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Abstract

εT

This study presents a comprehensive numerical analysis of the oscillatory heat transfer and of

turbulent-flow dynamics of carbon-based diamond-water nanofluids on a vertical nonlinear

wavy  surface  under  magnetohydrodynamic  (MHD)  effects.  The  work  highlights  the  pivotal

role  of  nanodiamonds,  a  class  of  carbon  nanomaterial  characterized  by  ultra-high  thermal

conductivity (1,000 W/m·K) and exceptional stability, in enhancing thermal performance. The

resulting  governing  flow  model,  derived  using  similarity  transformations,  is  solved  by  the

Keller-box  method  (KBM)  and  validated  with  exceptional  accuracy  (MSE  ≈ 10 −7)  using  an

artificial  neural  network  (ANN)  for  machine  learning  (ML).  Aggregated  (ANP)  and  non-

aggregated  nanoparticle  (NANP)  configurations  are  systematically  studied  under  the  rising

magnetic  field  strengths  (M  =  1.0–5.0)  and  sinusoidal  conditions  ( =  0.1–0.3).  The  results

show  that  the  formation  of  ANPs  leads  to  a  substantial  increase  in  thermal  conductivity

due to the formation of conductive clusters, which increase the Nusselt number Nu by 30%,

albeit  at  the  considerable  cost  of  a  25%  increase  in  viscous  dissipation  and  skin  friction Cf.

Conversely,  non-aggregated  nano-diamonds  promote  smooth  velocity  profiles  that  yield

moderate  enhancement  in Nu (up  to  22%)  and  high  hydrodynamic  functionality.  Surface

undulations generate oscillatory thermal dynamics and turbulent mixing structures, resulting

in a 15%–20% reduction in the overall Nu due to boundary layer discontinuity. However, this

negates  the  reduction  resulting  from  the  increase  in  overall  thermal  bridging.  An  optimal

nanoparticle volume fraction Cf of 2%–3% is identified, balancing the thermal enhancement

against  the  pumping  power  requirements.  These  results  provide  important  design  insights

for  advanced  thermal  management  systems,  especially  in  the  cooling  of  electronics  and

high-performance  heat  exchangers,  where  magnetic  field  control  and  surface  geometry

optimization are critical for operational efficiency.

Keywords: Oscillatory  heat  transfer, Non-linear  wavy surface, Nanoparticle  clustering (NC), Diamond-water  nanofluid, Artificial

neural networks, Sinusoidal boundary conditions.

Highlights
•  Nonlinear wavy surfaces induce oscillatory heat transfer and turbulent-like dynamics in MHD carbon-based nanofluids.

•  Carbon-based diamond aggregated nanofluids enhance thermal conductivity, boosting the Nusselt number by 30% despite 25%

higher viscous dissipation.

•  A machine learning analysis hybrid Keller-Box framework achieves exceptional accuracy (MSE ≈ 10−7).

•  Surface undulations reduce heat transfer by 15%–20%, but aggregation mitigates this through conductive networks.

•  Optimal performance occurs at 2%–3% nanoparticle volume fraction and moderate magnetic fields (M = 2.3–3.4).

•  Non-aggregated nanoparticles provide better hydrodynamic performance for flow-sensitive applications.
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Graphical abstract

 
 Introduction

In thermal engineering, fluids serve as the principal medium for energy
transport,  spanning  applications  from  planetary  climate  systems  to
microscale cooling in electronic devices.  The efficient design of radia-
tors,  heat  exchangers,  and  microscale  thermal  management  systems
depends  on  the  capacity  of  the  fluid  to  store,  transfer,  and  dissipate
thermal  energy.  Advances  in  computational  fluid  dynamics  have
enabled modelling of flow dynamics and temperature fields, and heat
transfer  efficiency,  thus  reducing  reliance  on  expensive  and  time-
consuming  experimental  systems.  The  development  of  nanofluids,
colloidal  suspensions  of  nanoparticles  in  base  fluids,  has  provided  a
new  category  of  high-performance  heat  transfer  media  characterized
by high thermal conductivity and low energy consumption by Zhang
et  al.  and  Doost  et  al.[1,2].  The  evolution  of  nanofluids  represents  a
remarkable leap in thermal engineering capabilities. Shah et al.[3] show
their efforts in solar thermal engineering systems, utilizing the thermo-
physical  properties  of  nanoparticles,  and  Timofeeva  et  al.[4] present  a
comprehensive description of the engineering approach to advanced
heat  transfer.  Recent  work highlights  the potential  for  transformation
in  renewable  energy  sectors,  extending  to  electronics  cooling  with
nanofluids offered by Sohel et al. and Santhosh et al.[5,6].

Nanofluids  are  an important  technological  advancement in  ther-
mal  engineering,  engineered  colloidal  suspensions  developed  by
dispersing  nanoparticles  in  the  traditional  base  fluids,  like  water,
ethylene glycol, or oil. This idea, initially proposed by Choi[7], proved
that  the  nanoscale  additives  could  significantly  improve  the  physi-
cal characteristics and heat conduction of the fluids regarding their
thermophysical properties. The effectiveness of nanofluids depends
on nanoparticle attributes,  such as material  type, morphology, size,
and  concentration,  which  collectively  influence  density,  viscosity,
specific  heat,  and  thermal  conductivity.  The  synergy  of  nanoparti-
cles with the underlying fluid has led to the development of hybrid
nanofluids,  in  which  two  or  more  species  of  nanoparticles  are
combined  to  enhance  thermal  functioning  in  an  even  larger  way.
These novel fluids are characterized by better energy carrier proper-
ties and have been used in a variety of applications, such as automo-
tive  cooling,  petroleum  processing,  thermal  management  of  elec-
tronic equipment, and renewable energy systems, particularly in the

development  of  efficient  thermoelectric  performance  of  direct
absorption  solar  collectors.  Yasmin  et  al.[8] experimentally  verified
the  use  of  hybrid  nanofluids  in  thermal  and  solar  energy  storage,
and  Heidarshenas  et  al.[9] studied  the  stability  and  thermophysical
behavior  of  two-dimensional  nanomaterials.  Thus,  understanding
and  controlling  aggregation  is  crucial  in  applications  like  cooling,
biomedical  systems,  and  heat  exchangers.  Subsequent  research
has compared aggregated and non-aggregated nanoparticles at ele-
vated  temperatures  in  cylindrical  geometries  by  Ramzan  et  al.[10]

and  developed  models  to  assess  anisotropic  conductivity  effects
by  Wu  et  al.[11].  Mudhukesh  et  al.[12] studied  radiation  effects  on
magnetically aggregated nanoparticles and applied multiscale MD-
LBM  methods  to  analyze  molten  salt  nanofluids  with  aggregated
particles by Yang et al.[13].

Convective  heat  transfer  on  sinusoidal  surfaces  is  well  known  to
promote convection heat transfer by discontinuously disrupting the
thermal  boundary  layer,  which  facilitates  fluid  mixing  as  well  as
increasing the thermal efficiency in each direction. It is widely recog-
nized that wave or non-uniform surfaces may greatly enhance heat
transfer, as they disrupt the thermal boundary layer and cause fluid
mixing.  This  principle  is  the  foundation  of  superior  cooling  tech-
niques  in  electronics,  biomedical  devices,  and  miniature  energy
equipment.  Recent  interest  has  focused  on  the  thermomagnetic
effects  of  such  geometries,  which  has  attracted  the  attention  of
researchers[14−16] who  discovered  different  wave  structures  and
convection  patterns.  For  example,  Iqbal  et  al.[17,18] investigated  the
interaction  of  magnetic  and  thermal  fields,  and  Akter  et  al.  and
Munir  et  al.[19,20] considered  how  the  inclusion  of  a  magnetic  field
can  influence  thermal  performance.  Practically  speaking,  the  wavy
heat  exchangers  have  been  particularly  useful  in  augmenting  cir-
culation  and  heat  distribution  in  fluids,  thus  decreasing  thermal
stresses and enhancing the overall efficiency of energy use[21−23].

The physical  configuration of  the wavy-surfaced porous medium
solar  collector  and  computational  mesh,  and  boundary  conditions
are  depicted  in Fig.  1[24−28].  In  the  physical  model  illustrated  in
Fig.  1a,  the saturation of  a  wavy absorber  surface with  nanofluid  is
represented, and heat transfer is achieved by absorbing solar energy
at the top and surface of the heated material, radiative cooling, and
convectional exchange with the surrounding air. Figure 1b presents
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the wavy absorber plate used in the experimental or modeled setup,
highlighting  the  structured  surface  geometry  that  enhances  heat
transfer  performance. Figure  1c demonstrates  the  computational
mesh  and  boundary  conditions,  such  as  an  adiabatic  bottom  wall,
symmetrical  side lateral  walls,  a  nanofluid inlet  with specified velo-
city and temperature, and an upper surface that has convective and
radiative heat losses. These sub-figures define the problem domain,
mesh  strategy,  and  thermal  boundary  constraints  employed  in  the
numerical analysis.

Growing global  energy demands have made the optimization of
heat  exchangers  a  critical  priority  in  thermal  system  design.  ANNs
have become potent predictors of the behavior of heat transfer and
system  optimization  to  reduce  system  efficiency,  providing  high
accuracy  with  minimal  computational  cost  through  their  ability  to
learn  from  complex  input  data  sets.  The  trend  is  shown  by  their
recent  research,  where  ANN  modeling  was  used  for  hybrid  nano-
fluids and for the optimization of polymer microchannels by Ain et
al.[29] and  Kamsuwan  et  al.[30],  respectively.  Other  studies  have
analyzed  radiative  Jeffrey  nanofluid  flow  by  Zeeshan  et  al.[31],  and
Islam  et  al.[32] applied  ANN  to  the  response  surface  methodology.
Subsequent  works  include  those  by  Bilal  et  al.[33],  which  provided
numerical  and  experimental  confirmation  of  ANN-based  models,
and  Ali  et  al.[34],  which  provided  subsequent  confirmation  through
numerical  and  experimental  validation.  Additional  advancements
highlight  the  versatility  of  machine  learning  in  thermal  systems.
A  study  on  material  selection  and  optimization  of  hybrid  solar-
thermal plume systems to enhance passive cooling and energy effi-
ciency  was  presented  for  materials  in  2025  by  Yahya  et  al.[35].  A
methodology  for  the  radiative  heat  transport  of  nanofluids  over  a
vertical  cylinder  is  presented  by  Mahanthesh  &  Thriveni[36].  The
simulation-driven  optimization  of  direct  solar  dryers  using  a

combined CFD and ANN-GA approach was demonstrated by Loksu-
papaiboon et al.[37].

Although  significant  progress  has  been  made  in  understanding
nanofluid  heat  transfer  phenomena,  the  influence  of  nanoparticle
properties,  especially  Lorentz  forces  and  clustering  performance
under  complex  wavy  surfaces,  has  received  limited  attention,  as
most  investigations  examine  these  factors  individually.  To  fill  this
gap,  the  current  study  develops  a  robust  Keller-box  numerical
framework  to  analyze  MHD  flow  and  oscillatory  heat  transfer  of  a
carbon nanofluid  over  a  wavy  surface.  By  systematically  evaluating
both  aggregated  and  non-aggregated  nanoparticles  under  flexible
magnetic  fields  and  sinusoidal  boundary  conditions,  this  effort
delivers  practical  insights  relevant  to  industrial  thermal  manage-
ment.  Motivated  by  the  need  to  augment  thermal  performance  in
geometrically complex, magnetically assisted cooling classifications,
the  current  work  has  direct  significance  for  high-flux  cooling  of
compact  heat  exchangers  in  aerospace  thermal  management,
power electronics (e.g., CPUs, IGBTs), and advanced solar collectors.
The prime objectives are: (1) to assess the coupled effects of surface
waves  on  nanoparticle  aggregation,  MHD  forces,  and  oscillatory
heat  transfer;  (2)  to  analyze  the  trade-off  between  hydrodynamic
penalty and thermal  enhancement;  and (3)  to develop a fast,  accu-
rate  machine  learning  model  for  predictive  analysis.  This  work  fills
the existing gap by:

• Developing a viscosity model that incorporates a modified ther-
mal  conductivity  model  for  magnetic  fields  and  sinusoidal  surface
parameters;

•  Leveraging the high-fidelity KBM data to train an accurate ANN
surrogate  model  for  fast  performance  prediction  and  optimization
with an MSE of ~10−7).

 

Fig.  1  Schematic  representation  of  the  physical  model  and  computational  domain  with  a  sinusoidal  surface.  (a)  Heat  transfer  mechanisms  and  loss
components. (b) Boundary conditions and symmetry setup. (c) Overall system configuration.
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 Mathematical modeling of the problem

Yw = αsin(πx/L) α

This  study  investigates  steady,  laminar  free  convection  of  an  incom-
pressible  nanofluid  along  a  vertically  oriented  wavy  surface  with
constant heat flux, under the influence of a transverse magnetic field.
Assuming  a  low  Reynolds  number,  the  induced  magnetic  field  is
negligible. The formulation incorporates Lorentz forces and sinusoidal
boundary  conditions  to  represent  natural  convection  influenced  by
magnetohydrodynamic  (MHD)  effects  and  surface  undulations.  The
wavy  surface  is  defined  by ,  where  and L are  the
amplitude  and  wavelength,  respectively,  as  shown  in Fig.  2.  The
governing equations for continuity, momentum, and energy are given
as[17,38]:

∇.V = 0, (1)

(V.∇)V = − 1
ρn f
∇p+∇2V +

(ρβ)n f

ρn f
g (T −T∞)−

σn f B0

ρn f
V, (2)

V.∇T = αn f∇2T, (3)

y = S (x) : u = v = 0, T = T∞+ (Tw−T∞)
[
1+εT sin

(
πx
L

)]
,

y→∞ : u = 0, p = p∞, T = T∞

 (4)

p∞

σ ρ,

where, p denotes the fluid pressure, with representing the ambient
pressure  and T indicating  the  temperature  field.  The  nanofluid  pro-
perties,  including  electrical  conductivity  and  density,  are  represented
by  and  respectively.  A  uniform  magnetic  field  of  strength B0 is
applied  perpendicular  to  the  wavy  surface,  assuming  a  sufficiently
small  magnetic  Reynolds  number  to  neglect  the  induced  magnetic
field.

ψ (ξ,η) = ξ3/4 f (ξ,η) , ξ =
x
l
, η = ξ−1/4y,

v =
ρn f

µ f
Gr−1/4

(
v−S ξu

)
, S =

S (x)
l
= αsin(πξ) ,

Ω =

√
1+S 2

ξ , θ (ξ,η) =
T −T∞
Tw−T∞

, u =
ρn f

µ f
Gr−1/2u,

v = −∂ψ
∂x
, y =

y−S (x)
l

Gr1/4, M =
Ql2

µ f Gr1/2
(
ρcp

)
f

,

u = −∂ψ
∂y
, P =

l2

ν2ρ f
Gr−1/4 p, Gr =

gβ f (Tw−T∞) l3

ν2
f

, (5)

εT

α = α/L

∇2

V = (u,v)

The wall temperature is prescribed as Tw(x), where Tw is the mean

wall  temperature,  and T∞ is  the  ambient  fluid  temperature,  satisfy-

ing Tw >  T∞ and  modulated  by  the  sinusoidal  parameter .  Here,

 define the dimensionless surface amplitude of temperature

oscillation, and L corresponds to the chrematistic wavelength, while

 represents  the  Laplacian  operator.  A  set  of  appropriate  dimen-

sionless variables is introduced to facilitate the analysis. The velocity

components along the (x, y)  direction is .  Using the above

set  of  transformations,  Eq.  (5),  leads  to  a  dimensionless  system  of

Eqs  (6)  and  (7),  and  based  on  the  boundary  layer  assumptions,

Eq. (8), which can be written as:

Ω2

D1
f ′′′+

3
4

f f ′′− ξ
(

1
2
+
Ωξ

Ω
ξ

) (
f ′
)2− ξ1/2

(
MD4

D2Ω2

)
f ′− D4

D2Ω2 θ =

ξ

[
f ′
∂ f ′

∂ξ
− f ′′

∂ f
∂ξ

]
, (6)

Ω2

D3 Pr
θ′′+

3
4

f θ = ξ
[

f ′
∂θ

∂ξ
− θ′ ∂ f

∂ξ

]
, (7)

 

Fig. 2  Geometrical configuration of nanoparticle clustering near a sinusoidal surface.
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η→ 0: f (ξ,η) = 0, f ′ (ξ,η) = 0, θ (ξ) =
[
1+εT sin(πξ)

]
,

η→∞ : f ′ (ξ,η) = 0, θ (ξ,η) = 0

}
(8)

ξ ξ
′ η

Ω

where,  the  Prandtl  and magnetic  numbers  are  denoted by Pr and M,
respectively.  The  subscript  indicates  differentiation  concerning ,
while the prime symbol ( ) denotes differentiation for . The parameter

 represents the wavy surface effect in the governing equations.
The constants D1, D2, D3, D4, and D are nanofluid-specific parame-

ters  listed  in Table  1.  By  employing  Eq.  (5),  the  local  skin  friction
coefficient  (Cf)  and  the  local  Nusselt  number  (Nu)  in  nondimen-
sional  form  are  expressed  as  follows. Table  2 Assumed  values  of
physical quantities for scenario construction[37].

C f =C f x (Gr/x)1/4
=

Ω

(1−ϕ)2.5 f ′′ (ξ,0) , (9)

Nu = Nux

(
Grx3

)−1/4
= Ω

kn f

k f
θ′ (ξ,0) , (10)

The  current  study  uses  a  model  of  an  artificial  neural  network
(ANN)  to  estimate  velocity  and  temperature  distributions  in  diffe-
rent surface profiles with changing magnetic field strength, which is
explained in Table 2 inspired by Kamsuwan et al.[30]. Two configura-
tions are analyzed:

•  Configuration  A:  Non-aggregated  nanoparticles  with  variations
in magnetic and sinusoidal parameters.

•  Configuration  B:  Aggregated  nanoparticles  considering  the
combined influence of magnetic and sinusoidal parameters.

The study further explores two comparative scenarios:
•  Scenario  (I)  (A,  B):  Cases  1–3  investigate  the  influence  of

magnetic field intensity.

•  Scenario  (II)  (A,  B):  Cases  1–3  analyze  the  effects  of  sinusoidal
surface parameters.

The  dispersions  of  monodisperse  diamond  nanoparticles  (20–
50  nm)  in  water  are  due  to  their  high  thermal  conductivity
(1,000  W/m·K),  chemical  stability,  and  low  aggregation  propensity
under (MHD) conditions. Diamond is also ideal because it has better
heat  transfer  properties  than  metallic  nanoparticles  and  is  thus
suited  to  high-precision  uses,  including  aerospace  cooling  and
power electronics.

The classical Maxwell and Brinkman models are used to compute
the  effective  thermophysical  properties,  such  as  thermal  conduc-
tivity  and  viscosity,  with  simplified  results  summarized  in Tables  1
and 3 presents the effective thermophysical models for aggregated
and  non-aggregated  nanoparticles  by  Mahanthesh  et  al.[36,40].
Aggregation  impacts  key  properties  such  as  viscosity,  density,  and
thermal  conductivity.  Fractal-based  models  account  for  nanoparti-
cle clustering,  capturing irregular geometries and nanolayer effects
that  enhance  heat  transfer.  Other  factors  like  nanolayer  thickness,
cluster  diameter,  and  interfacial  resistance  influence  the  overall
conductivity, especially under nanoscale confinement by Prasher et
al. and Evans et al.[41,42].  Additionally, viscosity decreases with rising
temperature, as reported by Salahuddin et al.[43].

 Numerical methodology

An  implicit  finite  difference  scheme  based  on  the  KBM  by  Keller  and
Cebeci  &  Bradshaw[44,45] is  used  to  solve  the  governing  partial
differential Eqs (6) and (7) with boundary conditions Eq. (8). It provides
second-order  accuracy  and  numerical  stability  in  highly  nonlinear

 

Table 1  Thermophysical properties of aggregated and non-aggregated nanoparticles by Mahanthesh et al.[36]

Property Constant Non-aggregation Aggregated

µViscosity D1 µn f = µ f (1−φ)−2.5

µn f = µ f

(
ϕm−ϕa

ϕm

)ϕm

ρDensity D2
ρn f = ρ f

[
(1−ϕ)+ϕ

(
ρs

ρ f

)]
ρn f = ρ f

[
(1−ϕa)+ϕa

(
ρs

ρ f

)]
Specific heat capacity Cp D3

(ρCP)n f = (ρCP) f

[
(1−ϕ)+

(ρCP)s

(ρCP) f
ϕ

]
(ρCP)n f = (ρCP) f

[
(1−ϕa)+

(ρCP)s

(ρCP) f
ϕa

]
Thermal conductivity k D4

kn f =


(
ks+2k f

)
−2ϕ

(
k f − ks

)(
ks+2k f

)
+ϕ

(
k f − ks

) k f kn f =


(
ks+2k f

)
−2ϕa

(
k f − ks

)(
ks+2k f

)
+ϕa

(
k f − ks

) k f

σElectrical conductivity D5

σn f = σ f +σ f


3
(
σs

σ f
−1

)
ϕ(

σs

σ f
+2

)
−

(
σs

σ f
−1

)
ϕ

 σn f = σ f +σ f


3
(
σs

σ f
−1

)
ϕa(

σs

σ f
+2

)
−

(
σs

σ f
−1

)
ϕa


 

Table 2  Parameter sets for scenario construction

A. Non-aggregated B. Aggregated

Scenario Case
Selected parameters

M εT Description

I (A, B) 1 1 0.5 Weak magnetism over a wavy boundary
2 2 0.5 Moderate field, typical in electronics cooling
3 3 0.5 High-intensity field (advanced heat

exchangers)
II (A, B) 1 4 1 Flat surface (baseline waviness)

2 4 2 Moderate waviness boosts fluid mixing
3 4 3 High undulation resembling turbulence

 

Table 3  Thermophysical properties of the considered nanoparticles by Sundar
et al.[39]

Property
Base fluid Nanoparticle

Pure water Diamond

µ (Pas) 0.000803 −

ρDensity  (kg/m3) 997.1 3,510
Specific heat capacity Cp (J/kg·K) 6.13 × 10−1 497.26
Thermal conductivity k (W/m·K) 4,179 1,000
Average size − 30 nm
Range − 20–50 nm
Purity − > 95%
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η ξ

systems. The computational domain is discretized via uniform steps in
both  the  and  directions  based  on  a  sound  grid  independence
study. The solution procedure involves the following.

•  Transformation  of  higher-order  PDEs  to  first-order  systems
through variable substitution:

∆η = ∆ξ = 0.005
•  Discretization  using  central  differences  with  step  sizes

•  Linearization  of  resulting  algebraic  equations  via  Newton's
method

•  Solution  of  the  linear  system  through  block  tri-diagonal
elimination

f ′ = r, q = f ′′, t = θ′, (11)
By applying Eq. (11), the transformed forms of the governing Eqs

(6) and (7) are derived as follows:

Ω2

D1
q′+

3
4

f q− ξ
(

1
2
+
Ωξ

Ω
ξ

)
(r)2− ξ1/2

(
MD4

D2Ω2

)
r− D4

D2Ω2 θ = ξ

[
r
∂ f ′

∂ξ
−q

∂ f
∂ξ

]
,

(12)

Ω2

D3 Pr
t′+

3
4

f θ = ξ
[
r
∂θ

∂ξ
− t
∂ f
∂ξ

]
, (13)

 Boundary conditions and grid discretization
By  applying  Eq.  (11),  the  transformed  boundary  conditions  corres-
ponding to Eq. (8) are obtained as follows.

f (ξ,0) = 0, r (ξ,0) = 0, θ (ξ,0) =
[
1+εT sin(πξ)

]
,

f ′ (ξ,∞) = 0, θ (ξ,∞) = 0

}
(14)

The computational grid is constructed with

ξ0 = 0, ξn = ξn−1+ kn

η0 = 0, η j = η j−1+h j
(15)

η, j Nη Nξfor  = 1, 2, 3,…, N, where  = 3,000, and  = 400 grid points are
used in the respective directions. Finite-difference approximations and

Newton linearization are applied to the nonlinear system employed as
follows:

()n−0.5
j = 0.5

[
()n

j + ()n−1
j

]
()n

j−0.5 = 0.5
[
()n

j + ()n
j−1

] (16)

f i+1
j = f i

j +δ f i
j

ri+1
j = ri

j+δr
i
j

θi+1
j = θ

i
j+δθ

i
j

(17)

||δ||∞ < 10−6
The  linearized  system  is  solved  using  a  block  tri-diagonal  algo-

rithm with a convergence criterionof .

 Validation and verification
Numerical accuracy is ensured through

• Conservation checks for mass, momentum, and energy
• A grid independence study, as detailed in Table 4.

η ξ

To  guarantee  that  the  numerical  predictions  are  independent  of
spatial resolution, a grid convergence study was performed as Iqbal
et  al.[17].  The computational  domain was discretized using progres-
sively  refined  meshes  ranging  from  100  ×  10  to  1,600  ×  200
elements.  Special  mesh refinement was applied near the wavy wall
(  =  20)  and  (  =  1.0)  to  resolve  steep  velocity  and  temperature
gradients.

The grid sensitivity  was assessed through the skin friction coeffi-
cient Cf and  local  Nusselt  number  (Nu).  Results  obtained  using  an
800 × 100 to 1,600 × 200 mesh differed by less than 0.0001% from
those computed with a 1,600 × 200 mesh, confirming grid indepen-
dence.  Hence,  all  subsequent  simulations  were  conducted  on  the
1,600 × 200 grid. Table 4 presents the normalized Cf and Nu distribu-
tions  for  various  mesh  densities,  reaffirming  the  adequacy  of  the
selected grid resolution.

 Machine learning (ANN) methodology

εT

Artificial  neural  networks  are  feedforward  networks  trained  with  the
Levenberg-Marquardt  backpropagation  algorithm.  This  study  consis-
ted of an input layer (configuration M, ),  one hidden layer with ten
neurons  (tanh  activation),  and  an  output  layer  (Nu, Cf).  The  dataset
from  the  KBM  simulation  is  split  into  70%–15%–15%  for  training,
validation,  and  testing,  respectively.  Premature  stopping  based  on
validation  error  is  used  to  prevent  overfitting.  Detailed  performance
metrics (MSE, epochs) for all scenarios are provided in Table 5.

 

ϕ αTable 4  Grid independence test for  = 0.0, Pr = 0.62,  = 0.1, and M = 0.2

Number of grid points Output

η- direction
(With fixed η = 20)

ξ- direction
(With fixed ξ = 1)

Cf Nu

100 10 −0.85351 0.31688
200 20 −0.85381 0.31699
400 50 −0.85392 0.31680
800 100 −0.85392 0.31680
1,600 200 −0.85382 0.31680

 

Table 5  Outcomes of all scenarios with ANNs and LMT

Scenario Case
MSE data

Performance Gradient Mu Final epoch Time (s)
Training Validation Testing

Non-aggregated I A 1 1.48882e–5 3.23527e–5 1.38677e–5 1.21e–5 1.00e–7 1e10 25 < 1
2 1.48550e–5 3.32879e–5 1.47673e–5 1.20e–5 1.92e–8 1e10 67 < 2
3 1.72843e–5 3.13655e–5 1.32171e–5 1.03e–5 1.98e–7 1e10 99 < 3

II A 1 4.35370e–6 4.65936e–5 4.34532e–5 4.09e–6 9.99e–08 1e–6 93 6
2 4.89685e–6 4.54796e–5 4.58981e–5 3.89e–6 9.92e–08 1e–6 104 4
3 4.52364e–6 4.85467e–5 5.41256e–5 4.89e–6 9.98e–08 1e–6 186 3

Aggregated I B 1 2.18093e−7 8.82690e−7 1.22922e−6 1.54e−7 2.50e−5 1e−10 117 3
2 2.18767e−7 8.47592e−7 1.59921e−6 1.73e−7 2.94e−6 1e−10 184 2
3 2.79081e−7 8.85570e−7 2.58671e−6 1.95e−7 3.35e−5 1e−10 220 3

II B 1 5.05758e−4 3.33414e−3 1.15199e−3 4.43e−4 7.33e−7 1e−5 14 2
2 5.05423e−4 3.53341e−3 1.15171e−3 4.55e−4 7.90e−8 1e−5 25 4
3 5.06846e−4 3.69321e−3 1.16161e−3 4.68e−4 7.94e−8 1e−5 46 3
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 Results and discussion

µ

εT

This  study develops  a  computational  framework  to  simulate  the  flow
of  nanofluids  on  a  wavy  surface  under  Lorentz  forces,  considering
diamond clusters. Figure 3 shows the flow chart of the numerical study
with  machine  learning  patterns  of  ANNs.  Numerical  results  obtained
via the Keller-Box method, integrated with a machine learning (ANN),
demonstrate high predictive accuracy, as summarized in Tables 2 and
5.  Aggregated  cases  (e.g.,  Scenario  I  B)  achieved  superior  precision
(MSE  ≤ 10 –7)  and  low  validation-testing  deviation  but  required  more
training  time  (117–220  epochs)  and  showed  moderate  overfitting
behavior  (MSE  ≈ 10 –5).  The  most  inaccurate  results  were  obtained  in
Scenario II B (MSE ≈ 10–4–10–3),  which was caused by an unduly small
regularization  parameter  (  ≈ 10 –10).  Training  ANN  models  took  less
than 3 s, and they provided predictions in less than 1 s. As Fig. 4 shows,
surface  waviness  has  a  dual  impact:  aggregation  improves  thermal
conductivity and the Nusselt number despite localized disturbances in
the  boundary  layer;  non-aggregated  particles  improve  flow  smooth-
ness  and  pressure  losses  to  the  detriment  of  heat  transfer  with
increasing sinusoidal condition ( ). In general, aggregation improves
the thermal performance at the rise of pumping power, and dispersion
increases the hydrodynamic efficiency, highlighting the need to trade
off  between  surface  geometry  and  the  value  of M.  The  significant

εT

engineering trade-off posed by nanoparticle aggregation is evident. In
high heat flux applications (such as server chip cooling), a 30% increase
in Nu is  highly  desirable,  but  the  25%  increase  associated  with  skin
friction directly translates into higher pumping power. For the system
designer, the decision should be based on the primary constraint, that
is,  if  thermal  efficiency  is  paramount  and  pumping  power  is  readily
available (e.g., in certain industrial exchangers), aggregated nanofluids
are preferred. Conversely, in microfluidic or cooling systems of portable
electronics,  the  lower  drag  of  non-aggregated  nanoparticles,  despite
a  modestly  lower Nu,  may  yield  a  better  overall  performance  of  the
system  coefficient.  This  difference  is  shown  in  the  error  histogram  in
Fig.  5,  which  identifies  the  predictive  behavior  between  aggregated
and non-aggregated nanoparticles. In the case of the Nusselt number,
as shown in Fig. 5a, b, surface waviness ( ) increment together with a
given  particle  type,  surface  waviness  raises  prediction  errors  in  both
cases; nevertheless, the aggregated particles have a stable, symmetric
distribution, which denotes a balanced prediction and the presence of
increased  thermal  pathways  resistant  to  geometric  disruptions.  Non-
aggregated cases exhibit skewed profiles, revealing systematic biases.
Similarly,  the gradient study Fig. 6a, b indicates that gradients remain
constant during surface undulations in an aggregated setup, whereas
in  the  non-aggregated  setups,  heat  transfer  is  interrupted.  This  two-
fold  benefit  of  thermal  homogeneity  and  magnetic  stability  makes
aggregated nanoparticles  better  in  systems that  contain  complicated

 

Fig. 3  Computational workflow for Integrated numerical modeling to validate predictions.
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εTFig. 4  Mean squared error (MSE) analysis for Nusselt number (Nu) vs sinusoidal parameter ( ) for comparing: (a) non-aggregated, and (b) aggregated
nanoparticle configurations.

 

εTFig. 5  Error histogram analysis for Nusselt number (Nu) vs sinusoidal parameter ( ) for comparing: (a) non-aggregated, and (b) aggregated nanoparticle
configurations.

 

εTFig.  6  Gradient  validation  analysis  for  Nusselt  number  (Nu)  vs  sinusoidal  parameter  ( )  for  comparing:  (a)  non-aggregated,  and  (b)  aggregated
nanoparticle configurations.
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geometries and magnetic interactions, although with a slight increase
in viscosity.

Therefore, the idea of controlled aggregation can be proposed as
a  useful  approach  to  increase  the  accuracy,  stability,  and  reliability
of the nanofluid under variable conditions. Correlation analysis indi-
cates  that  different  configurations  of  nanoparticles  and  various
operating  conditions  interact  differently.  In  the  case  of  the  Nusselt
number,  as  shown  in Fig.  7a, b,  the  effect  of  surface  waviness  on
each  configuration  is  smaller,  but  the  correlations  between  the
geometric  variants  are  at  a  higher  level  because  aggregated
nanoparticles  have  networked  structures  that  can  absorb  the
disruptions of surfaces.

εT

Consequently,  aggregated nanoparticles  offer  an improved ther-
mal  uniformity  for  complex  geometries,  whereas  non-aggregated
ones perform better in strong magnetic fields, which yields a useful
design  framework  for  electronic  cooling  systems  and  solar  collec-
tors in which the geometric influence and magnetic influence need
to  be  reconciled.  The  clustering  analysis  also  shows  that  the
arrangement  of  nanoparticles  dominates  the  thermal  performance
in wavy surfaces. In the non-aggregated nanoparticles, as shown in
Fig. 8a, c, both the self-organizing map (SOM) and Hits distributions
are  broadly  distributed,  which implies  that  there  is  no regular  heat
transfer  at  different  values  of .  Aggregated  nanoparticles  in
progression,  as  shown  in Fig.  8b, d,  on  the  other  hand,  present
predictable and consistent heat transfer behavior with well-aligned
SOM  structures  and  compact  Hits  clusters.  This  is  because  of  their
interlinking  channels,  where  the  geometric  anomalies  are  over-
come  through  their  inter-connectivity  and  hence  transforming
chaotic  responses  into  uniform  thermal  responses,  thus  improving
the  performance  in  irregular  flow  wave  surface  and  textured  heat
exchangers.

Figure 9a–d below shows how the strength of the magnetic field
(M)  influences  the  flow  and  thermal  characteristics  of  non-aggre-
gated  or  aggregated  nanoparticle-containing  nanofluids. Fig.  9a–d
indicate  that  the  skin  friction  coefficient  (Cf)  decreases  significantly
with  increasing M and  aggregated  nanofluids  always  have  higher
Cf values  in  comparison  with  single  phases  because  of  increased

viscosity  and  the  higher  viscosity  against  the  Lorentz  force.  Aggre-
gated  nanoparticles  have  significantly  larger  (Cf)  at M =  5.0  than
non-aggregated nanoparticles by a factor of about 58%.

εT

εT

In contrast, Fig. 9c, d indicate that the Nusselt number, presented
in  all  the  cases,  which  is  a  measurement  of  the  efficiency  of  heat
transfer, rises and then subsequently falls, peaking in the range M =
2.0–3.0.  Such  a  peak  is  more  pronounced  with  non-aggregated
nanofluids,  as  they  have  up  to  22%  increase  in Nu because  of  the
improved dispersion and lower isotropic viscosity. However, beyond
M =  3.0, Nu in  aggregated  nanofluids  decreases  as  the  power  of
Lorentz  forces  overrides  the  convective  motion.  Additionally,  the
magnetic  fields  compress  surface  profiles,  enhance  Joule  heating,
and  enhance  chaining  of  particles,  which  are  more  pronounced  in
an aggregated system.  Further,  the  initial  rise  in  Nusselt  number  is
due to Lorentz forces stabilizing the flow and suppressing instabili-
ties,  boosting  convective  heat  transfer.  Beyond  an  optimum  point,
the  magnetic  damping  effect  dominates,  restricting  fluid  flow,  and
Joule heating becomes less effective, leading to a decline in surface
heat  transfer. Figure  10a–d illustrates  the  impact  of  the  sinusoidal
boundary  parameter  ( )  on  skin  friction Cf,  and  Nusselt  number
(Nu),  of  both  types  of  nanoparticles.  The  growing  surface  undula-
tion  within  the  range  of =  0.1–0.3,  encourages  flow  separation
and  recirculation,  which  disrupts  the  thermal  boundary  layer  and
reduces its average thickness near the wall, leading to the observed
decrease  in Nu.  Nonetheless,  aggregated nanofluids  have  a  consis-
tent  drag  that  is  always  approximately  25%  higher,  resulting  in
elevated  viscosity.  Equally,  the  reduction  in Nu is  between  15%–
20%, but aggregate nanofluids retain up to 30% better heat transfer
due to their higher thermal conductivity and efficient energy trans-
fer.  This  represents  a  definite  trade-off:  non-aggregated  nanofluids
are  suitable  for  low-drag  systems,  whereas  aggregated  ones  are
suitable  for  high-efficiency  heat  transfer.  It  is  worth  noting  that
diamond  nanoparticles  are  costly  but  are  not  commonly  utilized;
however,  their  ultra-high  thermal  conductivity  (1,000  W/m·K)  and
stability  in  MHD  conditions  make  them  highly  suitable  for  novel
thermal  applications  such  as  concentrated  solar  power  and  micro-
electronics.  This 15%–30% performance disparity provides valuable

 

εTFig.  7  Correlation  patterns  analysis  for  Nusselt  number  (Nu)  vs  sinusoidal  parameter  ( )  for  comparing:  (a)  non-aggregated,  and  (b)  aggregated
nanoparticle configurations.
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design insights  and builds  on previous findings by Shirvan et  al.[15]

and  Sheremet  et  al.[16].  Although  real-world  complexities  such  as
turbulence and dynamic particle dispersion may affect these results,
the  trends  support  the  thermal  advantages  of  aggregation  in  the
high-performance nanofluid application.

α α

C f

Finally, Fig.  11a–d discusses the effect of the amplitude-to-wave-
length ratio ( ) on Cf and Nu. With the increase of  from 0.1 to 0.2,
both quantities decrease by 6%–12% for  and 8%–15% for Nu due
to surface waves, which disrupt the stability of the flow and weaken
the thermal boundary layer.

Nevertheless,  the  effect  of  the  aggregation  eliminates  these
reductions: aggregated nanofluids have 15%–20% larger Cf because
of  higher  viscosity  and  momentum  diffusion,  and  12%–18%  larger
Nu because of higher thermal conductivity and the development of
conductive networks.

For example,  the Nusselt  number at Nu = 0.2 for the aggregated
nanofluids reaches 0.75 compared to 0.6 for the unaggregated ones,
representing  a  17%  improvement  in  performance,  supporting  the
thermally favorable effect of nanoparticle aggregation. These obser-
vations indicate that non-aggregated nanofluids are better suited to
systems that are drag-sensitive and need minimal surface perturba-
tions,  whereas  aggregated  nanofluids  are  beneficial  in  thermally

sensitive  systems,  even  when  geometric  constraints  are  present.
The results are consistent with and build on prior studies conducted
by  Shirvan  et  al.[15],  and  by  Sheremet  et  al.[16] by  quantitatively
demonstrating the trade-offs between hydrodynamic drag and heat
transfer efficiency.

εT

α

α

ϕ

This  research  can  be  of  great  benefit  to  designing  microfluidic
cooling  systems  and  compact  heat  exchangers,  and  in  such  cases,
where it is necessary to optimize the balance between frictional loss
and  thermal  performance.  To  alleviate  the  heat  transfer  reduction
from  surface  waves,  the  set  of Figs  10 and 11 suggest:  (a)  For  sys-
tems  using  aggregated  nanofluids,  restrained  waviness  (  ≈ 0.2)
can  be  tolerated  as  the  conductive  networks  compensate.  (b)  For
non-aggregated  nanofluids,  minimizing  surface  amplitude  (  <
0.15) is recommended unless the key objective is fluid mixing. (c) An
optimum wavelength ratio ( ) seems to be in the range of 0.1–0.15,
corresponding to mixing enhancement with boundary layer distrac-
tion. Figure  12a−d shows  the  concentration  of  nanoparticles  and
aggregation  vs  the  skin  friction  coefficient Cf and  Nusselt  number
Nu,  which brings into perspective significant trade-offs in nanofluid
applications.  As  the  value  of  increases  from  0%  to  4%,  a  greater
increase  in  skin  friction  of  about  40%  and  25%  is  achieved  with
aggregated  and  non-aggregated  nanoparticles,  respectively.

 

εTFig. 8  Clustering analysis of the Nusselt number (Nu) as a function of the sinusoidal parameter ( ). (a), (b) SOM neighbor weight distance maps, and (c),
(d) hit maps, comparing aggregated and non-aggregated nanoparticle configurations.
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ϕ
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ϕ

because the fluid viscosity and wall shear stress increase with , and
the  aggregate  nanoparticles  grow  more  rapidly  because  of  their
larger hydrodynamic size. A 4% overall concentration of ANPs allows
for  approximately  12%  higher Cf,  which  is  undesirable  for  drag-
sensitive  systems.  Conversely,  aggregated  nanoparticles  to  a  con-
centration  of  50%,  compared  to  non-aggregated  ones  to  30%,  are
much more effective in predicting the value of Nu since the process
of particle clustering also facilitates thermal conductivity due to the
formation  of  effective  thermal  conduction  channels.  Nevertheless,
this enhancement levels off at elevated concentrations as a result of
particle aggregation. Aggregated nanoparticles at 4% phi increased
by  about  15%  in Nu compared  to  non-aggregated  ones,  hence  at
this ,  these nanoparticles  are  applicable in  high heat  flux applica-
tions like electronic cooling. The results are consistent with previous
studies  by  Takabi  et  al.[14],  and  specifically  measure  the  trade-off
between  flow  resistance  and  thermal  efficiency.  Although  an  opti-
mum  of 2%–3% has been suggested to optimize the high yields of
Nu with a manageable increment of Cf,  in low-drag situations, non-
aggregated  nanoparticles  are  favored.  Key  assumptions  include
homogeneous  particle  distribution  and  homogeneous  viscosity.
Overall,  the  findings  highlight  the  importance  of  balancing  the
aggregation  state  and  the  value  of  phi  on  the  performance  of  the

nanofluids  to  specific  thermal  hydraulic  demands.  It  is  significant
to  note  that  the  present  study  is  based  on  a  numerical  model.
Although  the  simulations  using  the  Keller-box  method  are
well-established  and  the  machine  learning  validation  shows  excel-
lent consistency, experimental validation of the predicted trade-offs
under  combined  MHD  and  wavy  surface  conditions  would  streng-
then confidence in these guidelines for industrial application.

 Conclusions

This  study  provides  a  numerical  framework  and  design  guidelines
for  optimizing  thermal  management  systems  using  carbon-based
diamond-water  nanofluids  on a  wavy surface by integrating machine
learning with the Keller-box method.  The results  indicate that  carbon
nano-materials clustering boosts thermal conductivity and leads to an
up  to  30%  increase  in  Nusselt  number,  albeit  a  25%  increase  in  skin
friction.  Non-aggregated  nanoparticles  achieved  a  maximum  impro-
vement of 22% in heat transfer, accompanied by lower drag, at optimal
magnetic  field  intensities  (M =  2.3–3.4).  The  geometry  of  the  surface
had a substantial effect on the flow structure because too much wavi-
ness  caused  oscillatory  flow,  which  reduced Nu by  15%–20%,  and

 

Fig. 9  The Impact of the magnetic parameter M, on (a), (b) skin friction coefficient Cf, and (c), (d) local Nusselt number Nu.
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α

aggregated nanoparticles  alleviated this  issue  by  keeping conductive
paths open. Moderate magnetic fields (M < 3.4) were found to increase
the  movement,  but  stronger  fields  reduced  the  movement.
Furthermore,  the  results  show  that  aggregated  nanofluids  can
accommodate  a  moderate  sinusoidal  boundary  at  (  ≈ 0.2)  due  to
their enhanced conductive pathways, which counteract the reduction
in  heat  transfer  due  to  surface  waves.  Conversely,  non-aggregated
nanofluids advantageously maintain low surface amplitude (  < 0.15)
unless  greater  mixing  is  specifically  required.  Overall,  aggregated
carbon-based  diamond  nanofluids  are  best  suited  for  high  heat-flux
applications,  non-aggregated  nanofluids  for  flow-sensitive  systems,
and  magnetic  field  optimization  between M =  2.0–3.0  provides  the
best  trade-off.  In  addition,  the  most  effective  amplitude  range  is
between  0.1  and  0.15,  which  offers  a  practical  balance  between
improved  mixing  and  limited  boundary  layers.  The  proposed  KBM-
ANN  framework  offers  a  reliable  predictive  tool  for  optimizing
nanofluid-based thermal systems in complex geometries.

 Future work and applications

Future  studies  will  focus  on  experimental  validation  of  the  predicted
thermo-hydraulic  performance  based  on  a  prototype  wavy  surface

εT α

under  controlled  Lorentz  force  conditions,  ensuring  consistency  with
the  numerical  results.  Additionally,  a  compact  multivariate  optimiza-
tion  framework  will  be  developed  to  balance Nu, Cf and  pumping
power  for  targeted  applications  such  as  wavy-channel  heat  sinks.
Further  interpretable  machine-learning  methods,  such  as  symbolic
regression,  will  be pursued to increase both predictive capability  and
physical  insight.  The  extension  of  the  study  will  also  include  hybrid
diamond-metallic  nanofluids  and  turbulent  flow  conditions.  It  is
planned to extend the current research by developing a more detailed
optimization  approach  with  the  ANN  as  a  rapid  surrogate  within
algorithms such as  Genetic  Algorithms to  find Pareto-optimal  combi-
nations of the key parameters (M, ,  in the aggregated state) to use
in the practical engineering contexts.
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