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Abstract
Successful pollen formation is essential for plant reproduction. During anther development, microspore mother cells undergo meiosis to form

tetrads. After being released from the tetrad, microspores develop into mature pollen. The tapetum is the innermost layer of anther somatic cells

and forms a locule to provide nutrition, enzymes and pollen wall materials for microspore development. Based on the male sterile phenotype,

many genes important for tapetum and pollen development have been cloned. In this review, we highlight the genetic pathway of DYT1-TDF1-

AMS-MS188-MS1  which  acts  in  tapetal  development  in Arabidopsis.  We  also  compared  this  genetic  pathway  in  different  species  such  as

Arabidopsis,  rice  and  maize.  Based  on  this  pathway,  we  review  recent  findings  and  insights  into  the  contribution  of  the  tapetum  to  pollen

formation at the molecular level. 1) Tapetum provides nutrition for microspore development. 2) Tapetum provides enzymes to dissolve pectin

and callose to release microspores from tetrads. 3) Tapetum synthesizes precursors for pollen wall formation via different molecular pathways. 4)

Tapetum provides precursors for pollen coat formation. 5) Tapetum provides small RNAs to regulate genic methylation in the germline cells.
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 Introduction

The  anther  is  an  essential  organ  for  plant  reproduction,  in
which  mature  pollen  grains  are  produced  and  released.  The
wall  of  anthers  consist  of  four  layers,  epidermis,  endothecium,
middle layer and tapetum cell,  that surround the reproductive
cells[1] (Fig.  1).  The  epidermis  plays  a  protective  role  in  anther
development,  and  the  endothecium  is  responsible  for  anther
dehiscence to release functional pollen[2]. The tapetum is a cell
layer  that  directly  contacts  microspores,  and  undergoes
programmed  cell  death  (PCD).  It  is  generally  accepted  that
tapetal cells act as 'nutrition cells' for microspore development.
The middle layer exists in seed plants, but its function remains
unclear.  It  has  been  proposed  that  the  middle  cell  layer  may
partially  play  a  similar  role  as  the  tapetum  to  facilitate  micro-
spore development via PCD[3].  In flowering plants,  dysfunction
of  the  tapetum  is  often  associated  with  male  sterility,
highlighting  the  significance  of  the  tapetal  layer  in  male
gametogenesis[4].  In  agriculture,  male-sterile  plants  are  the
necessary materials for hybrid seed production to improve the
yields of crops[5].

In  the  anther  locule,  the  diploid  microsporocyte  undergoes
meiosis  to  form microspores  that  are  enclosed inside  a  tetrad.
After  being  released  from  tetrad,  microspores  undergo  two
rounds of mitosis to develop into mature pollen[6]. During these
processes, the structure and composition of the cell wall under-
go  drastic  changes  (Fig.  2).  The  primary  cell  wall  surrounding
the  microsporocyte  is  mainly  composed  of  cellulose,
hemicellulose  and  pectin[7,8].  Before  meiosis,  the  cellulose  of
the primary cell wall is degraded, leaving the wall to be mainly
composed  of  pectin.  This  structure  is  also  termed  the  pectin
wall[9,10].  At  the  initiation  of  meiosis,  a  layer  of  callose
composed of β-1, 3-glucan (callose wall), is formed between the

cell membrane and the pectin wall. When meiosis is completed,
tetrads  are  formed  with  four  haploid  microspores  enclosed
inside the thick callose wall and the outer pectin wall[10]. At the
late  tetrad  stage,  a  layer  of  matrix,  named  primexine,  that  is
composed  of  polysaccharides,  cellulose  and  proteins  is  depo-
sited  between  the  plasma  membrane  and  the  callose  wall  of
individual  microspores[11].  It  is  widely  recognized  that
primexine  acts  as  a  scaffold  for  the  formation  of  pollen  exine.
The main component of the exine layer is sporopollenin, which
is  an  extremely  biochemically  resistant  material[12].  After  the
microspore  plasma  membrane  undulates,  sporopollenin  is
assembled at the peak of the undulation to form probacula and
is  finally  shaped  into  the  complete  pollen  exine[13].  The  exine
can be further divided into the outer sexine and nexine. When
the  exine  preliminarily  forms,  an  intine  is  formed  beneath  the
nexine[14,15].  Finally,  the  sculptured  cavities  of  the  sexine  are
then filled with tryphine, and this structure is named the pollen
coat.  Mature  pollen  grains  with  multiple-layered  pollen  walls
are  ready  to  be  released  from  anthers[12].  Several  excellent
reviews  that  focus  on  the  structure  of  the  pollen  wall,  the
biosynthesis  of  sporopollenin  and  the  formation  of  the  pollen
wall have been published[16−21].

Tapetal  cells  exist  in  the  microsporangium  or  anther  of  all
land plants[22].  Ectopic expression of RNase in the tapetum cell
leads to male sterility, implying a close connection between the
tapetum and pollen formation[23]. As the 'nutrition cells' for the
growth  of  microspores,  tapetal  cells  have  evolved  several
properties with high transcriptional and translational activity. In
Arabidopsis, the tapetum layer turns into polar secretory cells at
the  late  development  stage.  Each  tapetal  cell  contains  two
nuclei,  and its cytoplasm is condensed and packed with abun-
dant  plastids,  mitochondria  and  vesicular  transport  systems.
During  anther  development,  the  tapetum  cell  undergoes  PCD
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to  provide  enzymes  and  materials  for  pollen  formation[24−28].
The contribution of the tapetum to pollen development based
on  cytological  observation  has  been  extensively  studied.  In
recent  years,  many  genes  essential  for  anther  development
have  been  discovered  in  male-sterile  plants.  Many  of  these
genes are expressed in the tapetum and are essential for pollen
formation.  Here,  we  combine  the  cytological  and  molecular
results  of  recent  progresses  in  this  field  to  propose  a  cascade
contribution of  the tapetum to pollen development,  including
nutrition  supply,  microspore  release,  exine  deposition,  pollen
coat formation, and we also introduce the tapetum function for
providing small RNAs to regulate genic methylation in germline
cells.

 The main genetic pathway in the tapetum

In Arabidopsis, five transcription factors specifically expressed
in  the  tapetum  have  been  proven  to  be  critical  for  pollen
formation.  DYSFUNCTIONAL TAPETUM 1 (DYT1)  and ABORTED
MICROSPORE  (AMS)  are  basic  helix-loop-helix  (bHLH)  family
members[29−31]. DEFECTIVE  IN  TAPETAL  DEVELOPMENT  AND
FUNCTION  1 (TDF1)  and MS188/MYB103/MYB80 encode  R2R3
MYB transcription factors[32].  MALE STERILITY 1 (MS1) is a plant
homeodomain  (PHD)-finger  transcription  factor[33,34].  In
mutants  of dyt1, tdf1 and ams,  their  hypertrophic  tapetal  cells
occupy the locule and crush the microspores[32].  In ms188 and
ms1, the tapetal cells are defective, as they have a turgid shape.

 
Fig. 1    The structure of anthers and pollen. In Arabidopsis,  each anther has four anther locules (pollen sacs), and the anther wall around the
anther  locule  is  composed  of  the  epidermis,  endothecium,  middle  layer  and  tapetum.  Mature  pollen  grains  are  produced  inside  the  anther
locule. A pollen grain has two sperm cells in the cytoplasm of the large vegetative cell and is covered with a complex pollen wall outside of the
plasma  membrane.  Ep,  epidermis;  En,  endothecium;  ML,  middle  layer;  T,  tapetum;  Vn,  vegetative  nucleus;  Sc,  sperm  cell;  PM,  plasma
membrane.

 
Fig. 2    The cell wall undergoes a tremendous change during pollen development. The orange quadrilaterals represent the tapetal cells, and
the  corresponding  microspores  or  pollen  at  specific  anther  stages  are  shown  under  the  tapetum  cells.  At  stage  7,  the  four  microspores  are
enclosed  inside  the  callose  wall  and  the  outer  pectin  wall.  At  late  stage  7,  the  sexine  and  nexine  precursors  start  to  deposit  outside  the
membrane.  During  stages  9  to  10,  the  tapetum  begins  to  degenerate  and  becomes  spongy.  The  intine  layer  appears  between  the  plasma
membrane  and  nexine  layer  at  stage  10.  At  stage  11,  the  tapetum  evidently  degenerates,  and  the  pollen  coat  precursor  start  to  fill  the
sculptured cavities of the sexine. At stages 12 and 13, the tapetum cell degenerates completely, and all layers of the pollen wall are established.
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However,  anther  locules  can  form,  suggesting  their  essential
roles  in  late  tapetal  development[33−37].  Based  on  gene  expre-
ssion,  cytological  and  genetic  analyses,  a  genetic  pathway
(DYT1-TDF1-AMS- MS188-MS1) was identified[38]. In addition to
these  five  key  transcription  factors,  several  other  transcription
factors  are  redundantly  involved  in  the  development  of  the
tapetum. Two GAMYB-like genes, MYB33 and MYB65,  influence
the  development  of  the  tapetum  and  pollen.  In  the myb33
myb65 mutant,  the tapetal  cells  become hypertrophic,  leading
to  pollen  abortion.  This  phenotype  is  similar  to  that  of tdf1.
Under  low  temperature  or  high  light,  the  fertility  of myb33
myb65 increases,  implying  that  MYB33  and  MYB65  play  an
additional  role  in  modulating  fertility  at  decreased
temperatures[39]. Additionally, three bHLH genes in Arabidopsis,
bHLH010, bHLH089 and bHLH091 are  redundantly  required  for
early  tapetum  development.  The bhlh010 and bhlh089 single
mutants  display  normal  fertility.  However,  the  tapetal  cells  of
the bhlh triple  mutant  were  abnormally  expanded  and
irregularly organized, which is similar to the phenotype in dyt1.
These  three  bHLH  proteins  interact  with  DYT1  and  may
influence  the  function  of  DYT1.  In  the bhlh triple  mutant,  the
expression  of MYB103, MS1 and MYB99 was  reduced.  This
implies that these three bHLH transcription factors redundantly
regulated tapetum development by interacting with DYT1 and
affecting the expression of many target genes, such as MYB103,
MS1 and MYB99[40,41].

In the past 10 years, molecular and biochemical evidence has
further  shown  that  the  five  genes  of  the  genetic  pathway  are
sequentially  activated  during  tapetum  development.  DYT1
directly  binds  to  the  promoter  of  TDF1  to  activate  its  trans-
cription. The expression of TDF1 is driven by the DYT1 promoter
and  could  rescue  the  transcription  of AMS, MS188, MS1 and  a
series of pollen wall-related genes in the dyt1 background. This
indicates that DYT1 regulates pollen wall formation via TDF1[42].
TDF1 directly regulates the expression of AMS[43] which further
regulates the expression of MYB80/MS188[44,45].  Finally, MYB80/
MS188 regulates the expression of MS1[46] (Fig. 3). Based on this
genetic  pathway,  several  feed-forward  loops  are  formed  to
facilitate  the  expression  of  downstream  targets  (Fig.  3).  TDF1
interacts  with  AMS  to  activate  its  regulation  of  downstream
gene expression[43,44]. In addition, AMS and MS188 form a com-
plex  and  facilitate  the  expression  of  sporopollenin  synthesis
genes[47,48].  These  transcription  factors,  together  with  feed-
forward loops, form a regulatory network that rapidly regulates
tapetum  development  and  pollen  formation.  The  detailed
downstream factors of these transcription factors are reviewed
and summarized in the following sections (Table 1).

In rice, the homologies of the five transcription factors in the
pathway  have  been  identified[20,49−53] (Fig.  3).  UNDEVELOPED
TAPETUM 1 (UDT1), a bHLH transcription factor that shows high
homology with DYT1, plays a major role in the differentiation of
tapetal  cells[49]. OsTDF1 is  an  orthologue  of  Arabidopsis TDF1,
and  the ostdf1 knockout  mutant  displays  vacuolated  and
hypertrophic tapetal cells, which is similar to the tdf1 mutant[53].
The TAPETUM  DEGENERATION  RETARDATION (TDR)  gene,  an
orthologue of AMS, has been proven to be a critical component
in regulating tapetum development in rice and is important for
aliphatic metabolism in pollen[50,54]. PERSISTANT TAPETAL CELL1
(PTC1)/OsMS1 is  the orthologue of Arabidopsis MS1[50,52,54].  The
function of OsMS188/OsMYB80 has been reported recently. The
osms188/osmyb80 mutant  exhibited  aberrant  degradation  of

tapetal  cells,  lack  of  sexine  and microspore  degeneration[55,56].
Similar  to Arabidopsis,  the OsUDT1-OsTDF1-OsTDR-OsMS188-
PTC1 genetic  pathway  is  present  in  the  rice  tapetum[53,56].  In
maize,  the  homologies  of AtDYT1/OsUDT1, AtTDF1/OsTDF1,
AtAMS/OsTDR, AtMS188/OsMS188,  and AtMS1/OsPTC1 are
ZmMs32, ZmMs9, ZmbHLH51, ZmMYB84,  and ZmMs7,
respectively[57−62].  Mutations  in  all  five  genes  all  lead  to  male
sterility[57−62].  A  relatively  conserved genetic  pathway was  also
proposed  in  maize[57].  It  seems  that  the  genetic  pathway
composed  of  the  five  key  transcription  factors  in Arabidopsis,
rice,  and  maize  is  conserved,  which  is  consistent  with  the
conservative  cytological  processes  in  monocotyledons  and
dicotyledons[20].

In  addition  to  the  five  conserved  transcription  factors,  two
other  bHLH  family  members  have  been  identified  to  be
essential for tapetal function in rice. ETERNAL TAPETUM 1 (EAT1)/
DTD1/bHLH141  positively  promotes  PCD  in  tapetal  cells  by
directly  regulating  the  transcription  of  two  aspartic  protease-
encoding  genes, OsAP25 and OsAP37[63,64].  TDR  INTERACTING
PROTEIN2  (TIP2)/bHLH142  regulated  the  expression  of  both
TDR and EAT1.  TIP2/bHLH42  interacts  with  TDR  to  form  a
heterodimer  and  regulates  the  expression  of EAT1[65,66].  EAT1
and  TIP2  share  sequence  similarity  with  bHLH010,  bHLH089
and bHLH091. However, unlike the redundant roles of the three
bHLH genes for tapetum development in Arabidopsis, both the
tip2 and eat1 single mutants display delayed tapetal  PCD. This
finding  indicates  that  they  are  both  essential  regulators  of
tapetal PCD in rice. In addition to delayed PCD phenotypes, the
three  inner  layers  of  the  anther  wall  of tip2 but  not eat1
remained undifferentiated from stage 7 to stage 8, implying the
specific function of TIP2 in the differentiation of these cells[63,65].

 
Fig.  3    Gene  regulatory  network  in  the  tapetum  of Arabidopsis
and rice. Lines terminating in arrows represent positive regulation,
lines  with  semicircle  ends indicate  interaction.  Orange  ovals  and
grey  ovals  mark  the  key  transcription  factors  in Arabidopsis and
rice  respectively.  In Arabidopsis,  DYT1-TDF1-AMS  are  responsible
for early tapetum development. AMS regulates nexine and sexine
formation via TEK and MS188, respectively. MS1 is responsible for
pollen  coat  formation.  Abbreviations:  TEK,  transposable  element
silencing via AT-hook;  BES1,  BRI1  EMS  SUPPRESSOR  1;  UDT1,
UNDEVELOPED  TAPETUM  1;  TDR,  TAPETUM  DEGENERATION
RETARDATION; PTC1, PERSISTANT TAPETAL CELL 1.
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Plant hormones are important for plant growth. Auxin (IAA),
gibberellin  (GA)  and brassinosteroid  (BR)  hormonal  signals  are
integrated  into  the  tapetum  genetic  program  for  anther  and
pollen  development  (Fig.  3).  Auxin  is  involved  in  anther
morphogenesis  and  pollen  formation[67−69].  ARF17,  an  auxin
response  factor,  is  expressed  in  microsporocytes,  microspores,

tapetum,  and  endothecium[70−72].  In  the arf17 mutant,  the
tapetum development is defective, and the pollen wall pattern
cannot  be  formed[70,71].  However,  the  detailed  relationship
between  ARF17  and  the  DYT1-TDF1-AMS-MS188-MS1  genetic
pathway is unknown. In addition to its function in the tapetum,
ARF17  is  also  involved  in  callose  wall  degradation  and  anther

Table 1.    The summary of the key genes and their functions during anther or pollen development.

Name ID Protein Function Reference

DYT1 AT4G21330 bHLH transcription factor Early tapetum development [30]
TDF1 AT3G28470 MYB transcription factor Early tapetum development [32]
AMS AT2G16910 bHLH transcription factor Early tapetum development [29,31]
MS188/MYB80/
MYB103

AT5G56110 MYB transcription factor Tapetum PCD, microspore release, exine formation [24,35,47]

MS1 AT5G22260 PHD-finger transcription factor Tapetum PCD, exine and pollen coat formation [33,34]
OsUDT1 Os07g0549600 bHLH transcription factor DYT1 ortholog; early tapetum development [49]
OsTDF1 Os03g18480 MYB transcription factor TDF1 ortholog; early tapetum development [53]
OsTDR Os02g0120500 bHLH transcription factor AMS ortholog; tapetum development [50,54]
OsMS188/OsMYB80 Os04g39470 MYB transcription factor MS188 ortholog; tapetum PCD, exine formation [51,55,56]
OsPTC1/OsMS1 Os09g0449000 PHD-finger transcriptional factor MS1 ortholog; tapetum PCD, exine formation [50,52,54]
ZmMs32 GRMZM2G163233 bHLH transcription factor DYT1 ortholog; tapetum development [21,57,62]
ZmMs9 GRMZM2G308034 MYB transcription factor TDF1 ortholog; tapetum development [57,61]
ZmbHLH51 Zm00001d053895 bHLH transcription factor AMS ortholog; tapetum development [57]
ZmMYB84 Zm00001d025664 MYB transcription factor MS188 ortholog; tapetum development [57]
ZmMs7 GRMZM5G890224 PHD-finger transcriptional factor MS1 ortholog; tapetum development [57−59]
MYB33 AT5G06100 GAMYB transcription factor Tapetum and pollen development [39]
MYB65 AT3G11440 GAMYB transcription factor Tapetum and pollen development [39]
bHLH010 AT2G31220 bHLH transcription factor bHLH010, bHLH089 and bHLH091 redundantly

required for tapetum and pollen development
[40]

bHLH089 AT1G06170 bHLH transcription factor [40]
bHLH091 AT2G31210 bHLH transcription factor [40]
EAT1/DTD1/bHLH141 Os04g0599300 bHLH transcription factor Tapetum PCD [63,64]
TIP2/bHLH142 Os01g0293100 bHLH transcription factor Tapetum PCD [65,66]
MGT5 AT4G28580 Transmembrane magnesium

transporter
Transport Mg from tapetum to anther locule [91]

QRT3 AT4G20050 polygalacturonase Pectin dissolution [10,98]
A6 AT4G14080 β-1,3-glucanase Callose dissolution [107,110]
UPEX1/KNS4/RES3 AT1G33430 Arabinogalactan β-(1,3)-

galactosyltransferase
Influence the secretion of A6 from tapetum [110]

ACOS5 AT1G62940 Fatty acyl-CoA synthetase Sporopollenin synthesis [112]
CYP703A2 At1G01280 Hemethiolate monooxygenase

(P450)
Sporopollenin synthesis [47,113]

CYP704B1 AT1G69500 Hemethiolate monooxygenase
(P450)

Sporopollenin synthesis [114]

PKSA AT1G02050 Acyltransferase Sporopollenin synthesis [116,118]
PKSB AT4G34850 Acyltransferase Sporopollenin synthesis [116,118]
TKPR1 AT4G35420 Tetraketide alpha-pyrone reductase Sporopollenin synthesis [117]
TKPR2 AT1G68540 Tetraketide alpha-pyrone reductase Sporopollenin synthesis [117]
MS2 AT3G11980 Fatty acid reductase Sporopollenin synthesis [115,116]
ABCG26 AT3G13220 ATP binding cassette transporter Sporopollenin transportation [120,121]
ABCG15 AT3G21090 ATP binding cassette transporter Sporopollenin transportation [123]
TEK AT2G42940 AT-hook nuclear localized (AHL)

protein
Nexine formation [44,103]

OsOSC12 Os08g0223900 Bicyclic triterpene poaceatapetol
synthase

Pollen coat formation [139]

GRP17 AT5G07530 Glycine-rich protein Pollen coat protein [140,141]
EXL4 AT1G75910 Lipase protein Pollen coat protein [140,142]
EXL6 AT1G75930 Lipase protein Pollen coat protein [140]
CER1 AT1G02205 Decarbonylases Pollen coat synthesis: very long chain alkane

synthesis
[152,153]

CER3/FLP1/WAX2/YRE AT5G57800 Decarbonylases Pollen coat synthesis: very long chain alkane
synthesis

[149−151,153]

KCS7 AT1G71160 3-ketoacyl-CoA synthase Pollen coat synthesis: fatty acid elongation [146]
KCS15 AT3G52160 3-ketoacyl-CoA synthase Pollen coat synthesis: fatty acid elongation [146]
KCS21 AT5G49070 3-ketoacyl-CoA synthase Pollen coat synthesis: fatty acid elongation [146]
Dcl5 Zm00001eb104810 Endoribonuclease Generation of 24-nt phasiRNAs in the tapetum in

maize
[181]

CLSY3 AT1G05490 Helicase Generation of 24-nt siRNAs in the anther in
Arabidopsis

[182]
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dehiscence[70,72].  BR mutants exhibited abnormal tapetal deve-
lopment,  reduced  pollen  production,  and  an  irregular  pollen
exine  pattern[73,74].  BRI1  EMS  SUPPRESSOR  1  (BES1)  is  a  key
factor in the BR signalling pathway. BES1 acts upstream of DYT1
to  regulate  tapetum  development  in Arabidopsis[73,74].  In
addition  to  the  tapetal  defects  discovered  in  the  GAMYB  mu-
tant myb33  myb65 in Arabidopsis,  common  defects  in  tapetal
PCD  and  exine  formation  were  found  in  GA-deficient,  GA-
insensitive  and gamyb mutants  in  rice[75].  Moreover,  the
application of exogenous GA rescues the male infertility caused
by  low  temperature  stress[76].  These  results  suggest  that  GA
participates  in  the  regulation  of  anther/pollen  development.
DELLA/SLR1  is  the  central  negative  regulator  of  GA  signalling.
Similar to myb33 myb65, the hypertrophy phenotype in tapetal
cells  is  present  in  a  DELLA  loss-of-function  double  mutant
lacking both the DELLA paralogues REPRESSOR OF ga1-3 (RGA)
and GA INSENSITIVE (GAI)[77]. Recently, it was reported that rice
DELLA/SLR1,  is  required  for  tapetum  development[78].  In  the
slr1 mutant in rice, the programmed cell death of the tapetum
is premature, and pollen is aborted without exine formation. As
an important transcription factor, OsMS188 interacts with SLR1
to  cooperatively  activate  the  expression  of  sporopollenin
biosynthesis genes, such as CYP703A3, DEFECTIVE POLLEN WALL
(DPW), and POLYKETIDE SYNTHASE (PKS1) and the sporopollenin
transport-related  gene ABCG15.  The  activation  of  these  genes
may  be  responsible  for  subsequent  pollen  wall  formation[78].
Thus,  a  GA–DELLA–OsMS188  module  has  been  revealed  to
control the development of the male reproductive system.

 Tapetum provides nutrition for microspore
development

After being released from tetrads, microspores are immersed
in  the  locule  nutritive  fluid  whose  composition  fluctuates
during  anther  development.  The  locular  fluid  contains  sugars,
proteins,  amino  acids  and  sporopollenin  precursors  during
early  microspore  growth,  and  precursors  for  pollen  coat
formation  during  the  late  pollen  maturation  stage[79,80].  These
substances  in  the  locular  fluid  are  secreted  from  the  tapetum
cells  to  meet  the  requirement  of  normal  growth  microspore
development[80].  Extracellular invertase is responsible for sugar
hydrolysis[81].  In  tobacco, Nin88 encodes  an  extracellular
invertase isoenzyme, and it is specifically expressed in tapetum
and  pollens.  Antisense  repression  of Nin88 or  over-expression
of an invertase inhibitor under the Nin88 promoter all results in
pollen  abortion  in  tobacco[82,83]. AtcwINV2 is  a  homologous
gene  of Nin88 in Arabidopsis and  it  is  specifically  expressed  in
anther. Antisense repression of AtcwINV2 leads to reduced seed
setting  and  pollen  germination[84].  All  these  results  indicated
that  sugars  and  their  hydrolytic  products  in  the  anther
especially in the tapetum are critical for pollen formation[82,83,85].
In  rice, CARBON  STARVED  ANTHER (CSA)  encodes  a  tapetum-
expressed  R2R3  MYB  transcription  factor.  It  regulates  the
transcription of MST8, a  monosaccharide transporter,  for sugar
partitioning  during  anther  development[86].  Magnesium  is  a
divalent  metal  cation  essential  for  living  cells.  In  plants,  the
magnesium transporter (MGT) is responsible for the absorption
and transport of Mg. In Arabidopsis, the magnesium transporter
family  contains  10  members[87,88].  MGT4,  MGT5  and  MGT9  are
expressed  in  pollen  and  have  the  ability  to  absorb  Mg  from
anther  locule  fluid  for  pollen  formation[89,90].  Additionally,

MGT5 and MGT6 are also expressed in the tapetum[91,92]. In the
mgt5, mgt5+/- and mgt6+/- mutants,  pollen mitosis is abnormal,
and  pollen  intine  is  defective.  These  effects  lead  to  pollen
abortion.  AMS  directly  regulates  the  expression  of MGT5 to
export  Mg  from  the  tapetum  to  the  locular  fluid[91] (Fig.  4).  In
conclusion, MGT5 plays  dual  roles  as  both  a  sporophytic  and
gametophytic  gene.  It  not  only  exports  Mg  from  the  tapetum
but also absorbs Mg into pollen. In the meantime, other MGTs
may play essential or redundant roles in the tapetum or pollen
to provide sufficient amounts of Mg for pollen growth.

 The tapetum is responsible for callose
degradation

In  addition  to  its  nutritive  function,  the  tapetum  is  also
responsible for tetrad wall degeneration. The wall of the tetrad
is  composed of  a  thin pectin wall  and a  thick callose wall.  The
timely degradation of the tetrad wall ensures the release of the
individual microspores into the anther locule for further matu-
ration. The pectin wall consists of homogalacturonan, rhamno-
galacturonan I and rhamnogalacturonan II.  The degradation of
pectin  requires  pectin  methylesterases  (PMEs)  and  polygalac-
turonases  (PGs)[93−95].  Failure  to  degrade  the  pectin  layer
following  meiosis  results  in  the  formation  of  tetrahedral  clus-
ters of  four pollen grains.  This phenotype was observed in the
quartet (qrt) mutants in Arabidopsis[10,96,97]. Currently, three QRT
genes have been cloned. QRT1 encodes a PME, while QRT2 and
QRT3 encode  PGs[98−100].  Pectin  is  first  demethylated  by QRT1
and then degraded by QRT2 and QRT3 to  loosen and degrade
the pectin wall. All these QRTs are expressed in tapetal cells and
are  secreted  into  the  locule.  MS188  directly  regulates QRT3
expression[10](Fig.  4).  Premature  expression  of QRT3 in  the
tapetum  using  the  A9  promoter  leads  to  irregular  exine
formation, indicating that the timely degradation of the pectin
wall is important for pollen wall formation[10].

The  callose  wall  is  mainly  composed  of β-1,3-glucan.  A
decrease or loss of callose synthesis leads to a defective pollen
wall  pattern,  indicating  that  the  callose  layer  is  essential  for
sporopollenin  deposition[35,70,101−103]. β-1,3-Glucanase  (callase)
is  secreted  from  the  tapetum  cells  for  the  degradation  of  the
callose  layer[104−106].  In Arabidopsis and Brassica  napus,  anther-
specific protein 6 (A6) is considered to be a β-1,3-glucanase that
digests  the  callose  wall[107].  However,  in  the a6 mutant,  the
callose  wall  is  degraded  normally,  implying  that  other  genes
encoding β-1,3-glucanases  are  also  involved  in  callose  wall
degradation. A6 is  specifically  expressed  in  the  tapetum  and
has  a  sharp  peak  in  activity  immediately  before  microspore
release. In the ms188 mutant, the expression of A6 is decreased
and the degradation of callose is delayed[35]. In the ams mutant,
both the accumulation and dissolution of callose are abnormal,
and  the  expression  of A6 is  also  decreased.  AMS  and  MS188
may  determine  callose  degradation  by  regulating  the
expression  of A6[35,108] (Fig.  4). UNEVEN PATTERN  OF  EXINE1
(UPEX1)/KAONASHI (KNS4)/ RESTORER  OF  REVERSIBLE  MALE
STERILE  3  (RES3)  encodes  a  glycosyltransferase  that  is  directly
regulated  by  AMS  in  the  tapetum[109−111].  In  the res3 mutant,
the  secretion  of  A6  and  other β-1,3-glucanases  from  the
tapetum to the locule was delayed,  which further  affected the
release  of  microspores  from  tetrads.  It  seems  that  AMS  and
MS188 regulate A6 and its family members during callose wall
degradation.  The  authors  also  suggested  that  the  delayed
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callose  degradation  in  the res3 mutant  may  be  a  general  me-
chanism  by  which  fertility  can  be  restored  in  multiple  sterility
lines[111], implying its application prospects in hybrid breeding.

 Tapetum provides materials for sexine formation

The  outer  pollen  wall  exine  is  composed  of  an  outer
sculptured  sexine  layer  and  an  inner  nexine  layer.  The  major
component  of  sexine  was  considered  to  be  sporopollenin,
which  is  composed  of  biopolymers  of  long-chain  fatty  acids
and  aromatics.  The  sophisticated  pathway  for  the  synthesis  of
long-chain  fatty  acids  for  sporopollenin  monomer  formation
has been well  documented based on genetic  phenotypes and
biochemical  activity[17,21].  A  series  of  enzymes,  such  as ACYL-
CoA  SYNTHETASE5 (ACOS5), CYP703A2, CYP704B1,  POLYKETIDE
SYNTHASE  A (PKSA),  PKSB,  TETRAKETIDE α-PYRONE  REDUCTASE1
(TKPR1),  TKPR2 and MALE  STERILE  2 (MS2),  are  involved  in  this
biochemical  pathway  in  the  tapetum[17,21].  ACOS5  may  play  a
role  as  a  fatty  acyl-CoA[112].  CYP703A2  and  CYP704B1  are  two
members  of  the  cytochrome  P450  family  that  are  involved  in
catalysing  the  hydroxylation  of  different  long  chain  fatty
acids[113,114]. The hydroxylated products are either converted to
fatty  alcohols  by  MS2  or  catalysed  by  PKSA  and  PKSB  into
triketide and tetraketide α-pyrones[115,116]. Then, the tetraketide
α-pyrones  are  believed  to  be  reduced  by  TKPR1  and  TKPR2  to
form  polyhydroxylated  tetraketide[117−119].  Most  of  these
enzymes are specifically/abundantly expressed in the tapetum
cell[47,48,108] (Fig.  4).  In ms188,  sexine  is  completely  absent[35].
MS188  directly  regulates  the  transcription  of  these  genes  for
the  establishment  of  sexine[48].  AMS  binds  to  the  promoter  of
several  important  pollen  wall  formation  genes  such  as
CYP703A2, CYP704B1, PKSB and TKPR1[108].  Furthermore,  AMS
interacts  with  MS188.  AMS  and  MS188  may  form  a  feed-
forward  loop  to  facilitate  the  expression  of  sporopollenin
synthesis  genes  for  sexine  formation[47,48].  The  synthesized
sporopollenin  precursors  are  predicted  to  be  transported  by

members  of  the  ATP-binding  cassette  transporter  superfamily
such  as  ABCG26  or  ABCG15,  in Arabidopsis and  rice,
respectively[120−123] (Fig.  4).  The  expression  of  these ABCGs is
also  regulated  by  tapetal  transcription  factors[56,108].  Overall,
both  the  biosynthesis  and  export  of  sporopollenin  precursors
are primarily regulated by MS188 in the tapetal cells.

In  addition  to  long-chain  fatty  acids,  phenolics  were  also
reported  to  be  an  essential  component  of  sporopollenin.  As
early  as  1987,  researchers  detected  several  phenolic  materials
in  sporopollenin[124].  However,  conflicting  results  were
obtained via different  methods[125].  In  2019,  Li  and  colleagues
showed that the sporopollenin of pine is primarily composed of
aliphatic-polyketide-derived polyvinyl  alcohol  units  and 7-O-p-
coumaroylated  C16  aliphatic  units[126].  However,  in  2020,
Mikhael  et  al.,  carried  out  high-resolution  X-ray  photoelectron
spectroscopy (HR-XPS) and showed the absence of aromaticity
in  the  sporopollenin  exine  of Lycopodium  clavatum[127].  Using
genetic,  biochemical  and  cell  biology  techniques,  Xue  et  al.,
identified  that  in  vascular  plants,  phenylpropanoid  derivatives
are another component of sporopollenin.  The genes encoding
enzymes  of  the  phenylpropanoid  synthesis  pathway  are
expressed  in  the  tapetum  in Arabidopsis.  NMR  studies  have
shown  that  the  sporopollenin  composition  of  ferns  and  lyco-
phytes is different from that of seed plants[128]. It is known that
sporopollenin  can  absorb  UV  to  protect  pollen[129].  Xue  et  al.
demonstrated  that  phenylpropanoid  derivatives  are  essential
for UV protection in pollen[128]. In conclusion, genetic evidence
shows that both aliphatic units and phenypropanoid phenolics
are essential components of the sporopollenin wall.

 The tapetum is responsible for nexine formation

Nexine  is  a  layer  between  the  sexine  and  an  inner  intine.
Usually, this cell wall is observed under transmission electronic
microscopy  in  seed  plants.  As  it  is  difficult  to  isolate  this  layer

 
Fig. 4    Molecular pathways in tapetum contribution to pollen formation. The orange irregular shape represents the tapetal cell. The pathway
regulates  a  large  number  of  genes  for  pollen  growth,  which  are  shown  below  the  tapetal  cell,  to  provide  Mg  for  pollen  growth,  to  secrete
enzymes  for  degradation  of  the  pectin  wall,  for  the  callose  wall  to  release  microspores,  to  provide  precursors  of  nexine  and  sexine,  and  to
provide materials for pollen coat formation.
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for  composition  analysis,  the  current  understanding  of  this
layer  is  quite  obscure.  In Arabidopsis, TRANSPOSABLE  ELEMENT
SILENCING  VIA  AT-hook (TEK)  encodes  an  AT-hook  nuclear
localized  (AHL)  protein.  The  nexine  layer  is  absent  in  the tek
mutant,  but  sexine  is  normally  formed,  indicating  that  the
formation of  sexine is  independent  of  the  nexine layer[44] (Fig.
4).  In  the  tapetum,  AMS  directly  regulates  MS188/MYB80  for
sexine  formation. TEK is  strongly  expressed  in  the  tapetum  at
stage  7  and  is  also  a  direct  target  of  AMS[44].  Therefore,  AMS
directly regulates MS188 for sexine formation and regulates TEK
for  nexine  formation  (Fig.  4).  TEK  was  found  to  regulate  the
transcription  of  genes  encoding  arabinogalactan  proteins
(AGPs)[130].  However,  the  presence  of  AGPs  in  nexine  has  not
yet been verified.

 The tapetum provides precursors for pollen coat
formation

The  pollen  coat,  which  covers  the  surface  or  fills  the  sculp-
tured  cavities  of  the  sexine,  is  responsible  for  pollen  stigma
interactions  and  pollen  hydration  and  protects  pollen  from
harsh environmental stress[13,131−136]. Recently, two pollen coat-
specific  staining  dyes:  pollen-coat-stain  (PCS)  52  and  PCS  184,
were  identified.  These  two pollen  coat  dyes  together  with  the
exine  dye  basic  fuchsin  (BF)  clearly  stain  the  pollen  coat  and
pollen wall in vivo in angiosperms[137].

The pollen coat is  composed of proteins,  lipids,  isoprenoids,
and glycoconjugates[133,138]. In rice, OsOxidosqualene cyclases 12
(OsOSC12)  encodes  a  bicyclic  triterpene  synthase  and  plays  a
role  in  the  triterpene  pathway.  It  is  expressed  in  tapetal  cells.
Deficiency  of OsOSC12 leads  to  a  defective  pollen  coat  and
shows a humidity-sensitive genic male sterility (HGMS) pheno-
type. These findings imply that the tapetum-synthesized triter-
pene  is  an  essential  component  in  the  pollen  coat  to  prevent
dehydration  of  pollen  grains[139].  In Arabidopsis,  pollen  coat
proteome  analysis  revealed  that  pollen  coat  proteins  consist
mainly  of  two  families:  lipid-binding  oleosin  or  glycing-rich
protein (GRP) and extracellular lipase (EXL)[140]. GRP17 accounts
for  the  largest  proportion  of  pollen  coat  proteins  in
Arabidopsis[140].  Mutations  of GRP17 impair  pollen  hydration
and  the  competitive  ability,  indicating  the  importance  of  this
protein in hydration[141].  EXL4 and EXL6 were also identified in
the  pollen  coat[140].  In  the exl4 mutant,  pollen  hydration  is
slower. As a lipase, it was suggested that EXL4 may change the
lipid  composition  to  improve  the  ability  of  pollen  to  absorb
water from the stigma[142]. Lipids are another main component
of  the  pollen  coat,  and  are  important  for  pollen  stigma
communication  and  pollen  hydration.  Most  of  the  detected
lipids in the pollen coat are derivatives of very-long-chain fatty
acids  (VLCFAs)[143].  A  number  of  mutants  that  disturb  long
chain  lipid  synthesis,  such  as eceriferum  1 (cer1), cer3/faceless
pollen-1 (flp-1)/wax2/yre, 3-ketoacy-CoA  synthase  7 (kcs7) kcs15
kcs21, and long-chain acyl-CoA synthetases 1 (lacs1) lacs4, show
pollen  coat  defects[143−146].  3-Ketoacy-CoA  synthase  (KCS)
catalyses  fatty  acid  elongation[147,148].  CER1  and  CER3/FLP1/
WAX2/YRE  may  encode  fatty  acid  hydroxylases  and  are
involved  in  the  synthesis  of  very  long  chain  alkanes[149−153].  It
was reported that several pollen coat proteins or lipid synthesis-
related enzymes are expressed predominantly or specifically in
tapetal cells[46,108,146,154,155], indicating the important role of the
tapetum in  providing materials  for  pollen  coat  formation. ms1

was the  earliest  reported male  sterile  mutant  in Arabidopsis in
1968[156].  MS1  is  a  plant  homeodomain  (PHD)-finger  transcrip-
tion  factor[33].  The  pollen  wall  was  defective  in  the ms1
mutant[157].  Recently, it has been found that MS1 regulates the
transcription  of  several  pollen  coat  protein  genes,  such  as
GRP14,  GRP17,  GRP18,  GRP19,  EXL4, and EXL6, and  pollen  coat
lipid  synthesis  genes,  such  as KCS7, KCS15,  and KCS21[46,108,146]

(Fig 4).  Interestingly,  it  was observed that GRP19, EXL6, KCS20,
KCS21  proteins  are  secreted  into  the  anther  locule  before
tapetal degradation[46,146]. These results suggest that instead of
being  passively  released  into  the  anther  locule  after  tapetal
degeneration,  pollen  coat  precursors  may  be  prepared  in
advance under the regulation of MS1. MS1 is directly regulated
by MS188. This indicates that following sporopollenin synthesis
and  sexine  formation  mediated  by  MS188,  MS1  subsequently
regulates  the  expression  of  pollen  coat  protein  genes.  This
reveals that a regulatory cascade establishes the multiple layers
of the pollen wall (Fig. 4).

The  tapetum  provides  the  major  components  of  the  pollen
coat.  A  recent  investigation  showed  that  endothecium  and
developing  microspores  also  contribute  to  pollen  coat
formation[136,158−162].  CER2  and  CER2-like  proteins  are  putative
BAHD  acyltransferases  required  for  VLCFA  elongation. CER2,
CER2L2,  and KCS6 were  found  to  be  expressed  in  the
endothecium[162],  and cer2  cer2l2 and cer6/kcs6 mutants  all
show  severe  pollen  coat  defects[163−167].  It  seems  that  the
tapetum  first  secretes  pollen  coat  proteins  and  lipids  into  the
anther locule, and after the degeneration of tapetum cells,  the
endothecium  continues  to  provide  pollen  coat  lipids  on  the
surface of mature pollen for pollen hydration. Pollen-produced
cysteine-rich  pollen  coat  proteins  are  also  involved  in  pollen
stigma  interactions[159,160,168−170].  POLLEN  COAT  PROTEIN  B-
class  peptides  (PCP-Bs)  are  cysteine-rich  pollen  coat
proteins[169].  It  has  been  recently  established  that  pollen-born
PCP-Bs bind to the ANJEA–FERONIA (ANJ–FER) receptor kinase
complex,  to  decrease  stigmatic  ROS  and  facilitate  pollen
hydration[170].  This  data indicates  that  the kinds of  PCPs in  the
pollen coat are produced and provided from different tissues.

 Tapetum provides small RNAs to regulate genic
methylation in the germline cells

Small  RNAs  are  important  for  plant  development  because
they  regulate  the  transcript  levels  of  target  genes  and  the
expression of transposons. It has been previously reported that
pollen-specific  miRNAs exist  in Arabidopsis and rice[171,172].  The
transcripts  of Arabidopsis MYB33/MYB65 and  rice OsGAMYB/
OsGAMYB-like  genes  are  targeted  by  miR159[39,173].  Over-
expression of miR159 in Arabidopsis and rice all leads to anther
defects  and  results  in  male  sterility,  indicating  the  miR159-
GAMYBs module should be strictly controlled for normal anther
development[173,174].  ARF17  is  a  target  gene  of  miR160.
5mARF17  transgenic  plants,  which  avoid  miR160-directed
ARF17  cleavage,  also  showed  tapetal  defects.  These  results
indicate  that  the  fine-tuned expression of  ARF17 by  miR160 is
critical  for  tapetum  development[71].  More  and  more
microRNAome  in  developing  anthers  of  wild-type  plants  and
male  sterile  lines  in  different  species  were  obtained[175−178].  In
the  future,  it  will  be  informative  to  investigate  the  detailed
function  of  these  potential  miRNAs  during  anther  and  pollen
development.
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Genome  reprogramming  in  pollen  is  guided  by  small  RNAs.
In Arabidopsis pollen, transposable elements (TEs) are activated
only  in  vegetative  cells.  However,  TE  siRNAs  accumulate  in
pollen  and  sperm  cells,  suggesting  that  siRNA  from  the  vege-
tative  nucleus  can  target  silencing  in  sperm  cells[179].  In  maize
anthers,  there  are  two  classes  of  phased  siRNAs:  21-nt  phased
siRNAs (phasiRNAs) and 24-nt phasiRNAs. The 24-nt phasiRNAs
and  their  precursors  accumulate  preferentially  in  the  tapetum
and meiocytes. However, tapetal cells but not meiotic cells may
be  essentially  required  for  24-nt  phasiRNA  biogenesis  in
maize[180]. Dicer-like 5 (Dcl5) is required for the generation of 24-
nt  phasiRNAs  in  maize.  In  the dcl5 mutant,  few  or  no  24-nt
phasiRNAs were detected, tapetal cells were defective, and the
mutant  displayed  temperature-sensitive  male  fertility.  These
results  indicate  that  DcL5  and  24-nt  phasiRNAs  are  important
for  normal  tapetum  development  and  male  fertility  and  the
tapetum  is  the  source  for  24-nt  phasiRNA  biogenesis[181].
Recently, it has been found in Arabidopsis that 24-nt siRNAs are
synthesized  by  tapetal  cells  through  the  activity  of  the
chromatin  remodeler  CLASSY  3  (CLSY3).  The  tapetum-derived
siRNA  then  governs  germline  methylation  and  silences
germline  transposons[182].  More  recently,  a  similar  mechanism
was discovered in maize. Zhou et al. reported that the 24-PHAS
precursor and Dcl5 primarily accumulated in the tapetum. After
synthesis, the 24-nt phasiRNAs may move from the tapetum to
meiocytes and other somatic cell layers in the anther wall[183]. In
conclusion,  in  both Arabidopsis and  maize,  the  24-nt  siRNA
required  for  normal  anther  and  germline  development  is
mainly  provided  from  the  tapetum  and  moves  into  the
germline cells.

 Summary and perspective

In  recent  decades,  the  key  transcription  factors  regulating
tapetum development have been identified. In Arabidopsis, the
DYT1-TDF1-AMS-MS188-MS1 genetic pathway is not only impor-
tant  for  tapetum  development,  but  also  provides  a  cascade
regulation for  pollen  formation.  First,  DYT1 and TDF1 regulate
early  tapetum development when microsporocytes are under-
going  meiosis  in  the  anther  locule.  At  the  tetrad  stage,  AMS
initiates  nexine deposition by activating the expression of  TEK
and  promoting  sexine  formation via MS188  to  regulate  the
synthesis of sporopollenin precursors. Moreover, both AMS and
MS188  play  critical  roles  in  the  degradation  of  the  pectin  wall
and  callose  to  gradually  release  the  microspores  from  the
tetrad.  Last,  the downstream member in  the genetic  pathway,
MS1,  regulates  the  transcription  of  a  series  of  pollen  coat
related  genes  for  pollen  coat  formation.  Thus,  mature  pollen
grains  with  multiple-layered  pollen  walls  are  ready  to  be
released from anthers. The genetic pathway consists of five key
transcriptional  factors  that  are  relatively  conserved  in Arabi-
dopsis,  rice  and  maize.  However,  functions  of  other  homolo-
gous  between Arabidopsis and  rice  are  different,  such  as
Arabidopsis bHLH010/bHLH089/bHLH091  and  rice  bHLH141/
bHLH142.  Therefore,  it  is  necessary  to  explore  more  factors
involved  in  the  regulation  of  tapetum  among  species,  analyze
their  relationship  associated  with  those  key  transcription
factors,  and  establish  a  more  comprehensive  gene  regulatory
network for tapetum development.

In  future,  the  coordination  between  tapetum  development
and pollen formation remains to be explored. The composition

of  sporopollenin  still  remains  to  be  deciphered.  Although
nexine  is  a  conserved  pollen  cell  wall  layer  in  seed  plants,  its
chemical  composition  is  still  unclear.  During  anther  develop-
ment,  the cell  wall  of the pollen mother cell  is  transited to the
pollen  wall.  This  transition  is  critical  for  pollen  formation  and
plant fertility. The enzymes that dissolve the primary cell wall of
microsporocytes  and  the  tetrad  callose  layer  still  need  to  be
identified. Further study of these issues in different species will
help us to further characterize the relationship between anther
sporophytic  tissues  and  microspores/pollens  as  well  as  the
evolution of the complicated pollen wall. In future, it is also very
important  to  study  whether  mutations  of  the  key  genes
essential for tapetum development can also lead to sterile phe-
notypes in different kinds of crops, and explore the application
prospects of these male sterile materials in hybrid breeding.
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