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Invariant natural killer T (iNKT) cells are a unique lymphoid lineage

bridging  innate  and  adaptive  immunity,  co-expressing  surface
markers  characteristic  of  both  natural  killer  (NK)  cells  and  T  cells.
They  are  defined  by  a  highly  restricted  semi-invariant  T-cell  recep-
tor  that  confers  stereospecific  recognition  of  glycolipid  antigens
presented  by  the  non-polymorphic  MHC  class  I-like  molecule
CD1d[1].  Although  largely  confined  to  a  minor  fraction  (approxi-
mately  0.01%–0.1%)  of  human peripheral  blood lymphocytes,  iNKT
cells  function  as  exceptionally  potent  immunomodulators,  capable
of orchestrating diverse immune responses.

A  growing  body  of  evidence  has  delineated  the  essential  contri-
bution  of  iNKT  cells  to  host  defense  against  bacterial  and  viral
pathogens.  Notably,  these  cells  exhibit  a  functional  duality  in  cell-
mediated  immunity:  they  can  promote  anti-tumor  responses  while
also  suppressing  deleterious  immunity  in  contexts  such  as  auto-
immune disease and allograft rejection[2]. This pivotal role is further
underscored by the fact that iNKT deficiency increases susceptibility
to both infections and cancer.

iNKT cells can effectively distinguish normal from abnormal cells,
a critical capability that renders them attractive candidates for adop-
tive  cellular  therapy[3].  Their  capacity  to  precisely  identify  and  lyse
target cells allows them to potently augment protective immunity[4].
Owing  to  the  non-polymorphic  nature  of  CD1d  and  the  minimal
graft-versus-host  disease  (GVHD)  risk,  iNKT  cells  are  emerging  as
promising  candidates  for  allogeneic,  off-the-shelf  therapies,  with
significant  applications  emerging  in  Coronavirus  disease  2019
(COVID-19)  and  malignancies,  as  highlighted  by  recent  work  in
Nature Communications[5] and Oncogene[6,7].

 COVID-19
In  the  context  of  viral  infections,  a  rapid  decline  in  iNKT  cell

numbers,  as  observed  in  patients  following  HIV  seroconversion[8].
Even  with  this  reduction,  these  cells  still  play  a  regulatory  role  in
airway hyper-reactivity.  The CD1d-binding ligand,  alpha-galactosyl-
ceramide (α-GalCer), that activates iNKT cells also enhances immune
responses in models of H1N1 influenza, viral encephalomyocarditis,
and  HIV  vaccination[9].  Glycolipid-mediated  iNKT  stimulation  and
iNKT-based cell  therapies are already under clinical  investigation in
oncology. The demonstrated antiviral efficacy of α-GalCer in clinical
settings for chronic viral infections supports the therapeutic poten-
tial  of  adoptive iNKT cell  therapy for  acute viral  conditions,  such as
SARS-CoV-2 infection[10].

An open-label phase 1/2 trial[5] demonstrated that agenT-797, an
allogeneic off-the-shelf iNKT cell therapy, can resuscitate exhausted
T  cells  and  activate  innate  and  adaptive  immunity  in  patients  with
SARS-CoV-2-induced  acute  respiratory  distress  syndrome  (ARDS).
The  treatment  was  well-tolerated  without  dose-limiting  toxicities
(n =  21),  and  resulted  in  persistent  iNKT  cells  that  elicited  merely
transient  donor-specific  antibody  responses,  accompanied  by  an

anti-inflammatory systemic cytokine profile. Notably, clinical signals
included  potential  survival  benefits  and  a  reduction  in  secondary
infections[5].  This  study  supports  the  safety  and  scalability  of  iNKT
cell  therapy,  highlighting  its  broad  therapeutic  potential  for
infections[11].

The  mechanism  of  agenT-797  involves  the  reverse  of  T-cell
exhaustion  via  soluble  factors  and  activation  of  DCs,  coupled  with
the  preferential  elimination  of  tumor- and  infection-promoting  M2
macrophages  toward  the  M1  phenotype,  thereby  creating  a  theo-
retically hostile environment for both malignant and infected cells[5].
Post-infusion  immunomonitoring  revealed  a  corresponding  anti-
inflammatory  shift,  characterized  by  elevated  IL-1RA  and  reduced
levels of IL-7 and other pro-inflammatory mediators. These findings
show  mechanistic  alignment  with  prior  interaction  data[12] and  the
documented myeloid-stimulating and T  cell-rejuvenating effects  of
agenT-797[5] (Fig. 1).

 

Fig.  1  Mechanisms  of  iNKT  cell-mediated  anti-viral  and  anti-cancer
immunity. iNKT cells identify stressed and dying cells via T-cell receptor
(TCR)-mediated  recognition  of  endogenous  CD1d-presented  lipid  anti-
gens,  as  well  as  engagement  of  NKG2D  and  DNAM-1  ligands.  Upon
activation,  iNKT  cells  directly  eliminate  target  cells  and  secrete  abun-
dant  cytokines.  These  cytokines  subsequently  recruit  and  activate
additional  immune  effectors,  thereby  intensifying  anti-pathogen  and
anti-tumor  responses.  Additionally,  iNKT  cells  can  suppress  immuno-
regulatory  myeloid  cells,  including  macrophages  and  myeloid-derived
suppressor cells (MDSCs), further bolstering immune activation.
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 Cancer
Although  immune  checkpoint  inhibitors  have  advanced  cancer

treatment,  tumor  resistance  leading  to  progression  remains  a
common  challenge.  Notably,  a  striking  response  was  observed  in
a  treatment-refractory  metastatic  germ  cell  cancer  patient  who
achieved  complete  and  durable  remission  after  a  single  infusion
of  iNKT  cells  (agenT-797)  plus  nivolumab.  Strikingly,  this  response
occurred  in  the  absence  of  cytokine  release  syndrome  (CRS),  a
frequent  dose-limiting  toxicity  of  cell  therapies[6].  Further  evidence
for allogeneic iNKT cell therapy comes from a patient with relapsed/
refractory  gastric  cancer  refractory  to  standard  therapies  (FOLFOX
and  nivolumab).  The  administration  of  a  single  agenT-797  infusion
resulted  in  a  42%  tumor  reduction  and  more  than  nine  months  of
progression-free  survival,  accompanied  by  enhanced  intratumoral
immune infiltration[7].

iNKT cells  exert tumor-suppressive activity via direct and indirect
pathways[13].  iNKT  cells  mediate  direct  elimination  of  CD1d+ tumor
cells via perforin/granzyme and FasL, and indirect immune enhance-
ment via IFN-γ-mediated activation of NK and CD8+ T cells. This dual
capacity  enables  iNKT  cells  to  target  both  tumor  cells  and  immu-
nosuppressive  tumor  microenvironment  (TME)  components  like
tumor-associated  macrophages  (TAMs)  and  myeloid-derived  sup-
pressor cells (MDSCs)[14]. Furthermore, iNKT cells reshape the TME by
engaging  CD1d+ TAMs  and  MDSCs  to  reduce  their  inhibition[14],
thereby promoting the infiltration and cytotoxic function of effector
cells, such as NK and CD8 + T cells. The immunomodulation is ampli-
fied via reciprocal activation with dendritic cells (DCs): iNKT-derived
signals  promote  DC  maturation  and  IL-12  production,  which  in
turn  enhances  the  induction  of  tumor-specific  adaptive  immunity.
Together, these integrated mechanisms establish a permissive niche
for effective anti-tumor immune responses (Fig. 1).

 Future perspectives
iNKT cells possess significant advantages (Table 1), such as potent

immunomodulatory  functions  and  high  tolerance,  enabling  the
transformation of 'cold tumors' into 'hot tumors' and reversing resis-
tance to immunotherapy. The inherent low alloreactive potential of
natural  iNKT cells  positions them as a promising platform for deve-
loping  'off-the-shelf'  allogeneic  cell  therapies.  This  advantage  does

not  exclude  further  engineering.  Instead,  it  provides  a  compatible
and  scalable  cellular  chassis  that  can  be  enhanced,  for  instance,
through adding chimeric antigen receptors or other genetic modifi-
cations, to tailor potency and specificity for particular clinical indica-
tions. However, it is important to note the limitations. CD1d expres-
sion  in  solid  tumors  (positivity  rate  of  20%–50%)  may  trigger
immune-related adverse events (irAEs). It is also very challenging to
obtain  large  quantities  of  autologous  iNKT  cells  from  immunosup-
pressed cancer patients, and the culture and differentiation of these
cells require several weeks.
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Table 1.  Comparative analysis of different cell therapies.

Cell therapies Target and mechanisms Advantages Disadvantages Applications

CAR-T[15] Targeting tumor antigen with
genetically engineered
receptors, (MHC-independent)
through scFv-CD3ζ.

High target specificity, long-lasting
efficacy, well-established
manufacturing platform.

Risk of Cytokine Release Syndrome
(CRS), tumorigenicity, immune
effector cell–associated neurotoxicity
syndrome (ICANS), graft-versus-host
disease (GVHD, allogeneic), high cost
and long production time.

Hematological
malignancies,
particularly B cell
malignancies and
multiple myeloma.

Mesenchymal
cells[16]

Direct migration towards
diseased tissues through
chemokine receptor and ligand,
paracrine secretion, and immune
modulation.

Wide sources, modulating
inflammatory effects, promoting
tissue regeneration.

Functional heterogeneity, difficulties
in preparing quality-controlled cells
in vitro, inconsistent response.

Inflammatory and
debilitating diseases.

iNKT cells[17] Targeting CD1d-presented lipid
antigens with invariant TCR,
possessing both direct killing
and immune re-orchestration.

HLA-independent, durable responses
due to memory function, safer
toxicity profile (low GVHD risk,
minimal CRS and negligible ICANS),
potent activity with only one single
dose and low costs.

Limited number obtainable at their
source, require specific
manufacturing processes, limited
targets.

Allogeneic cell therapy
for solid tumors, virus-
associated diseases.

NK cells[18,19] Non-specific cytotoxicity and
recognition of NKG2DL on
tumor.

No need for antigen priming, good
safety with low GVHD, CRS and
ICANs.

Low persistence in the absence of
cytokine, subject to
immunosuppressive barriers in the
tumor microenvironment.

Adoptive transfer of
allogeneic NK cells for
leukemia, lymphoma
and solid tumors.
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