores observed in
larger examples; spores of H. rhizopodium are narrowly elongated(?};
and spores of Coremiostelium polycephalum are elliptical or
reniform(29],

Size variation

In terms of size, spores of most species are relatively stable. For
example, spores of Heterostelium flexuosum are very small and
broad, mostly measuring 4.5 x 3 um (Fig. 2f)(23]; spores of H. pallidum
are oval, ranging from 2.5-3 pm x 5-6.5 um, with spherical individu-
als having a diameter of approximately 7—8 uml24, However, a few
species show extreme size variation. For example, in Dictyostelium
dimigraforme, the spores exhibit extremely wide size variation,
mostly measuring 7.0-12.0 X 2.5 um, with some reaching up to 26 x
5 um; Polysphondylium laterosorum also displays a wide size varia-
tion, ranging from 6.0—13.0 x 2.5—4.0 um!26l, Acytostelium aggrega-
tum produces two sizes of spores. Most spores measure 5-8.5 um
(average 5.76 pm), while smaller spores are 2—4 pum. The smaller
spores have a more regular shape, are opaque, and some are oblong
(7 x 5 um)['®l. The spores of Raperostelium tenue fall into two distinct
size ranges, with smaller spores averaging 3.0 X 6.0 um and larger
spores averaging 4.5 x 8.5 uml23],

Guo et al. Panfungi 2026, 1: €003
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Fig. 2 Examples of different dictyostelid spore shapes (all the images are from the corresponding references). (a) Dictyostelium globisporum spores.
Bar = 5 um!"®. (b) D. minimum spores. Bar = 10 um!'., (c) Heterostelium equisetoides. Bar = 10 um[%, (d) Cavenderia boomerangispora, long and frequently
curved PG+. Bar = 10 um!?3, (e) H. naviculare, elongated navicular spores with consolidated polar granules. Bar = 5 uml27., (f) H. flexuosum, relatively small
spores, note the widely distributed, numerous unconsolidated granules. Bar = 10 um?3., (g) D. polycarpum, group of spores with polar spore granules PG.

Bar =5 umB%,

Hagiwara conducted studies on the effect of temperature on
spore size, which showed that the spores of some species of dic-
tyostelids (e.g., Dictyostelium firmibasis, Cavenderia delicata, Raper-
ostelium minutum, Heterostelium pseudocandidum, and Polyspho-
ndylium violaceum) increased in size to a certain extent at lower
temperatures (5 or 10 °C)22, Liu et al. found that in environments
above 2,000 m elevation on the Qinghai-Tibet Plateau of China, the
spore length of dictyostelids and the ratio of sori to spores were
positively correlated with increasing elevation. However, there was
little difference in spore size at 15, 20, or 25 °C. Nevertheless, avail-
able data on dictyostelids suggest that they should be cultured
under the temperature conditions of 15 to 25 °C['9,

Length-breadth (L/B) ratio

Slender spores in some species. The L/B index of Dictyostelium
polycarpum spores is 2.9, showing a distinct slender feature (Fig.
29)BY%, In D. flavidum, the spores are hyaline and long elliptical, with
an L/B index of approximately 2.4-2.883". The spores of Raper-
ostelium filiforme are 1.8-2.3 times longer than they are broad,
presenting a slender shape32l,

Spore polar granules (including vacuoles,
vesicles, and substances)

Spores of some species of dictyostelids contain plasmids,
commonly called 'polar granules'. These are usually located at both
ends or the center of the spores in which they are present. Species
of dictyostelids with polar granules do not show a chemotactic
response to the aggregating factor cAMP, whereas species without
polar granules do respond to cAMP (which serves as their aggregat-
ing factor). Polar granules are important in the identification of
dictyostelids, and their presence or absence can be easily deter-
mined under a light microscopel?2.,

To comprehensively understand the taxonomic significance of
polar granules in various species of dictyostelids, their characteris-
tics across multiple dimensions including morphological state (con-
solidated vs unconsolidated), distribution (polar, subpolar, dispersed,
mixed), visibility (conspicuous vs inconspicuous), and special struc-
tures (e.g., halos, refractive features) need to be considered (Fig. 3).

More than half of all species of dictyostelids lack polar granules.
Species with conspicuous polar granule includes Dictyostelium
polycarpum, D. recurvibasicum, D. robusticaule (Fig. 4a),
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D. globisporum, Raperostelium gracile, Heterostelium stolonicoideum
(Fig. 4b), Cavenderia aureostipes, and C. exigual232530.33-351 Qther
species containing polar particles have been summarized in Table 1.
The latest classification system of dictyostelids is shown in Fig. 55361,

Morphological state and distribution: consolidated polar
granules

Consolidated polar granules, as a dominant morphological type,
exhibit distinct patterns in both visibility and spatial distribution
across species. A large number of species, such as Dictyostelium
dichotomum, Polysphondylium violaceum, P. aureum, P. patagonicum,
Raperostelium australe, R. cymosum (Fig. 4c), R. maeandriforme (in
part), and multiple members of the genus Cavenderia (e.g., C. ungu-
lata, C. pseudoareostipes, C. antarctica, C. fasciculoidea, C. fulva (Fig.
4d), C. macrocarpa, and C. subdiscoidea during dormancy), possess
these granules in a consolidated state. They are conspicuous and
predominantly localized in polar or subpolar regions, serving as a
key diagnostic feature. Moreover, some species within this group
display additional structural modifications. For example, C. ungulata,
C. pseudoareostipes, and C. subdiscoidea are noted for clear halos
surrounding their granules, while C. fasciculoidea features angular,
visually distinct granular units.

Notably, a subset of species with consolidated granules deviates
from the 'polar/subpolar concentration' pattern. For example,
Heterostelium luridum disperses consolidated granules throughout
the cytoplasm, Raperostelium ibericum distributes them across the
entire spore body (not limited to poles) (Fig. 4e). Cavenderia minima
presents a heterogeneous profile, with a large cluster of consoli-
dated granules (with halos) at one pole alongside tiny dispersed
granules, further highlighting the diversity within this morphologi-
cal category (Fig. 4f).

Morphological state and distribution: unconsolidated polar
granules

Unconsolidated polar granules, by contrast, are characterized by
their dispersed or less-organized structure. Dictyostelium german-
icum has numerous unconsolidated granules on the surface.
Polysphondylium fuscans, Heterostelium stolonicoideum, and H.
tikalense (with 'polar-like' unconsolidated granules) exhibit this state
in the polar/subpolar regions. Heterostelium rotatum extends this
dispersion across the entire spore body, with the largest granules
concentrated at the poles.
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Fig. 3 Microscopic features (shape and granules) of spores used in the identification of dictyostelid species.

Fig. 4 Examples of different dictyostelid spore granules (all the images are from the corresponding references). (a) Dictyostelium robusticaule. Bar = 20
umB4, (b) Heterostelium stolonicoideum, oblong spores note the conspicuous unconsolidated polar granules. Bar = 10 um'?>\. (c) Raperostelium cymosum,
large elliptical, mostly reniform spores with conspicuous consolidated polar to subpolar granules. Bar = 6 umb7.. (d) Cavenderia fulva, elliptical spores with
prominent refractive consolidated granules at their poles. Bar = 5 umP”., (e) R. ibericum. Bar = 10 um&, (f) C. minima, small elliptical irregular spores with
polar to subpolar consolidated granules, generally the cluster of granules appears larger at one of the poles. Bar = 6 umb7.. (g) D. capillare, elliptical spores
with conspicuous, consolidated polar granules. Bar = 5 umB2., (h) D. unicornutum, broadly elliptical spores with polar and subpolar granules. Bar = 5 um©2.,
(i) C. bhumiboliana, rather large, elliptical spores with consolidated polar granules. Bar = 10 umB?., (j) Hagiwaraea irregularibrachiatum, elliptical short

spores with small unconsolidated polar to subpolar granules. Bar = 6 umE7,

In some cases, unconsolidated granules coexist with consoli-
dated ones. Raperostelium ibericum is a representative example,
encompassing both morphological types. Moreover, Acytostelium
subglobosum stands out due to its scarce, minute, unconsolidated
granules and recognizable zonation, distinguishing it markedly from
other taxa.

Visibility and special structural variations

The visibility of polar granules further differentiates species.
Dictyostelium dichotomum, Polysphondylium patagonicum, Raper-
ostelium australe, and Cavenderia ungulata possess conspicuous
granules that are easily identifiable in morphological or distribu-
tional aspects. Conversely, Dictyostelium capitatum and
Heterostelium radicum have inconspicuous granules, making their
identification more challenging.

Beyond these general patterns, several species exhibit unique
structural features. Cavenderia helicoidea has irregularly shaped
consolidated granules, Acytostelium anastomosan features promi-
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nent central granules, Heterostelium anisoctale displays highly refrac-
tile unconsolidated granules, and H. parvimigratum has tiny gran-
ules that are not consistently restricted to polar or subpolar regions.

Taxonomic implications

The combination of polar granule characteristics—including
consolidation state, distribution, visibility, and special structures—
serves as a critical set of markers for species differentiation and taxo-
nomic research. These morphological and spatial variations not only
reflect the evolutionary divergence of dictyostelids but also provide
tangible criteria for their identification and classification. Some
species of dictyostelids have vacuoles, vesicles, or specific contents
other than polar granules in their spores. Other species have
vacuoles, vesicles, or specific contents. Dictyostelium leptosomopsis
has tiny vacuoles*Z; D. quercibrachium often has large scattered
vesiclest®l D. brevicaule has vesicles!'¥; Heterostelium equisetoides
has small refractile vesicles??; and H. unguliferum has small
vacuoles(el,

Guo et al. Panfungi 2026, 1: e003
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Table 1. Species of dictyostelids containing polar particles along with their sources and original literature descriptions.
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Morphological state Distribution Special structures
Species (consolidated vs  (polar, subpolar,  (conspicuousvs (e.g., halos, refractive Others Ref.
unconsolidated) dispersed) inconspicuous) features)
Dictyostelium 1 ++ (Occasionally +) Romeralo et al.[*]
ammophilum
D. capitatum + Hagiwaial*"
D. dichotomum Mostly + ++to+ Vadell & Cavender!'¥
D. gargantuum - On the surface Vadell et al.*%
D. germanicum Mostly — + On the surface Cavender et al.[3)
Polysphondylium + + Vadell and Cavender!'®
violaceum
P. aureum + + Hodgson & Wheller*4!
P. fuscans - + Perrigo[*>!
P. patagonicum + Mostly + Vinaceous Vadell et al.l4%!
Raperostelium Mostly +, some - - One or more relatively Romeralo et al.?8]
ibericum large granules
R. australe Polar to subpolar/ Cavender et al.l9
dispersed
R. cymosum + ++to+ Cavender et al.B”)
R. maeandriforme + ! Some with a Cavender et al.F%
heterogeneous
content
Acytostelium Central Cavender et al.?”]
anastomosans
*A. subglobosum Distinctively different Cavender & Vadell!'®
from other species due to
inconsistently scarce,
minute granulation and
clearly recognizable zonation
Heterostelium - Cavender et al.l9
anisocaule
H. luridum - Mostly throughout Kauffman et al.l*”]
the cytoplasm
H. migratissimum Median + ++and + Cavender et al.[¥
H. parvimigratum Mostly + Not consistently ++ Cavender et al.[¥
or+,—
H. radiatum ++ Perrigo et al.*8]
H. rotatum Mostly — — (the largest at Landolt et al.?3!
the poles)
H. stolonicoideum Mostly — ++ Landolt et al.?3!
H. tikalense - ++ Vadell & Cavender!'”]
Cavenderia + ++ Often surrounded by Large Cavender et al.l*)
ungulata a clear narrow halo
C + Mostly ++, Surrounded by clear Many rounded Vadell et al. 3%
pseudoaureostipes sometimes + halos
or with — smaller
granules
C. antarctica + ++to + Sometimes unipolar, smallest Cavender et al.ld!
individuals lack granules
C. nanopodia + + Irregular in shape andsize  Vadell & Cavender!'¥
C. fasciculata ++or + Traub et al.B%
C. fasciculoidea + ++ Surrounded by aclear  Visible as angular units Vadell et al.*?
halo
C. fulva 1-2 large + ++to+, Cavender et al.”!
sometimes —
C. macrocarpa + ++to+ Vadell & Cavender!'¥
*C.minima Heterogeneous Cavender et al.37]
content (often one
much larger cluster of
granules at one pole
with halos, plus tiny
dispersed granules)
*C. subdiscoidea + ++ Dense, round, with  Duringdormancy—spores Vadell et al.39
clear halos enlarge when in contact with
humid substrate, making the
spore body heterogeneous
and granules larger
C. helicoidea - ++ Cavender et al.l*)

Special cases are indicated by an asterisk *', consolidated '+', unconsolidated '-'; polar '++', subpolar '+, dispersed '-'; conspicuous '+', inconspicuous '-'; concurrence '".

Spores of these species contain polar granules and inclusions
such as vacuoles, which can be classified by genus as follows:
Dictyostelium valdivianum spores have small to medium vacuoles

Guo et al. Panfungi 2026, 1: €003

and small to medium granules (spaced within the spore body,
mostly at the poles), and D. chordatum has some dispersed granules
and many vacuole-like inclusionst2l. Raperostelium capillare has
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Dictyosteliales

Dictyostelids Synstelium

Acytosteliales

Fig.5 The current classification used for dictyostelids®®.,

heterogeneous contents, including consolidated polar or subpolar
granules (often with one visible granule, not always at the poles),
small dispersed granules, and vacuoles; smaller spores sometimes
lack granules (Fig. 49)B32. Raperostelium crispum has variable uncon-
solidated polar/subpolar granules in addition to tiny dispersed gran-
ules, vacuoles, and heterogeneous contents!3’1. R. filiforme is charac-
terized by distinct, consolidated polar (or occasionally subpolar)
granules — often a single polar granule encircled by a clear halo —
and hyaline contents with heterogeneous properties. Tieghe-
mostelium dumosum has consolidated polar granules (along with
subpolar or dispersed granules) and small vacuoles with heteroge-
neous contents, while T. unicornutum has vacuoles with heteroge-
neous contents and crowded consolidated granules (not consis-
tently polar) (Fig. 4h)B2., Spores of Cavenderia protodigitata are
hyaline to vacuolated or have variable heterogeneous contents,
with two unequal medium-to-large consolidated regular polar gran-
ules (one with an evident halo) and other smaller dispersed gran-
ulesB%; The spores of C. basinodulosa have prominent consolidated
polar granules (PG+) (not consistently polar but sometimes
dispersed near the poles) and many small vacuoles while those of C.
bhumiboliana have polar to subpolar granules (sometimes
dispersed, irregular in size and shape; often surrounded by a clear
halo), plus other small dispersed granules, vacuoles, and heteroge-
neous content (Fig. 4i)3948], Spores produced by Acytostelium aggre-
gatum have granules, nuclear vacuoles, and vesicles within the
spore (surrounded by a dense slime matrix)l'¢, Spores of
Heterostelium lapidosum have minute polar to subpolar granules,
small vacuoles, and some individuals have more evident consoli-
dated polar to subpolar granulest®. H. irregularibrachiatum has
unconsolidated polar/subpolar small granules and tiny dispersed
vacuoles (Fig. 4))17); and H. perasymmetricum has consolidated large
and small polar to subpolar granules (sometimes dispersed) and
small vacuoles!®l.,

Spore stickiness
The stickiness of dictyostelid spores varies considerably among
species. Those of Acytostelium aggregatum are surrounded by a
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Dictyostelium
Dictyosteliaceae
Polysphondylium
Coremiostelium
Raperostelium
Hagiwaraea
Raperosteliaceae Tieghemostelium
Speleostelium

Acytostelium

Acytosteliaceae Rostrostelium
Heterostelium
Cavenderiaceae Cavenderia

dense slime matrix, while the spores of Heterostelium versatile are
strongly adherent!'648], In Cavenderia amphispora, the spores gener-
ally stick to one anotherl?”); they are sticky within the sorus of C.
bhumiboliana%, and this is also the case for C. parvibrachiata as well
as C. ungulata™. In some species of dictyostelids, the stickiness is
less apparent.

Spore cell wall

All dictyostelids produce spores with smooth cell walls contain-
ing cellulose. The spores of Dictyostelium rosarium have a finely
granular surface and comparatively thin wallsl'7). In contrast,
Acytostelium irregularosporum has thin cell walls compared to other
species!'®l, However, the cell wall is always prominent enough to be
readily apparent.

Spore germination rate

The germination rate of spores also varies among species. A
number of species have spores that germinate immediately. Exam-
ples include Dictyostelium austroandinum, Polysphondylium patago-
nicum, Cavenderia protodigitata, C. pseudoaureostipes, C. subdis-
coidea, C. basinodulosa, C. helicoidea, C. nanopodia, Tieghemostelium
simplex, Heterostelium cumulocystum, H. irreqularibrachiatum, H. lapi-
dosum, H. parvimigratum, H. plurimicrocystogenum, H. pseudocolliga-
tum, H. pseudoplasmodiofascium, H. pseudoplasmodiomagnum, H.
radiatum, and H. unguliferum[8.1432,37,39,42,48,49],

More specifically, the spores of Cavenderia amphispora germinate
immediately when the sorocarp collapses, while those of C. stellata
show immediate germination upon the collapse of the sorusi?7l, For
C. bhumiboliana, most spores germinate immediately, although
some do notB9. In C. canoespora and C. subdiscoidea, most spores
germinate immediately3948], In contrast, the spores of Heterostelium
perasymmetricum germinate after a short period of dormancy, but
the spores of Acytostelium leptosomum do not germinate imme-
diately after the sorus collapses on the substratum, and the spores
of H. racemiferum and H. violaceotypum also fail to germinate
immediately!.16],

Guo et al. Panfungi 2026, 1: e003
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Spore adhesion and resistance
Size (likelihood of being preyed upon)

The size and shape of spores may affect their biological adaptabil-
ity, especially in their ability to resist predation pressure. Small
spores usually have stronger resistance to digestion. Due to their
smaller size, certain predators (such as protozoa or nematodes) may
have more difficulty in effectively ingesting these spores, thereby
increasing the survival rate of the spores. The size of spores signifi-
cantly affects their distribution and predation under spore size
screening conditions, indicating that spores of specific sizes can
limit predation through their physical characteristicsi>?l. Compared
to smaller spores, large spores often exhibit stronger adhesion abil-
ity on surfaces with natural adhesive properties (such as host plants
or moist soil), thereby gaining a survival advantage in specific envi-
ronments5'52, Studies have found that although the size of spores
significantly improves their ability to resist external physical stimuli,
the cost is that the predation risk may increase due to their larger
size. However, this trade-off is still considered an important selec-
tion pressure for population evolution and ecological adaptationl>9,

Cell wall thickness (anti-digestibility)

The spore cell wall of dictyostelids plays a crucial protective role
throughout its life cycle, and its thickness and structure are closely
related to the spore's resistance to digestion. The spore cell wall is
composed of multiple layers, including a cellulose core, an inner
layer consisting of closely bound polysaccharides, and an outer
protein layer. This multi-layered composite structure provides
mechanical strength and forms a barrier that allows gas exchange
but prevents digestive enzymes from reaching the living protoplast.
The outer layer is rich in glycoproteins such as SP96 and SP85, which
form a further protective membrane through glycosylation and can
effectively resist degradation by extracellular enzymes such as cellu-
lase and chitinasel>':53], Cellulose is the main structural component
of the spore's outer layer, and the arrangement of its fibers gives the
spore resistance to enzymatic hydrolysis. Additionally, chitin is
poorly degraded by humans and some microorganisms, thus
conferring resistance to digestion on the cell walll>354, Studies have
shown that spores with thicker cell walls have a higher survival rate
after treatment with digestive fluids such as pepsin. This indicates a
significant positive correlation between cell wall thickness and
spore resistancel>1l.

Adhesive matrix (adhesion mechanism)

The adhesion and attachment properties of their spores play a
crucial role in the multicellular growth and differentiation of
dictyostelids. The outer layers of the spore, particularly the outer
glycoprotein layer, exhibit significant adhesion characteristics,
mainly composed of SP70 and other glycoproteins, as well as a cellu-
lose matrix. These substances enhance the anti-detachment ability
of spores through electrostatic interactions and hydrogen bonding.
Adhesion proteins, such as gp24 and gp80, are expressed on the
spore cell membrane surface, mediating surface attachment of
spores in the environment and mutual aggregation among
spores>5=571, Dictyostelium discoideum can induce cell movement
towards specific targets through cAMP signaling and form intercel-
lular junctions by binding adhesion molecules such as DACAD-1.
This mechanism may affect the efficiency of spore attachment to the
substrate and is a key step in maintaining the structure of the fruit-
ing body[>6:58l, During spore formation, the adhesion properties of
the outer wall may enhance its stability, helping mature spores
adhere to the surrounding substrate and reducing mechanical
detachment caused by water flow or wind52,
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Vectors of spore dispersal

Like many other microorganisms, such as fungi and
myxomycetes, dictyostelids reproduce by means of spores. Unlike
most other microbial taxa, dictyostelid spores possess relatively
constrained dispersal potential. Within the sorus of a sorocarp, these
spores are embedded in a mucilaginous matrix that undergoes
desiccation and subsequent hardening. This physical trait severely
limits the likelihood of wind-mediated dispersal for the spores, a
finding supported by Cavender's research®?. While water-based
dispersal of dictyostelids is theoretically feasible, such an event is
thought to occur only under exceptional environmental conditions,
such as intense flooding. Given these constraints on common
dispersal pathways, a key question emerges: through what specific
mechanisms do dictyostelid spores accomplish successful dispersal
in their natural habitats? Available data suggest that it takes place
through the activities of other organisms that serve as vectors of
dispersal.

Invertebrates

The soil/humus layer of forests—acknowledged as the primary
habitat for dictyostelids—also sustains a diverse assemblage of
small invertebrates, which possess the full capacity to facilitate the
dispersal of dictyostelid spores>269., In most scenarios, this dispersal
process involves no more than the simple adhesion of spores to the
body surfaces of the corresponding invertebrates; however, an
ingestion-defecation pathway can also mediate such dispersal. As
evidence, Huss successfully isolated dictyostelids from the gut
contents of earthworms and pill bugs collected directly from natu-
ral field settings, further supporting the role of invertebrates in this
ecological process’l. These organisms move only short distances
during their entire lives. This is not the case for vertebrate animals,
some of whom move over considerable distances. The spores of
dictyostelids have been isolated from insects. Stephenson & Landolt
recovered dictyostelids from a noctuid moth (Fig. 6a)©Z, and
Stephenson et al. demonstrated that cave crickets could carry
dictyostelid spores both internally and externally®3l. Landolt &
Stephenson successfully recovered three dictyostelid species —
specifically Dictyostelium purpureum, D. sphaerocephalum, and
Polysphondylium pallidum — from the fecal samples of three large
terrestrial snail individuals collected in Puerto Rico's Luquillo Experi-
mental Forest (Fig. 6b). Notably, field observations at this study site
revealed that these snails were commonly encountered both on the
forest floor and on tree trunks located at significant heights above
ground level(©4],

Vertebrate
Migratory songbirds

Suthers conducted research that confirmed ground-foraging
migratory songbirds facilitate the transcontinental transport of
dictyostelids, specifically between eastern North America and the
Neotropics. In her study, eleven distinct dictyostelid species were
isolated from the fecal samples of ground-foraging migratory birds
native to eastern North America—including thrushes, finches, spar-
rows, and warblers—with samples collected both in the birds'
breeding habitats and their wintering grounds (Fig. 6¢). Given that
ground-foraging birds regularly interact with the litter layer cover-
ing forest floors, they have a high likelihood of encountering
dictyostelid spores in this microhabitat. This ecological interaction
creates conditions that enable the long-distance dispersal of
dictyostelids. Building on these observations, Suthers proposed a
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Sparrow

Eastern chipmunk Turtle

Fig. 6 Dictyostelids rely on animal vectors for spore dispersal in many instances. (a) Noctuid moth. (b) Snail. (c) Sparrow. (d) Eastern chipmunk. (e) Turtle.

hypothesis: this bird-mediated dispersal mechanism likely explains,
at a minimum, in part, why certain dictyostelid species exhibit an
almost global distribution[65!,

Terrestrial microvertebrates

In 1992, Stephenson & Landolt analyzed fecal samples obtained
from nine vertebrate species. These species are prevalent and
widely distributed within the temperate forests of eastern North
America, and they include the red-backed salamander, white-footed
deer mouse, eastern chipmunk, pine vole, Carolina wren, slate-
colored junco, and big brown bat (Fig. 6d). All fecal samples were
processed promptly after collection to ensure sample integrity.
Through their analysis, the researchers isolated nine dictyostelid
species, including Dictyostelium discoideum, D. sphaerocephalum,
and Polysphondylium violaceum. Notably, each of these dictyostelid
species was retrieved from fecal material of no fewer than three
distinct vertebrate species. High probability, terrestrial microverte-
brates possess the ability to transport dictyostelid spores, analo-
gous to the capacity of birds.[62],

Reptiles

Tremble & Stephenson demonstrated that some reptiles, which
have a dry scaly skin to which spores would seem unlikely to adhere,
were also capable of transporting the spores of dictyostelids. Four
dictyostelid species were isolated by the researchers using wet ster-
ile swabs that had been applied to the ventral surfaces of multiple
snake, lizard, and turtle species (Fig. 6e). There is no doubt that
these reptilian animals come into contact with the litter and humus
layer on the forest floor during their movement(66l,

Large mammalian herbivore species

Sathe et al. gathered fresh dung samples from several large
mammalian herbivore species within the Mudumalai Wildlife Sanc-
tuary in South India (11° N), including the Asian elephant (Elephas
maximus), spotted deer (Axis axis), barking deer (Muntiacus muntjae),
sambar (Cervus unicolor), and gaur (Bos gaurus). Processing of these
specimens for dictyostelids yielded the identification of at least
eight species(®’l. Notably, multiple dictyostelid species were occa-
sionally isolated from a single dung sample, a phenomenon that
had previously been documented by Stephenson & Landolt!¢2], Of
particular interest, Sathe et al. successfully retrieved dictyostelids
from yak (Bos grunniens) dung collected at a Himalayan Mountains
site (34° N) situated at an altitude of 5,300 m!7],
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Humans

Another animal vector likely to contribute significantly to
dictyostelid dispersal is humans. To investigate human footwear as a
potential dictyostelid vector. Perrigo et al. collected samples of soil
adhering to the soles of eighteen boot pairs. Dictyostelids were
isolated from almost all samples with a mass exceeding 5.0 g, and
four different species were recovered, including one species new to
sciencel*s], This unequivocally implies that there is a considerable
potential that individuals engaging in hiking activities in natural
environments are prone to dispersing the spores of dictyostelids,
either over short distances or (if the soles of the boots or other
footwear are not cleaned) even considerable distances.

Microhabitats

One of the more unusual microhabitats in which dictyostelids are
known to occur is what has been referred to as 'canopy soil.' This is
the layer of organic material that develops beneath epiphytes (both
vascular and nonvascular) on the larger branches of trees in tropical
rainforests. The occurrence of dictyostelids in this microhabitat was
first reported by Stephenson & Landolt for a study site in Puerto
Rico®4., They later reported data for a number of other regions of
the tropics®8l. One may question how dictyostelids are introduced
to canopy soil — an environment that can be tens of meters above
their primary ground-based habitat. In tropical forests, various
animal types (including small mammals, lizards, salamanders,
insects, and snails) possess the ability to travel from the forest floor
up to the canopy layer. Presumably, these transport dictyostelid
spores, either internally or externally, from the primary habitat for
dictyostelids (on the forest floor) to the secondary microhabitat
represented by canopy soil. The relative abundance of dictyostelids
in canopy soil suggests that this happens on a regular basis. Inter-
estingly, there are species of dictyostelids known from canopy soil
that have not yet been recovered from samples collected from the
ground.

Reproduction

Like most other organisms in which reproduction occurs by
means of spores, the individual spores (or more often a mass of
spores) are elevated above a substrate by a stalk/stipe or the
morphological equivalent of this structure. This is the case for the
sorus in dictyostelids. Presumably, this places the sorus in a more
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favorable position not to have spores carried away by air currents,
which are probably very minimal for the situations in which
dictyostelids occur, but to enhance their chances of contact with a
passing vector. It is known that the sorophore of the dictyostelid
fruiting body is very flexible and can bend in the direction of some-
thing to which it is attracted. Presumably, those species of
dictyostelid in which the fruiting body is branched would have a
better opportunity for a sorus to come into contact with a possible
vector. It is well-established that the case for species in the tradi-
tional genus Polysphondylium, in which the fruiting body has whorls
of branches, with each branch ending in a sorus. This would extend
the effective space within which contact of a sorus with a vector is
possible.

Discussion

It is worth emphasizing that animals play a crucial role in the
transmission of microorganisms, plant seeds, and other organisms.
This role is not limited to Trametes versicolor but is widespread in
various ecosystems[®®-71, Long-lived and continent-crossing or
ocean-crossing migratory birds, such as warblers, in the process of
spreading, maturing, and recruitment, their long-distance migra-
tion behavior itself constitutes a potential biological transmission
vector72731, Similarly, wild vertebrates play a key role in the seed
dispersal and protection of the unique palm tree Butia odorata in
southern Brazil, revealing the importance of animals in maintaining
the structure of plant communities and biodiversity®?. Mammals
also have a dual role in the transmission of aquatic plants and micro-
invertebrates between isolated wetlands!7%., Although these studies
do not directly target dictyostelids, they confirm the universality of
vertebrates as effective disseminators from an ecological perspec-
tive.

Environmental DNA (eDNA) technology has shown great poten-
tial in biodiversity monitoring and tracking of transmission routes.
For example, eDNA is the genetic material released by organisms
from the environment and can be sampled and analyzed through
water bodies, soil, and even airl7475), In the freshwater ecosystem of
Sicily, eDNA has been used to preliminarily assess the vertebrate
biodiversity, and its rapid and non-invasive characteristics make it
an effective alternative to traditional monitoring methods>l. In the
open grassland habitats of Queensland, Australia, eDNA from soil
and air samples successfully detected terrestrial vertebrates, includ-
ing Sminthopsis douglasi, so the eDNA technology can effectively
detect vertebrates existing in the environment and provide clues for
tracking their activities and potential microbial transmission.
Although these studies mainly focus on vertebrates themselves, the
principle of eDNA technology is also applicable to detecting the
genetic material of microorganisms carried or transmitted by
animals. Future research can attempt to detect the DNA of Trametes
versicolor from eDNA samples of soil or water in the animal activity
areas to assess the contribution of animals to the transmission of
this species. The sampling methods of eDNA include water filtration,
surface swabs, automatic or remote sampling, and sediment collec-
tion etc. Subsequently, eDNA is processed through purification, PCR
amplification, or isothermal amplification, and species detection is
carried out through lateral flow tests, qPCR/ddPCR tests, or metage-
nomic sequencing74, This process provides strong technical
support for tracking the microbial transmission by animal vectors.

Microbial biogeography studies focus on the distribution patterns
of microorganisms in space and time and the factors influencing
them. A metagenomic assembly genome catalog study on micro-
bial decomposers in vertebrate environments aims to enhance the
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understanding of microbial metabolism and ecological succession
during vertebrate decomposition processes. In the land restoration
research in the semi-arid region of Brazil, the nature of soil microbial
communities is considered a key factor, and their diversity,
resilience, and metabolic capacity are closely related to land
management practices. These studies emphasize the importance of
detailed analysis of microbial community composition and function,
which is closely related to the tracking of the transmission mecha-
nism of dictyostelids76.77],

Apart from vertebrates, other animals also play important roles in
the transmission of microorganisms. Insects are widely regarded as
effective carriers of various pathogens. In medical settings, insects
may serve as key hosts for multidrug-resistant bacterial’8l. Flies
spread foodborne pathogens, including antibiotic-resistant and
multidrug-resistant bacteria, in animal production systems, posing
risks to food safety and public health79]. Certain insect-specific
viruses can affect the vector ability of mosquitoes for vector-borne
viruses89, In addition, microorganisms can manipulate host loca-
tion strategies to influence the behavior of arthropod vectors,
thereby facilitating their transmission®'l. Although these studies do
not directly involve dictyostelids, they provide extensive evidence
regarding animals as microbial carriers and indicate the complex
interactions between microorganisms and animal vectors.

In summary, although the evidence is not conclusive, the studies
described in this paper strongly suggest that dictyostelids rely on
animal vectors for spore dispersal in many instances. The animal
vectors involved encompass a wide range of taxonomic groups and
sizes, with one of the largest (humans) possibly having a greater role
than generally appreciated. Evidently, spore dispersal in
dictyostelids is a subject that warrants additional study.
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