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Abstract

This study presents a comprehensive numerical analysis of the oscillatory heat transfer and of
turbulent-flow dynamics of carbon-based diamond-water nanofluids on a vertical nonlinear
wavy surface under magnetohydrodynamic (MHD) effects. The work highlights the pivotal
role of nanodiamonds, a class of carbon nanomaterial characterized by ultra-high thermal
conductivity (1,000 W/m-K) and exceptional stability, in enhancing thermal performance. The
resulting governing flow model, derived using similarity transformations, is solved by the
Keller-box method (KBM) and validated with exceptional accuracy (MSE =10 ~7) using an
artificial neural network (ANN) for machine learning (ML). Aggregated (ANP) and non-
aggregated nanoparticle (NANP) configurations are systematically studied under the rising
magnetic field strengths (M = 1.0-5.0) and sinusoidal conditions (sr= 0.1-0.3). The results
show that the formation of ANPs leads to a substantial increase in thermal conductivity
due to the formation of conductive clusters, which increase the Nusselt number Nu by 30%,
albeit at the considerable cost of a 25% increase in viscous dissipation and skin friction Cp.
Conversely, non-aggregated nano-diamonds promote smooth velocity profiles that yield
moderate enhancement in Nu (up to 22%) and high hydrodynamic functionality. Surface
undulations generate oscillatory thermal dynamics and turbulent mixing structures, resulting
in a 15%-20% reduction in the overall Nu due to boundary layer discontinuity. However, this
negates the reduction resulting from the increase in overall thermal bridging. An optimal
nanoparticle volume fraction C; of 2%-3% is identified, balancing the thermal enhancement
against the pumping power requirements. These results provide important design insights
for advanced thermal management systems, especially in the cooling of electronics and
high-performance heat exchangers, where magnetic field control and surface geometry
optimization are critical for operational efficiency.

Keywords: Oscillatory heat transfer, Non-linear wavy surface, Nanoparticle clustering (NC), Diamond-water nanofluid, Artificial
neural networks, Sinusoidal boundary conditions.

Highlights

+ Nonlinear wavy surfaces induce oscillatory heat transfer and turbulent-like dynamics in MHD carbon-based nanofluids.
+ Carbon-based diamond aggregated nanofluids enhance thermal conductivity, boosting the Nusselt number by 30% despite 25%

higher viscous dissipation.

+ A machine learning analysis hybrid Keller-Box framework achieves exceptional accuracy (MSE = 1077).

+ Surface undulations reduce heat transfer by 15%-20%, but aggregation mitigates this through conductive networks.
+ Optimal performance occurs at 2%-3% nanoparticle volume fraction and moderate magnetic fields (M = 2.3-3.4).

+ Non-aggregated nanoparticles provide better hydrodynamic performance for flow-sensitive applications.

* Correspondence: Caiyan Qin (gincaiyan@hit.edu.cn)

Full list of author information is available at the end of the article.
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In thermal engineering, fluids serve as the principal medium for energy
transport, spanning applications from planetary climate systems to
microscale cooling in electronic devices. The efficient design of radia-
tors, heat exchangers, and microscale thermal management systems
depends on the capacity of the fluid to store, transfer, and dissipate
thermal energy. Advances in computational fluid dynamics have
enabled modelling of flow dynamics and temperature fields, and heat
transfer efficiency, thus reducing reliance on expensive and time-
consuming experimental systems. The development of nanofluids,
colloidal suspensions of nanoparticles in base fluids, has provided a
new category of high-performance heat transfer media characterized
by high thermal conductivity and low energy consumption by Zhang
et al. and Doost et al'"?. The evolution of nanofluids represents a
remarkable leap in thermal engineering capabilities. Shah et al.”*! show
their efforts in solar thermal engineering systems, utilizing the thermo-
physical properties of nanoparticles, and Timofeeva et al.) present a
comprehensive description of the engineering approach to advanced
heat transfer. Recent work highlights the potential for transformation
in renewable energy sectors, extending to electronics cooling with
nanofluids offered by Sohel et al. and Santhosh et al.>%,

Nanofluids are an important technological advancement in ther-
mal engineering, engineered colloidal suspensions developed by
dispersing nanoparticles in the traditional base fluids, like water,
ethylene glycol, or oil. This idea, initially proposed by Choil”], proved
that the nanoscale additives could significantly improve the physi-
cal characteristics and heat conduction of the fluids regarding their
thermophysical properties. The effectiveness of nanofluids depends
on nanoparticle attributes, such as material type, morphology, size,
and concentration, which collectively influence density, viscosity,
specific heat, and thermal conductivity. The synergy of nanoparti-
cles with the underlying fluid has led to the development of hybrid
nanofluids, in which two or more species of nanoparticles are
combined to enhance thermal functioning in an even larger way.
These novel fluids are characterized by better energy carrier proper-
ties and have been used in a variety of applications, such as automo-
tive cooling, petroleum processing, thermal management of elec-
tronic equipment, and renewable energy systems, particularly in the

absorption solar collectors. Yasmin et al.l®l experimentally verified
the use of hybrid nanofluids in thermal and solar energy storage,
and Heidarshenas et al.l’! studied the stability and thermophysical
behavior of two-dimensional nanomaterials. Thus, understanding
and controlling aggregation is crucial in applications like cooling,
biomedical systems, and heat exchangers. Subsequent research
has compared aggregated and non-aggregated nanoparticles at ele-
vated temperatures in cylindrical geometries by Ramzan et al.'%
and developed models to assess anisotropic conductivity effects
by Wu et al.l'l. Mudhukesh et al.'?! studied radiation effects on
magnetically aggregated nanoparticles and applied multiscale MD-
LBM methods to analyze molten salt nanofluids with aggregated
particles by Yang et al.l'3],

Convective heat transfer on sinusoidal surfaces is well known to
promote convection heat transfer by discontinuously disrupting the
thermal boundary layer, which facilitates fluid mixing as well as
increasing the thermal efficiency in each direction. It is widely recog-
nized that wave or non-uniform surfaces may greatly enhance heat
transfer, as they disrupt the thermal boundary layer and cause fluid
mixing. This principle is the foundation of superior cooling tech-
niques in electronics, biomedical devices, and miniature energy
equipment. Recent interest has focused on the thermomagnetic
effects of such geometries, which has attracted the attention of
researchers!4-161 who discovered different wave structures and
convection patterns. For example, Igbal et al.l'7.18! investigated the
interaction of magnetic and thermal fields, and Akter et al. and
Munir et al.'92% considered how the inclusion of a magnetic field
can influence thermal performance. Practically speaking, the wavy
heat exchangers have been particularly useful in augmenting cir-
culation and heat distribution in fluids, thus decreasing thermal
stresses and enhancing the overall efficiency of energy usel2'-231,

The physical configuration of the wavy-surfaced porous medium
solar collector and computational mesh, and boundary conditions
are depicted in Fig. 124-28] In the physical model illustrated in
Fig. 1a, the saturation of a wavy absorber surface with nanofluid is
represented, and heat transfer is achieved by absorbing solar energy
at the top and surface of the heated material, radiative cooling, and
convectional exchange with the surrounding air. Figure 1b presents
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Fig. 1 Schematic representation of the physical model and computational domain with a sinusoidal surface. (a) Heat transfer mechanisms and loss
components. (b) Boundary conditions and symmetry setup. (c) Overall system configuration.

the wavy absorber plate used in the experimental or modeled setup,
highlighting the structured surface geometry that enhances heat
transfer performance. Figure 1c demonstrates the computational
mesh and boundary conditions, such as an adiabatic bottom wall,
symmetrical side lateral walls, a nanofluid inlet with specified velo-
city and temperature, and an upper surface that has convective and
radiative heat losses. These sub-figures define the problem domain,
mesh strategy, and thermal boundary constraints employed in the
numerical analysis.

Growing global energy demands have made the optimization of
heat exchangers a critical priority in thermal system design. ANNs
have become potent predictors of the behavior of heat transfer and
system optimization to reduce system efficiency, providing high
accuracy with minimal computational cost through their ability to
learn from complex input data sets. The trend is shown by their
recent research, where ANN modeling was used for hybrid nano-
fluids and for the optimization of polymer microchannels by Ain et
all% and Kamsuwan et al.B%, respectively. Other studies have
analyzed radiative Jeffrey nanofluid flow by Zeeshan et al.2", and
Islam et al.32 applied ANN to the response surface methodology.
Subsequent works include those by Bilal et al.33), which provided
numerical and experimental confirmation of ANN-based models,
and Ali et al.B4, which provided subsequent confirmation through
numerical and experimental validation. Additional advancements
highlight the versatility of machine learning in thermal systems.
A study on material selection and optimization of hybrid solar-
thermal plume systems to enhance passive cooling and energy effi-
ciency was presented for materials in 2025 by Yahya et al.35. A
methodology for the radiative heat transport of nanofluids over a
vertical cylinder is presented by Mahanthesh & Thriveni3¢l. The
simulation-driven optimization of direct solar dryers using a

combined CFD and ANN-GA approach was demonstrated by Loksu-
papaiboon et al.B71,

Although significant progress has been made in understanding
nanofluid heat transfer phenomena, the influence of nanoparticle
properties, especially Lorentz forces and clustering performance
under complex wavy surfaces, has received limited attention, as
most investigations examine these factors individually. To fill this
gap, the current study develops a robust Keller-box numerical
framework to analyze MHD flow and oscillatory heat transfer of a
carbon nanofluid over a wavy surface. By systematically evaluating
both aggregated and non-aggregated nanoparticles under flexible
magnetic fields and sinusoidal boundary conditions, this effort
delivers practical insights relevant to industrial thermal manage-
ment. Motivated by the need to augment thermal performance in
geometrically complex, magnetically assisted cooling classifications,
the current work has direct significance for high-flux cooling of
compact heat exchangers in aerospace thermal management,
power electronics (e.g., CPUs, IGBTs), and advanced solar collectors.
The prime objectives are: (1) to assess the coupled effects of surface
waves on nanoparticle aggregation, MHD forces, and oscillatory
heat transfer; (2) to analyze the trade-off between hydrodynamic
penalty and thermal enhancement; and (3) to develop a fast, accu-
rate machine learning model for predictive analysis. This work fills
the existing gap by:

+ Developing a viscosity model that incorporates a modified ther-
mal conductivity model for magnetic fields and sinusoidal surface
parameters;

« Leveraging the high-fidelity KBM data to train an accurate ANN
surrogate model for fast performance prediction and optimization
with an MSE of ~1077).
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Mathematical modeling of the problem

This study investigates steady, laminar free convection of an incom-
pressible nanofluid along a vertically oriented wavy surface with
constant heat flux, under the influence of a transverse magnetic field.
Assuming a low Reynolds number, the induced magnetic field is
negligible. The formulation incorporates Lorentz forces and sinusoidal
boundary conditions to represent natural convection influenced by
magnetohydrodynamic (MHD) effects and surface undulations. The
wavy surface is defined by Y,, = a@sin(7x/L), where @ and L are the
amplitude and wavelength, respectively, as shown in Fig. 2. The

governing equations for continuity, momentum, and energy are given
[17,38].
as :

V.V =0, )]
1 ) B

W = —Lvpavrvy P gy Twboy, ©)
Pnf Pnf Pnf

V.VT = a,/V*T, 3

y=S@: @=v=0, T:Tw+(TW—Tw)[1+aTsin(7%)],

} “

where, p denotes the fluid pressure, with p. representing the ambient
pressure and T indicating the temperature field. The nanofluid pro-
perties, including electrical conductivity and density, are represented
by o and p, respectively. A uniform magnetic field of strength B, is
applied perpendicular to the wavy surface, assuming a sufficiently
small magnetic Reynolds number to neglect the induced magnetic
field.
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The wall temperature is prescribed as T,(x), where T, is the mean
wall temperature, and T,, is the ambient fluid temperature, satisfy-
ing T,, > T., and modulated by the sinusoidal parameter 7. Here,
a = a/L define the dimensionless surface amplitude of temperature
oscillation, and L corresponds to the chrematistic wavelength, while
V2 represents the Laplacian operator. A set of appropriate dimen-
sionless variables is introduced to facilitate the analysis. The velocity
components along the (x, y) direction is V = (u,v). Using the above
set of transformations, Eq. (5), leads to a dimensionless system of
Eqgs (6) and (7), and based on the boundary layer assumptions,
Eq. (8), which can be written as:

2
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Fig. 2 Geometrical configuration of nanoparticle clustering near a sinusoidal surface.
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n—0: fEn)=0, f(n=0, () =[1+ersin(x&)],
n—oo: f1&m=0, 0&m=0

|

where, the Prandtl and magnetic numbers are denoted by Pr and M,
respectively. The subscript ¢ indicates differentiation concerning &,
while the prime symbol (*) denotes differentiation for 5. The parameter
Q represents the wavy surface effect in the governing equations.

The constants D;, D,, D3, D,, and D are nanofluid-specific parame-
ters listed in Table 1. By employing Eq. (5), the local skin friction
coefficient (Cp) and the local Nusselt number (Nu) in nondimen-
sional form are expressed as follows. Table 2 Assumed values of
physical quantities for scenario construction371,

Q
(1-¢)*?

®

Cr=Cr(Gr/m'* = 17(€,0), ©

1/

—3\~1/4 knf
Nu=Nug(Grz) " = AU (10)
f

The current study uses a model of an artificial neural network
(ANN) to estimate velocity and temperature distributions in diffe-
rent surface profiles with changing magnetic field strength, which is
explained in Table 2 inspired by Kamsuwan et al.2%, Two configura-
tions are analyzed:

+ Configuration A: Non-aggregated nanoparticles with variations
in magnetic and sinusoidal parameters.

+ Configuration B: Aggregated nanoparticles considering the
combined influence of magnetic and sinusoidal parameters.

The study further explores two comparative scenarios:

+ Scenario (I) (A, B): Cases 1-3 investigate the influence of
magnetic field intensity.

« Scenario (Il) (A, B): Cases 1-3 analyze the effects of sinusoidal
surface parameters.

The dispersions of monodisperse diamond nanoparticles (20-
50 nm) in water are due to their high thermal conductivity
(1,000 W/m-K), chemical stability, and low aggregation propensity
under (MHD) conditions. Diamond is also ideal because it has better
heat transfer properties than metallic nanoparticles and is thus
suited to high-precision uses, including aerospace cooling and
power electronics.

The classical Maxwell and Brinkman models are used to compute
the effective thermophysical properties, such as thermal conduc-
tivity and viscosity, with simplified results summarized in Tables 1
and 3 presents the effective thermophysical models for aggregated
and non-aggregated nanoparticles by Mahanthesh et al.[3640]
Aggregation impacts key properties such as viscosity, density, and
thermal conductivity. Fractal-based models account for nanoparti-
cle clustering, capturing irregular geometries and nanolayer effects
that enhance heat transfer. Other factors like nanolayer thickness,
cluster diameter, and interfacial resistance influence the overall
conductivity, especially under nanoscale confinement by Prasher et
al. and Evans et al.*#142], Additionally, viscosity decreases with rising
temperature, as reported by Salahuddin et al.*3l,

Numerical methodology

An implicit finite difference scheme based on the KBM by Keller and
Cebeci & Bradshaw!***! is used to solve the governing partial
differential Eqgs (6) and (7) with boundary conditions Eq. (8). It provides
second-order accuracy and numerical stability in highly nonlinear

Table 1 Thermophysical properties of aggregated and non-aggregated nanoparticles by Mahanthesh et al.¢!

Property Constant Non-aggregation Aggregated
Viscosity u D, fng = pr(1 =) >3 (¢m — s )¢m
Hnf =Hfl —
f f B
Densit D
e ’ pn,»=pf[<1—¢>>+¢(&)] pnf=pf[(1—¢a)+¢a(’ﬁ)]
Py Py

Specific heat capacity C, Ds (oCp), (oCp),

C = (pC 1- —= C =(pC 1-¢, > P

©Cp)yy=(p P)f[( ¢)+(pCp)f¢] 0Cp)yy=(p P)f[( ¢ )+(pCp)f¢]

Thermal conductivity k D, (k,\' +2kf) —2¢(kf —k.y) (k.\‘ +2kf)_2¢a (kf _k.\')

kny = - ks kny = - kg

(ks +2k7) + o (kg — k) (ke +2k7) + ¢a (K — k)

Electrical conductivity o Ds

Onf=0f+0yf

Table 2 Parameter sets for scenario construction

A. Non-aggregated B. Aggregated

X Selected parameters
Scenario Case

er Description
I (A, B) 1 1 0.5 Weak magnetism over a wavy boundary
2 2 0.5 Moderate field, typical in electronics cooling
3 3 0.5 High-intensity field (advanced heat
exchangers)
Il (A, B) 1 4 1  Flat surface (baseline waviness)
2 4 2 Moderate waviness boosts fluid mixing
3 4 3 High undulation resembling turbulence

Table 3 Thermophysical properties of the considered nanoparticles by Sundar
etal?

Base fluid Nanoparticle
Property

Pure water Diamond
H (Pas) 0.000803 —
Density p (kg/m?) 997.1 3,510
Specific heat capacity C, (J/kg-K) 6.13%x 107" 497.26
Thermal conductivity k (W/m-K) 4,179 1,000
Average size - 30 nm
Range - 20-50 nm
Purity - >95%
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systems. The computational domain is discretized via uniform steps in
both the n and ¢ directions based on a sound grid independence
study. The solution procedure involves the following.

+ Transformation of higher-order PDEs to first-order systems
through variable substitution:

+ Discretization using central
An = A¢ =0.005

+ Linearization of resulting algebraic equations via Newton's
method

+ Solution of the linear system through block tri-diagonal
elimination

differences with step sizes

f'=rq=f" t=6, an
By applying Eq. (11), the transformed forms of the governing Eqs
(6) and (7) are derived as follows:

2 MD af 9
B+ 310-€(3 +—§02§”@H;) —4—i—qq
2 E)G f

Boundary conditions and grid discretization
By applying Eq. (11), the transformed boundary conditions corres-
ponding to Eq. (8) are obtained as follows.

f(fso):o, r(f,o):(), 0(&,0):[1+87‘Siﬂ(ﬂ'§)]7 (14)
J(§,00)=0, 8(§,00)=0
The computational grid is constructed with
— n _ ¢n—1
‘.5:0 - 0’ f - ‘f + kn (15)

m0=0, nj=nj-1+h;
forn,j=1,2,3,...,N, where N, = 3,000, and N; =400 grid points are

used in the respective directions. Finite-difference approximations and

Table 4 Grid independence test for ¢ = 0.0, Pr=0.62,  =0.1,and M =0.2

Newton linearization are applied to the nonlinear system employed as
follows:

077 = 0507 +0;

(16)
05 =05[07+0%,]
i+l _ i i
UAREALY
=t ort (17)
0 =0, +60,

The linearized system is solved using a block tri-diagonal algo-
rithm with a convergence criterionof |||, < 107°.

Validation and verification
Numerical accuracy is ensured through

« Conservation checks for mass, momentum, and energy

* A grid independence study, as detailed in Table 4.

To guarantee that the numerical predictions are independent of
spatial resolution, a grid convergence study was performed as Igbal
et al.l'”), The computational domain was discretized using progres-
sively refined meshes ranging from 100 x 10 to 1,600 x 200
elements. Special mesh refinement was applied near the wavy wall
(n = 20) and (¢ = 1.0) to resolve steep velocity and temperature
gradients.

The grid sensitivity was assessed through the skin friction coeffi-
cient C; and local Nusselt number (Nu). Results obtained using an
800 x 100 to 1,600 x 200 mesh differed by less than 0.0001% from
those computed with a 1,600 x 200 mesh, confirming grid indepen-
dence. Hence, all subsequent simulations were conducted on the
1,600 x 200 grid. Table 4 presents the normalized C;and Nu distribu-
tions for various mesh densities, reaffirming the adequacy of the
selected grid resolution.

Machine learning (ANN) methodology

Artificial neural networks are feedforward networks trained with the

Number of grid points Output
y-direction ¢ direction c o Levenberg Marquardt backpropfagatlon algorlthm. This study Fon5|s
(With fixed 7 = 20) (With fixed &= ted of an input layer (configuration M, £7), one hidden layer with ten
100 10 —0.85351 031688 neurons (tanh activation), and an output layer (Nu, C). The dataset
200 20 -0.85381 0.31699 from the KBM simulation is split into 70%-15%-15% for training,
400 50 -0.85392 0.31680 validation, and testing, respectively. Premature stopping based on
800 100 -085392 031680 validation error is used to prevent overfitting. Detailed performance
1,600 200 —085382 031680 metrics (MSE, epochs) for all scenarios are provided in Table 5.
Table 5 Outcomes of all scenarios with ANNs and LMT
MSE data
Scenario Case Performance  Gradient Mu Final epoch Time (s)
Training Validation Testing

Non-aggregated 1A 1 1.48882e>  3.23527e  1.38677¢~ 121e™ 1.00e”7 1e'0 25 <1

2 1.48550e>  3.32879e¢™  1.47673e™ 1.20e™ 1.92e8 1e!0 67 <2

3 1.72843e™ 3.13655e™ 1.32171e> 1.03e~® 1.98¢”7 1e1° 99 <3

A 1 4.35370e7° 4.65936e 4.34532e 4.09e°® 9.99¢708 1e™® 93 6

2 4.89685e° 4.54796e° 4.58981e™ 3.89¢76 9.92¢708 1e® 104 4

3 4.52364e° 4.85467e~ 5.41256e~ 4.89¢76 9.98e7%8 1e® 186 3
Aggregated IB 1 2.18093e7  8.82690e”7  1.22922e7® 1.54e77 2.50e™ 1e710 117 3

2 2.18767e”7  8.47592e”7  1.59921e7® 1.73e”7 2.94e7° 1e710 184 2

3 2.79081e~7 8.85570e~7 2.58671e76 1.95¢~7 3.35e7 1e710 220 3

1B 1 5.05758e~4 3.33414e73 1.15199e73 4.43e™4 7.33e77 1e™ 14 2
2 5.05423e™* 3.53347e73 1.15171e73 4.55e~4 7.90e78 1e™ 25 4
3 5.06846e~* 3.69321e73 1.16161e73 4.68e7* 7.94e78 1e7® 46 3

page6of15

Habib etal. | Volume2 | 2026 | 005


https://doi.org/10.48130/scm-0025-0013
https://doi.org/10.48130/scm-0025-0013
https://doi.org/10.48130/scm-0025-0013
https://doi.org/10.48130/scm-0025-0013
https://doi.org/10.48130/scm-0025-0013

https://doi.org/10.48130/scm-0025-0013

Sustainable Carbon
Materials

Results and discussion

This study develops a computational framework to simulate the flow
of nanofluids on a wavy surface under Lorentz forces, considering
diamond clusters. Figure 3 shows the flow chart of the numerical study
with machine learning patterns of ANNs. Numerical results obtained
via the Keller-Box method, integrated with a machine learning (ANN),
demonstrate high predictive accuracy, as summarized in Tables 2 and
5. Aggregated cases (e.g., Scenario | B) achieved superior precision
(MSE £1077) and low validation-testing deviation but required more
training time (117-220 epochs) and showed moderate overfitting
behavior (MSE = 10~). The most inaccurate results were obtained in
Scenario Il B (MSE = 1074-1073), which was caused by an unduly small
regularization parameter (u =109, Training ANN models took less
than 3 s, and they provided predictions in less than 1 s. As Fig. 4 shows,
surface waviness has a dual impact: aggregation improves thermal
conductivity and the Nusselt number despite localized disturbances in
the boundary layer; non-aggregated particles improve flow smooth-
ness and pressure losses to the detriment of heat transfer with
increasing sinusoidal condition (e7). In general, aggregation improves
the thermal performance at the rise of pumping power, and dispersion
increases the hydrodynamic efficiency, highlighting the need to trade
off between surface geometry and the value of M. The significant

engineering trade-off posed by nanoparticle aggregation is evident. In
high heat flux applications (such as server chip cooling), a 30% increase
in Nu is highly desirable, but the 25% increase associated with skin
friction directly translates into higher pumping power. For the system
designer, the decision should be based on the primary constraint, that
is, if thermal efficiency is paramount and pumping power is readily
available (e.g., in certain industrial exchangers), aggregated nanofluids
are preferred. Conversely, in microfluidic or cooling systems of portable
electronics, the lower drag of non-aggregated nanoparticles, despite
a modestly lower Nu, may yield a better overall performance of the
system coefficient. This difference is shown in the error histogram in
Fig. 5, which identifies the predictive behavior between aggregated
and non-aggregated nanoparticles. In the case of the Nusselt number,
as shown in Fig. 53, b, surface waviness (¢7) increment together with a
given particle type, surface waviness raises prediction errors in both
cases; nevertheless, the aggregated particles have a stable, symmetric
distribution, which denotes a balanced prediction and the presence of
increased thermal pathways resistant to geometric disruptions. Non-
aggregated cases exhibit skewed profiles, revealing systematic biases.
Similarly, the gradient study Fig. 6a, b indicates that gradients remain
constant during surface undulations in an aggregated setup, whereas
in the non-aggregated setups, heat transfer is interrupted. This two-
fold benefit of thermal homogeneity and magnetic stability makes
aggregated nanoparticles better in systems that contain complicated

o

e

Hidden Layer with Delays

10

Fig. 3 Computational workflow for Integrated numerical modeling to validate predictions.
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geometries and magnetic interactions, although with a slight increase
in viscosity.

Therefore, the idea of controlled aggregation can be proposed as
a useful approach to increase the accuracy, stability, and reliability
of the nanofluid under variable conditions. Correlation analysis indi-
cates that different configurations of nanoparticles and various
operating conditions interact differently. In the case of the Nusselt
number, as shown in Fig. 7a, b, the effect of surface waviness on
each configuration is smaller, but the correlations between the
geometric variants are at a higher level because aggregated
nanoparticles have networked structures that can absorb the
disruptions of surfaces.

Consequently, aggregated nanoparticles offer an improved ther-
mal uniformity for complex geometries, whereas non-aggregated
ones perform better in strong magnetic fields, which yields a useful
design framework for electronic cooling systems and solar collec-
tors in which the geometric influence and magnetic influence need
to be reconciled. The clustering analysis also shows that the
arrangement of nanoparticles dominates the thermal performance
in wavy surfaces. In the non-aggregated nanoparticles, as shown in
Fig. 8a, ¢, both the self-organizing map (SOM) and Hits distributions
are broadly distributed, which implies that there is no regular heat
transfer at different values of er. Aggregated nanoparticles in
progression, as shown in Fig. 8b, d, on the other hand, present
predictable and consistent heat transfer behavior with well-aligned
SOM structures and compact Hits clusters. This is because of their
interlinking channels, where the geometric anomalies are over-
come through their inter-connectivity and hence transforming
chaotic responses into uniform thermal responses, thus improving
the performance in irregular flow wave surface and textured heat
exchangers.

Figure 9a-d below shows how the strength of the magnetic field
(M) influences the flow and thermal characteristics of non-aggre-
gated or aggregated nanoparticle-containing nanofluids. Fig. 9a-d
indicate that the skin friction coefficient (C;) decreases significantly
with increasing M and aggregated nanofluids always have higher
C; values in comparison with single phases because of increased

viscosity and the higher viscosity against the Lorentz force. Aggre-
gated nanoparticles have significantly larger (C) at M = 5.0 than
non-aggregated nanoparticles by a factor of about 58%.

In contrast, Fig. 9¢, d indicate that the Nusselt number, presented
in all the cases, which is a measurement of the efficiency of heat
transfer, rises and then subsequently falls, peaking in the range M =
2.0-3.0. Such a peak is more pronounced with non-aggregated
nanofluids, as they have up to 22% increase in Nu because of the
improved dispersion and lower isotropic viscosity. However, beyond
M = 3.0, Nu in aggregated nanofluids decreases as the power of
Lorentz forces overrides the convective motion. Additionally, the
magnetic fields compress surface profiles, enhance Joule heating,
and enhance chaining of particles, which are more pronounced in
an aggregated system. Further, the initial rise in Nusselt number is
due to Lorentz forces stabilizing the flow and suppressing instabili-
ties, boosting convective heat transfer. Beyond an optimum point,
the magnetic damping effect dominates, restricting fluid flow, and
Joule heating becomes less effective, leading to a decline in surface
heat transfer. Figure 10a-d illustrates the impact of the sinusoidal
boundary parameter (e7) on skin friction C;, and Nusselt number
(Nu), of both types of nanoparticles. The growing surface undula-
tion within the range of er= 0.1-0.3, encourages flow separation
and recirculation, which disrupts the thermal boundary layer and
reduces its average thickness near the wall, leading to the observed
decrease in Nu. Nonetheless, aggregated nanofluids have a consis-
tent drag that is always approximately 25% higher, resulting in
elevated viscosity. Equally, the reduction in Nu is between 15%-—
20%, but aggregate nanofluids retain up to 30% better heat transfer
due to their higher thermal conductivity and efficient energy trans-
fer. This represents a definite trade-off: non-aggregated nanofluids
are suitable for low-drag systems, whereas aggregated ones are
suitable for high-efficiency heat transfer. It is worth noting that
diamond nanoparticles are costly but are not commonly utilized;
however, their ultra-high thermal conductivity (1,000 W/m-K) and
stability in MHD conditions make them highly suitable for novel
thermal applications such as concentrated solar power and micro-
electronics. This 15%-30% performance disparity provides valuable
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Fig. 7 Correlation patterns analysis for Nusselt number (Nu) vs sinusoidal parameter (e7) for comparing: (a) non-aggregated, and (b) aggregated

nanoparticle configurations.
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design insights and builds on previous findings by Shirvan et al.l'"]
and Sheremet et al.l'dl, Although real-world complexities such as
turbulence and dynamic particle dispersion may affect these results,
the trends support the thermal advantages of aggregation in the
high-performance nanofluid application.

Finally, Fig. 11a-d discusses the effect of the amplitude-to-wave-
length ratio (@) on Crand Nu. With the increase of @ from 0.1 to 0.2,
both quantities decrease by 6%-12% for C; and 8%-15% for Nu due
to surface waves, which disrupt the stability of the flow and weaken
the thermal boundary layer.

Nevertheless, the effect of the aggregation eliminates these
reductions: aggregated nanofluids have 15%-20% larger C; because
of higher viscosity and momentum diffusion, and 12%-18% larger
Nu because of higher thermal conductivity and the development of
conductive networks.

For example, the Nusselt number at Nu = 0.2 for the aggregated
nanofluids reaches 0.75 compared to 0.6 for the unaggregated ones,
representing a 17% improvement in performance, supporting the
thermally favorable effect of nanoparticle aggregation. These obser-
vations indicate that non-aggregated nanofluids are better suited to
systems that are drag-sensitive and need minimal surface perturba-
tions, whereas aggregated nanofluids are beneficial in thermally

sensitive systems, even when geometric constraints are present.
The results are consistent with and build on prior studies conducted
by Shirvan et all'*], and by Sheremet et al.l'®l by quantitatively
demonstrating the trade-offs between hydrodynamic drag and heat
transfer efficiency.

This research can be of great benefit to designing microfluidic
cooling systems and compact heat exchangers, and in such cases,
where it is necessary to optimize the balance between frictional loss
and thermal performance. To alleviate the heat transfer reduction
from surface waves, the set of Figs 10 and 11 suggest: (a) For sys-
tems using aggregated nanofluids, restrained waviness (er =0.2)
can be tolerated as the conductive networks compensate. (b) For
non-aggregated nanofluids, minimizing surface amplitude (@ <
0.15) is recommended unless the key objective is fluid mixing. (c) An
optimum wavelength ratio (@) seems to be in the range of 0.1-0.15,
corresponding to mixing enhancement with boundary layer distrac-
tion. Figure 12a—d shows the concentration of nanoparticles and
aggregation vs the skin friction coefficient C; and Nusselt number
Nu, which brings into perspective significant trade-offs in nanofluid
applications. As the value of ¢ increases from 0% to 4%, a greater
increase in skin friction of about 40% and 25% is achieved with
aggregated and non-aggregated nanoparticles, respectively.
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Fig. 9 The Impact of the magnetic parameter M, on (a), (b) skin friction coefficient C, and (c), (d) local Nusselt number Nu.

because the fluid viscosity and wall shear stress increase with ¢, and
the aggregate nanoparticles grow more rapidly because of their
larger hydrodynamic size. A 4% overall concentration of ANPs allows
for approximately 12% higher C; which is undesirable for drag-
sensitive systems. Conversely, aggregated nanoparticles to a con-
centration of 50%, compared to non-aggregated ones to 30%, are
much more effective in predicting the value of Nu since the process
of particle clustering also facilitates thermal conductivity due to the
formation of effective thermal conduction channels. Nevertheless,
this enhancement levels off at elevated concentrations as a result of
particle aggregation. Aggregated nanoparticles at 4% phi increased
by about 15% in Nu compared to non-aggregated ones, hence at
this ¢, these nanoparticles are applicable in high heat flux applica-
tions like electronic cooling. The results are consistent with previous
studies by Takabi et al.l'¥, and specifically measure the trade-off
between flow resistance and thermal efficiency. Although an opti-
mum ¢ of 2%-3% has been suggested to optimize the high yields of
Nu with a manageable increment of g in low-drag situations, non-
aggregated nanoparticles are favored. Key assumptions include
homogeneous particle distribution and homogeneous viscosity.
Overall, the findings highlight the importance of balancing the
aggregation state and the value of phi on the performance of the

nanofluids to specific thermal hydraulic demands. It is significant
to note that the present study is based on a numerical model.
Although the simulations using the Keller-box method are
well-established and the machine learning validation shows excel-
lent consistency, experimental validation of the predicted trade-offs
under combined MHD and wavy surface conditions would streng-
then confidence in these guidelines for industrial application.

Conclusions

This study provides a numerical framework and design guidelines
for optimizing thermal management systems using carbon-based
diamond-water nanofluids on a wavy surface by integrating machine
learning with the Keller-box method. The results indicate that carbon
nano-materials clustering boosts thermal conductivity and leads to an
up to 30% increase in Nusselt number, albeit a 25% increase in skin
friction. Non-aggregated nanoparticles achieved a maximum impro-
vement of 22% in heat transfer, accompanied by lower drag, at optimal
magnetic field intensities (M = 2.3-3.4). The geometry of the surface
had a substantial effect on the flow structure because too much wavi-
ness caused oscillatory flow, which reduced Nu by 15%-20%, and
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Fig. 10 The Impact of sinusoidal boundary parameter 7, on (a), (b) skin friction coefficient C, and (c), (d) local Nusselt number Nu.

aggregated nanoparticles alleviated this issue by keeping conductive
paths open. Moderate magnetic fields (M < 3.4) were found to increase
the movement, but stronger fields reduced the movement.
Furthermore, the results show that aggregated nanofluids can
accommodate a moderate sinusoidal boundary at (¢r =0.2) due to
their enhanced conductive pathways, which counteract the reduction
in heat transfer due to surface waves. Conversely, non-aggregated
nanofluids advantageously maintain low surface amplitude (@ < 0.15)
unless greater mixing is specifically required. Overall, aggregated
carbon-based diamond nanofluids are best suited for high heat-flux
applications, non-aggregated nanofluids for flow-sensitive systems,
and magnetic field optimization between M = 2.0-3.0 provides the
best trade-off. In addition, the most effective amplitude range is
between 0.1 and 0.15, which offers a practical balance between
improved mixing and limited boundary layers. The proposed KBM-
ANN framework offers a reliable predictive tool for optimizing
nanofluid-based thermal systems in complex geometries.

Future work and applications

Future studies will focus on experimental validation of the predicted
thermo-hydraulic performance based on a prototype wavy surface

under controlled Lorentz force conditions, ensuring consistency with
the numerical results. Additionally, a compact multivariate optimiza-
tion framework will be developed to balance Nu, C; and pumping
power for targeted applications such as wavy-channel heat sinks.
Further interpretable machine-learning methods, such as symbolic
regression, will be pursued to increase both predictive capability and
physical insight. The extension of the study will also include hybrid
diamond-metallic nanofluids and turbulent flow conditions. It is
planned to extend the current research by developing a more detailed
optimization approach with the ANN as a rapid surrogate within
algorithms such as Genetic Algorithms to find Pareto-optimal combi-
nations of the key parameters (M, 7, a in the aggregated state) to use
in the practical engineering contexts.
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