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Abstract
Almost all drugs exert their effects in a dose-dependent fashion, but a central challenge in drug discovery and pharmacology is to bridge the gap between

observed phenotypic and the often complex underlying molecular mechanisms. Important questions to answer are: which proteins are physically bound by

the compound, which pathways are engaged in the cell and how is the cell molecularly and physiologically reprogrammed en route to its eventual, drug-

determined fate? In light of the advances in quantitative mass spectrometry speed and sensitivity over the past decade, it has become feasible to perform

systematic full dose-response experiments at the level of: (1) target deconvolution; (2) pathway engagement; (3) proteome reprogramming; and (4) cellular

consequences.  Each enables  the extraction of  potency and effect  size  information for  thousands of  proteins  and post-translational  modification sites  in

parallel.  In  this  mini-review,  the  conceptual  framework  of  system-level  dose-response  measurements  is  outlined  and  key  published  studies  are  used  to

illustrate how such data inform successive layers of drug mechanisms of action.
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 Introduction

Dose-response  relationships  are  foundational  in  pharmacology
because  the  effect  of  almost  any  compound  is  not  binary,  but
graded by the dose applied. From such dose-response relationships,
we  obtain  information  about  the  concentration  at  which  half-
maximal response occurs (the EC50, commonly expressed as pEC50 =
−log10 EC50),  the  magnitude  of  the  response  (effect  size),  and  the
slope  of  the  transition.  Together,  these  values  provide  mechanistic
insight  into the drug's  mechanism of  action (MoA).  In  classical  cell-
free  or  cell-based  assays  that  measure,  e.g.,  enzyme  inhibition,
receptor  binding,  or  phenotypes  such  as  cell  viability,  fitting  a
sigmoidal  curve  to  dose-response  data  qualitatively  and  quantita-
tively  describes  this  relationship.  While  powerful,  it  has  become
increasingly  clear  that  the  characterization  of  a  pharmacological
agent  should  not  stop  here  because  most  drugs  have  more  than
one target in cells, most of which are not necessarily known. There-
fore,  the study of  drug effects  should include an assessment at  the
systems level to obtain a better appreciation of all desired or unde-
sired MoAs of a compound. The proteome is particularly relevant in
this regard as almost all  drugs act on proteins, are proteins, or lead
to  the  production  or  degradation  of  proteins  in  a  cell-type  and
organ-specific  context.  From  a  mechanistic  viewpoint,  embedding
dose as an axis in proteomic perturbation experiments offers several
key advantages. First,  discrimination by potency: many compounds
show  polypharmacology,  modulating  the  abundance  or  activity  of
more than one target protein or site of post-translational modifica-
tion (PTM), often at different doses. Such parallel MoAs can only be
distinguished  when  considering  the  potency  dimension.  Second,
discrimination  by  effect  size:  not  all  regulated  proteins  or  PTMs
show  the  same  magnitude  of  abundance  or  activity  change  in
response to drugs.  This  dimension differentiates subtle  modulators

from  strong  effectors,  and  can  indicate  the  existence  of  separated
pools  of  target  proteins  in  different  cellular  localizations,  cell
populations,  or  activation  states.  Third,  discrimination  by  cross-
comparison:  dose-response  parameters  provide  a  quantitative
metric  for  comparing molecules,  pathways,  cell  states,  etc.,  beyond
binary 'up/down' classifications.

Despite  these  advantages,  only  very  few  studies  have  reported
proteome-wide  experiments  using  full  dose-response  measure-
ments.  Instead,  most  experimental  designs  compare  replicate
experiments  of  proteome  or  PTM  changes  in  response  to  an  often
arbitrarily  high  concentration  of  a  compound.  This  severely  limits
the mechanistic interpretability of the data.

The  authors  have  argued  for  some  time[1,2] that  dose-response
curves are more informative than replicate experiments at all levels
of  decrypting  drug  MoA:  target  deconvolution,  pathway  engage-
ment,  and  proteome  reprogramming  leading  to  cellular  conse-
quences.  We  further  argue  that,  considering  the  breathtaking
advances  in  quantitative  mass  spectrometry-based  proteomics
over the past 10 years in terms of sensitivity,  speed, and accessibil-
ity,  systems-level  full  dose-response  measurements  are  now
entirely  feasible,  and  should  replace  less  informative  experimental
strategies.

 Statistical considerations for large-
scale dose-response profiling

For  proteome-scale  data,  the  sheer  number  of  peptides  and
proteins,  as  well  as  their  vast  abundance  range,  presents  major
analytical  challenges.  Noisy  quantification,  missing  values,  non-
sigmoidal  curves,  and  a  large  multiple  testing  burden  make  distin-
guishing genuine drug-regulated curves from noise nontrivial. First,
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a  four-parameter  log-logistic  function  (front  plateau,  back  plateau,
slope factor, and the x-value at the curve's inflection point) is fitted
to  reflect  the  typical  sigmoidal  shape  of  a  dose-response  curve
(Fig. 1a). Finding the dose-response model that describes the under-
lying  relationship  best  is  surprisingly  difficult,  and  requires  opti-
mized algorithms. The central question for each fitted model is then:
do  we  have  a  real  dose-response  curve  or  not?  This  question  is  of
utmost  importance  because  only  real  dose-response  curves  have
interpretable  parameter  estimates.  A  recently  developed  software
tool,  CurveCurator[3] addresses  these  challenges  by  multi-start
regression  and  classifying  regulated  vs  not-regulated  vs  unclear
curves based on statistical significance (p-values from a recalibrated
F-statistic)  and  biological  significance  (fold-change)  thresholds.  All
models  and  the  relevance  boundary  (2D-threshold)  can  be  visual-
ized in a volcano-plot (Fig.  1b).  The statistical  rigor of CurveCurator
effectively controls the false discovery rate (FDR) even in large-scale

curve  fitting  scenarios  that  may  contain  millions  of  dose-response
measurements. The approach readily applies to molecular, as well as
phenotypic readouts,  enabling discrimination of  relevant regulated
(down  or  up)  from  equally  informative,  not-regulated  proteins  or
PTMs, as well as analytes with high variance in large datasets, with-
out a strict requirement for replicated data points.

Another common secondary question to multiple drug perturba-
tion data  sets  (after  establishing that  a  response exists),  is  whether
the  same  protein  or  PTM  shows  significantly  different  potency
(ΔpEC50),  or  efficacy (Δlog2_FC) across treatments.  In these cases,  it
is beneficial to perform multiple independent dose-response experi-
ments  with  independent  curve  estimates.  A  Welch's  test  can  then
determine if the estimates are significantly different.

In  the  sections  below,  we  walk  through  the  logic  of  measuring
and  interpreting  proteome-wide  dose-response  data  to  'decrypt'
drug  MoA  in  a  typical  cascade,  starting  with  target  deconvolution
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Fig. 1  Tracing drug mechanism of action by dose-dependent proteome- and PTM-wide measurements. (a) Schematic dose response curves illustrating
extraction of pEC50: −log10 effective drug concentration to achieve 50% of the maximal effect as quantitative measures of target or pathway potency. (b)
Example volcano plot of a typical omics dose-response dataset, where each data point is a dose-response curve. The relevance boundary (combination of
fold  change  and  alpha  threshold)  identifies  down- and  up-regulated  responses  with  false  discovery  rate  (FDR)  control.  (c)  Schematic  of  how  a  drug's
mechanism  unfolds  in  a  cell:  target  binding  or  degradation  (decryptT/decryptC/decryptD),  pathway  engagement  (decryptM/decryptX),  proteome
reprogramming (decryptE), and ultimately cellular consequences. TFs: transcription factors.
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(decryptT  for  target  binding,  decryptC  for  covalent  modalities  or
decryptD  for  degraders),  through  pathway  engagement  (decryptM
for  protein  modifications;  decryptX  for  interactions  with  RNA  or
DNA),  and  proteome  reprogramming  (decryptE  for  protein  expres-
sion),  eventually  leading  to  cellular  consequences  (Fig.  1c).  Repre-
sentative experimental approaches that probe such layers, together
with  their  advantages,  limitations,  and  the  added  value  of  dose-
response analysis, are summarized in Table 1.

 Dose-response target deconvolution
Typically,  the  first  task  in  drug  MoA  studies  is  to  identify  which

(target) proteins directly interact with a compound of interest. There
is a large body of chemical proteomics and chemical biology litera-
ture describing how scientists employ competition-binding activity-
based  proteome  profiling  (ABPP)  or  competition-binding  affinity
purifications  (AP)  for  this  purpose  (recently  reviewed[4]).  However,
only  the  integration  of  a  dose-response  element  into  these  assays
allows  estimation  of  apparent  binding  affinities  (for  non-covalent
compounds),  engagement  potencies  (for  covalent  compounds),  or
degradation  efficiency  (for  degraders  and  some  molecular  glues).
Several  landmark  studies  have  shown  the  feasibility  and  utility  of
dose-response measurements in this context, notably for determin-
ing the target space and selectivity  profiles  of  kinase inhibitors[5−7].
In  these  reports,  the  authors  probed  the  binding  landscape  of
clinical  kinase  inhibitors  in  cancer  cells  using  immobilized,  broad-
spectrum  kinase  inhibitors  (Kinobeads).  By  measuring  competition
across  a  concentration  series,  they  derived  apparent  dissociation
constants  for  each  pair  of  >  200  clinical-grade  compounds,  >  200
kinases,  and hundreds of  other proteins.  From the several  hundred
thousand  resulting  dose-response  curves,  they  could  measure  the
relative  selectivity  of  each  kinase  inhibitor.  This  would  not  have
been  easily  achieved  using  replicate  experiments  performed  at  a
single  concentration  (e.g.,  1 µM; Fig.  2).  Building  on  this  powerful
blueprint,  many subsequent proteomic target identification studies
have  incorporated  dose-response  analysis,  extending  to  inhibitors
of HDAC complexes[8], ligands of reactive cysteines[9,10] or lysines[11],
natural products and drugs of DNA-binding proteins in conjunction
with  photo-affinity  labeling  (PAL)[12−14],  or  other  compounds  with
unclear MoA such as lipoic acid[15].

One  limitation  of  affinity- or  activity-based  proteome  profiling
methods  is  that  they  require  the  synthesis  of  suitable  chemical
probes. Stability-based chemoproteomic approaches are an alterna-
tive,  measuring  compound-induced  changes  in  protein  structural
stability,  typically  reflected  as  increased  or  decreased  resistance  to
thermal  or  chemical  denaturation  or  enzymatic  degradation  (a
broad  range  of  methods  is  reviewed  in  George  et  al.[16]).  A  widely
implemented  example  is  thermal  proteome  profiling  (TPP),  which
quantifies changes in soluble protein abundance after heat-induced
unfolding and aggregation. Multiple variations of this principle exist,
including  full  melting-curve  formats  that  quantify  compound-
induced  shifts  in  protein  melting  temperature  (Tm)  by  monitoring
soluble  protein  abundance  across  a  thermal  gradient[17,18],  and
condensed formats such as PISA or  single-temperature approaches
that  directly  monitor  changes  in  protein  solubility.  This  is  distinct
from  dose-response  curves,  which  would  measure  soluble  protein
abundance  as  a  function  of  ligand  concentration  to  report  on
engagement  potency[19−21].  Complementary  approaches  rely  on
chemical  denaturation  instead  of  thermal  destabilizing  proteins  by
altering solvent polarity or dielectric properties,  inducing precipita-
tion,  for  example,  through  the  use  of  organic  solvents[22−24],
chaotropic agents[25], kosmotropic ions[26], or pH shifts[27].

While thermal or chemical shifts measured at a single compound
concentration can be useful for target engagement of a known hit,
but  the  magnitude  of  the  shift  itself  is  not  proportional  to  binding
affinity[28].  Proteins  differ  intrinsically  in  their  thermal  or  chemical
stability,  and  numerous  cellular  factors,  such  as  PTM  or  protein-
protein interactions, can influence apparent shift size. Embedding a
concentration  series  into  these  assays  therefore  provides  a  more
informative  readout,  by  converting  a  binary  yes/no  stability  effect
into a dose-dependent response curve. This supports discrimination
between direct and indirect effects,  ranking of targets,  and permits
estimation  of  apparent  engagement  potencies—information  that
cannot be inferred from shift  magnitude alone.  As an example,  the
isothermal  dose-response  (ITDR)  configuration  of  TPP  measures
protein  stabilization  (or  destabilization)  as  a  function  of  ligand
concentration.  Applying  ITDR  measurements  at  different  tempera-
tures  led  to  the  discovery  of  phenylalanine  hydroxylase  as  an  off-
target of the HDAC inhibitor Panobinostat[29].  Similarly,  the Integral
Solvent-Induced  Protein  Precipitation  (iSPP)  was  recently  imple-
mented in  a  dose-response format  to  identify  the  molecular  target
of a P. falciparum antibiotic[30].

The  third  widely  used  class  of  proteome-wide  target  identifica-
tion  approaches  measures  compound-induced  protection  (or
deprotection)  of  proteins  against  limited  proteolysis.  The  LiP-MS
(limited  proteolysis-mass  spectrometry)  method[31] and  the  related
peptide-centric  local  stability  assay  (PELSA)[32] exploit  the  principle
that  ligand  binding  alters  protein  conformation  and  thus  protease
accessibility. Like TPP and related stability-based methods, LiP-MS or
PELSA do not require chemical probes and can, in principle, map the
drug binding site  on the  protein.  Both  methods  have  been config-
ured  to  measure  the  dose-response  characteristics  of  compounds
such  as  the  pan-kinase  drug  Staurosporine  by  LiP-MS  and  natural
product-inspired  drugs,  including  rapamycin,  geldanamycin,  tane-
spimycin, and ganetespib by PELSA[32,33].

 Dose-response pathway engagement
Having  identified  candidate  targets,  some  of  the  next  questions

to ask are: Does the compound modulate any signaling pathways? If
so, which ones are engaged and at what drug concentration? Phos-
phoproteomics  has  been  applied  extensively  to  investigate  these
questions.  However,  the  interpretation  of  much  of  the  published
data  is  complicated  by  the  fact  that  drugs  are  typically  used  at  far
too high concentrations, often making it difficult or even impossible
to distinguish cause and effect[34−36]. Budayeva et al. have addressed
this  shortcoming  in  a  specific  scenario  by  performing  site-specific
and  dose–response  phosphorylation  measurements  in  muscle  cell
myotubes  downstream  of  activating  the  receptor  tyrosine  kinase
MUSK[37]. The recently introduced decryptM technology by Zecha et
al.[1] is  a  compelling  example  of  how  the  potency  dimension  helps
to  address  these  questions  in  a  systematic  and  pharmacology-
minded way. Briefly, cells of interest are treated with a dose range of
a  drug,  lysed,  and  proteolytically  digested;  then  enrichment  work-
flows  (e.g.,  for  phospho-,  acetyl-,  and  ubiquitylated-peptides)  are
applied before  LC-MS/MS quantification across  the  dose series.  For
each  PTM-bearing  peptide,  a  dose-response  curve  is  fitted  as
outlined above.

Because  many  signaling  pathways  are  controlled  by  reversible
protein  phosphorylation  mediated  by  specific  kinases  (and  phos-
phatases),  phosphorylation  events  downstream  of  the  kinase
inhibitor drug target respond with similar pEC50 values if part of the
same pathway,  and comparable in potency to drug-target binding.
Hence,  the  potency  dimension  can  often  distinguish  two  or  more

Dose-response proteomics for drug mode of action  
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Table 1.  Collection of experimental approaches probing each layer of drug mode of action including their advantages, limitations, and the added value of dose-
response analysis.

Technique Examples What it's used for How DRC concept adds value Pros/cons and our view Ref.

Target binding
Affinity
enrichment-
based

Immobilized
probes/matrices
(Kinobeads, HDAC
beads, tailored
resins)

Capture drug-protein
interactions in native
proteome; Immobilized
matrices enrich stable,
high-affinity interactions;
PAL uses UV-induced
crosslinking to also
capture weak, transient
interactions that could
otherwise be lost during
washes. Both enable
identification of direct
binders and selectivity
profiling.

Converts single pulldowns
into quantitative DRC allow
calculation of Kd

app, EC50;
Filters out sticky or
nonspecific binders; Reveals
relative selectivity across
isoforms, families, or
complexes.

Pros: Use of native lysates preserves PTMs, cofactors,
complexes; broad family applicability (kinases,
HDACs) or individual compounds; PAL extends to
weak/transient binders; enrichment reduces
proteome complexity.
Cons: Loses intact-cell context; Immobilization bias;
PAL probe derivatization required; unselective
photocrosslinking.
Recommendation: Use for quantitative target space
mapping and selectivity profiling.

[6,8,15,
29]

Photoaffinity
labeling (PAL)

[12,13]

Activity
enrichment-
based

1st-gen family-
directed probes
(e.g., serine
hydrolases, DUBs,
kinases)

Covalent probes enable
labeling of active enzymes
or identification of drug
targets. Competitive
incubations reveal target
engagement by blocking
probe labeling. First-
generation probes profile
enzyme family activity,
while second-generation
approaches achieve
proteome-wide reactivity
and site-specific ligand-
ability mapping.

Single-dose competition
assays can overestimate
weak or nonspecific
interactions, producing
false-positives for
ligandability. DRC enable
quantitative extraction of
IC50/Ki values, target
occupancy, and relative
selectivity across enzymes,
nucleophile classes, or
reactive cysteines, allowing
rigorous ranking of cysteine
reactivity and ligandability.

Pros: Enables target deconvolution and covalent
ligand discovery; isoTOP-ABPP provides site-specific,
quantitative readouts. Some probes (e.g., kinase
probes XO44) cell-permeable, allowing live cell
profiling.
Cons: Probe chemistry and steric bias can influence
labeling patterns; Bulky enrichment handles often
limit cell permeability; requires well-designed
electrophiles tailored to nucleophile classes.
Recommendation: Use for covalent drug profiling
and site-specific ligandability mapping. The
competition format is also valuable for confirming
intracellular target engagement and deconvolution of
covalent compounds.

[44−46]

2nd-gen proteome-
wide (e.g.,
DecryptC: cysteine-
reactivity, isoTOP-
ABPP, TRAP)

[9−11,
47,48]

Denaturation-
based
(thermal)

2D-TPP, ITDR,
conc-PISA, mTSA

Infer drug-target
engagement in living cells
or lysates via changes in
thermal stability and
protein solubility after
ligand binding.

In living cells, PTMs and PPIs
influence thermal stability;
dose-response curves clarify
dose-dependent stabiliza-
tion, reduce false positives,
and rank direct vs indirect
targets.

Pros: Applicable in intact cells; no compound
modification required; Detects diverse binding
modes, including allosteric interactions; Dose-
response analysis enables ranking and hit
prioritization beyond binary hit-calling.
Cons: 2D-TPP requires large sample numbers (dose x
temperature); Condensed TPP/iTSA are higher
throughput but less sensitive; Indirect effects
complicate interpretation; Not all proteins show
measurable thermal shifts (false negatives); PTMs and
PPIs can cause apparent stability changes (false
positives), though DRC mitigates this.
Recommendation: Use to confirm intracellular target
engagement, ideally in combination with orthogonal
approaches for higher confidence.

[18−20,
23,29]

Denaturation-
based
(chemical)

iSPP, solvent-
induced
precipitation
(ethanol, acetone),
chaotropic/
kosmotropic
agents (urea,
guanidinium), pH
shifts

Used to probe protein
stability, folding, and
ligand binding, particularly
useful for thermolabile
proteins or systems where
temperature-based
denaturation is unsuitable.

Dose-dependent
stabilization reveals specific,
saturable ligand binding,
distinguishing true from
indirect targets. It enables
quantitative estimation of
apparent affinity (EC50/
pEC50), supports target
ranking by stabilization
potency, and reduces false
positives from indirect or
nonspecific effects.

Pros: Suitable for proteins and complexes sensitive to
heat; reveals ligand-induced stabilization or
destabilization; flexible across solvents, salts, and pH,
compatible with DRC analysis.
Cons: Can have reduced proteome coverage for very
insoluble or membrane-associated proteins; depends
on chemical buffer composition.
Recommendation: Use as a complementary
approach to thermal profiling when heat is
unsuitable, particularly for ligand screening or dose-
response target identification.

[22−27]

Conformation
al/Accessibilit
y-based

Lip-Quant, PELSA Detects ligand-induced
structural changes via
altered protease or
chemical reactivity,
supporting target
validation and binding-site
mapping.

DRC analysis confirms
ligand-induced protection,
ranks stabilization, maps
binding sites, and limits
indirect false positives.

Pros: Can provide site-specific binding information.
Cons: Not all compounds induce structural changes
that alter the accessibility of the protein, resulting in
false negatives.
Recommendation: Use for precise binding site
mapping and target validation, ideally in combination
with orthogonal methods to confirm hits and mitigate
the risk of missed interactions.

[32,33,
49]

Pathway modulation/consequence of binding
DecryptM Phosphorylation,

acetylation, or
ubiquitinylation

Measures dose-dependent
PTM responses to reveal
pathway engagement and
cellular mechanisms of
drug on/off-target activity.

Enables separation of direct
and indirect effects, clusters
PTM sites by shared potency
(EC50) to reveal pathway
wiring and compares
pathway engagement across
compounds or cell types.

Pros: Provides systems-level resolution of
downstream signaling; distinguishes multiple
pathways engaged by a drug; links potency
information to pharmacological effects; available
across different PTMs.
Cons: interpretation can be complicated by parallel
pathways or cell-type context.
Recommendation: Use to gain mechanistic insight
beyond direct targets, connecting drug binding to
functional signaling outcomes. Best applied over
multiple doses and, ideally, across different cell
models.

[1,37−
40]

(to be continued)
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pathways that are engaged by the drug in parallel. One can further
strengthen  such  pathway  assignments  by  comparing  potency
responses  of  multiple  compounds  that  share  a  molecular  mecha-
nism  (typically  the  same  known  targets).  For  instance,  if  multiple
inhibitors of the same kinase produce overlapping potency profiles
in downstream phosphorylation sites,  the collective data reinforces
the  mechanistic  links.  A  similar  argument  can  be  applied  when
analyzing the same compound across different cancer cell lines.

The value of decryptM experiments is exemplified in Fig. 3 for the
multi-kinase  inhibitor  Dasatinib.  The  drug  is  a  very  potent  (~1  nM)
designated  BCR-ABL  inhibitor  used  for  the  treatment  of  BCR-ABL
positive  chronic  myeloid  leukemia  (CML),  but  it  also  has  additional
targets  with  various  potencies. Figure  3a summarizes  the  distribu-
tions  of  phosphosite  potencies  across  three  cancer  cell  lines.

Following  the  logic  above,  most  drug-regulated  phosphorylation
sites  in  the  CML  cell  line,  K562,  have  similar  potencies  and  are  all
downstream  of  the  driver  kinase  BCR-ABL.  In  the  cutaneous  squa-
mous  cell  carcinoma,  A431,  which  is  driven  by  a  genomic  EGFR
amplification,  the  picture  is  entirely  different  because  Dasatinib  is
only  a  weak EGFR inhibitor  (~1 µM),  which is  why most  drug regu-
lated  phosphopeptides  cluster  around  that  concentration.  Yet
another profile is observed for KRAS-mutated A549 lung carcinoma
epithelial  cells  because  Dasatinib  inhibits  a  range  of  kinases  in  this
cell line that are not necessarily present in others.

DecryptM  profiles  thus  provide  valuable  information  about  drug
MoA  beyond  target  proteins  and  has  already  led  to  important
insights.  For  instance,  a  study  investigating  Rituximab  has  illumi-
nated  how  CD20  binding  by  the  therapeutic  antibody  leads  to

Table 1.    (continued)
 

Technique Examples What it's used for How DRC concept adds value Pros/cons and our view Ref.

Cellular consequence/adaptation/death
DecryptE Drug-induced

proteome
abundance
changes

Measures dose-dependent
proteome changes to
reveal how drugs remodel
proteostasis through direct
and adaptive effects.

Differentiates rapid
abundance changes linked
to direct target effects from
slower, adaptive
reprogramming; allows
quantification of potency
windows; distinguishes
primary MoA from
secondary downstream
effects; and helps correlate
molecular changes with
phenotypic outcomes.

Pros: Provides a global view of proteome remodeling
with broad coverage and quantifiable EC50 values,
uncovering unexpected drug effects beyond known
targets.
Cons: Expression changes are often indirect and slow,
complicating mechanistic interpretation; requires
careful temporal design.
Recommendation: Use to map systems-level
consequences of drug treatment, compare potency
windows across pathways and phenotypes, and
identify adaptive mechanisms, ideally in combination
with faster-acting assays like phosphoproteomics for
mechanistic resolution.

[2]

Phenotypic Cell viability,
apoptosis,
differentiation, cell
cycle arrest,
metabolic activity
assays

Measures the functional
consequences of drug
treatment on cellular
phenotypes across a range
of concentrations,
providing insight into
efficacy, toxicity, and
therapeutic windows.

Resolves the concentrations
at which phenotypic
changes arise relative to
molecular target
engagement, distinguishing
direct drug effects from
downstream or off-target
consequences. Enables
correlation of molecular EC50
values with phenotypic
outcomes and informs safe,
effective dosing ranges.

Pros: Directly links molecular perturbations to cellular
outcomes; enables ranking of compounds by potency
and efficacy; provides translationally relevant data for
therapeutic assessment.
Cons: Often integrate multiple direct and indirect
mechanisms, complicating mechanistic
interpretation; slower phenotypic responses may lag
behind molecular changes; high variability may
require multiple replicates and careful experimental
design.
Recommendation: Use in combination with
molecular profiling (e.g., decryptM or decryptE) to
map drug potency, mechanism, and therapeutic
window, and to validate that molecular engagement
translates into functional cellular effects.

[2,39,
42,50]

 

a b

Fig.  2  Distinguishing  targets  of  Lestaurtinib  by  dose-response  competition  affinity  profiling.  (a)  Volcano  plot  showing  kinases  identified  in  replicate
single-dose (1 µM) competition binding experiments using Kinobeads, illustrating limited selectivity resolution. (b) Corresponding dose-response curves
(dose range, 0–30 µM) for selected kinases derived from Kinobead profiling, enabling quantification of apparent binding affinities (pKd

app: −log apparent
dissociation constant).
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overactivation  of  the  MAPK  pathway,  resulting  in  cancer  cell
death[1].  It  also  provided  an  explanation  for  the  experimentally
observed  cell  killing  synergy  of  the  DNA-damaging  agent  Gemci-
tabine in combination with ATR inhibitors[38], and showed that cova-
lent  KRAS  inhibitors  exert  their  cytostatic  effects  by  first  shutting
down  MAPK  signaling,  before  shifting  cancer  cells  to  a  quiescent
state[39].  DecryptM  profiles  of  protein  acetylation  unexpectedly
showed  that  HDAC6  shared  many  substrates  with  other  HDACs[40].
The  decryptM  approach  is  still  very  new.  Therefore,  all  the  above
examples  were  published  by  the  same  laboratory.  Because  of  its
substantial  utility,  it  can  be  anticipated  that  the  method  will  find
increasing uptake in the community.

 Dose-response proteome
reprogramming

There are many ways in which drugs can change proteostasis, and
the  extent  to  which  drugs  change  proteome  expression  can  vary
drastically. Also, these changes can occur directly as a consequence
of  drug  MoA  or  more  indirectly  because  of  cellular  adaptation
processes. Both are dose-dependent, both contribute to the overall
cellular  fate,  but  often  operate  along  different  time  scales,  which
may  or  may  not  involve  transcriptional  processes  of  regulating
protein  abundance.  Studying  both  transcriptional  and  proteomic
regulation improves understanding of drug MoA because each layer
may reveal different parts of the regulatory cascade. While RNA-Seq

typically  detects  early,  rapid,  and  sometimes  drastic  transcriptional
responses,  the  kinetics  and  effect  sizes  of  protein  expression
changes, if any, often do not reflect the behavior on the mRNA level.
On  the  contrary,  proteomics  measures  the  actual  effectors  directly
that eventually determine cellular fate. Integrating both mRNA and
protein information layers might, therefore, help identify direct and
indirect  effects  and  reconstruct  a  clearer  mechanistic  chain  of
events.

Eckert  et  al.[2] have  investigated  the  dose  dependency  of  drug-
induced  protein  abundance  changes  (decryptE  for  protein  expres-
sion) systematically  in  a  Jurkat  T-cell  line  model  for  144  clinical
drugs,  covering  >  8,000  proteins  and  generating  >  1  million  dose-
response curves. For instance, drugs like pomalidomide induced the
degradation  of  proteins  such  as  IZKF  (EC50 of  10  nM),  and  ZPF91
(EC50 of  270  nM)  within  minutes  to  hours,  and  without  changing
transcript  levels  (Fig.  4).  Somewhat  similarly,  methotrexate  led  to
increased  abundance  of  its  target  protein  DHFR  without  requiring
increased transcript levels.  The proposed MoA is that methotrexate
binding to DHFR releases the protein from its own mRNA so that it
can be translated, resulting in increased DHFR abundance[41].

Conversely,  drugs  like  the  proteasome  inhibitor  carfilzomib
interfere with a central cellular process (proteasomal protein degra-
dation),  and  can  (indirectly)  lead  to  very  widespread  changes  in
protein abundance that often goes along with widespread changes
at the transcriptional level,  processes that are usually slower (hours
to  days)  than  direct  drug  effects  on  their  target  proteins.  Carfil-
zomib creates a 'protein folding crisis' in the cell, resulting from the

 

a b

Fig. 3  Measuring pathway engagement by decryptM profiling. (a) Summary plots of the potencies by which phosphopeptides are regulated by Dasatinib
showing that the polypharmacology of Dasatinib leads to different profiles in different cell lines. Phosphorylation sites on Datastinib target proteins are
marked in color. (b) Dose-response curves of the four examples highlighted in panel (a), illustrating the different potencies with which Dasatinib inhibits
its targets and, in turn, leading to different but matching potencies of kinase substrate phosphorylation.
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Fig.  4  Dose-response  curves  for  proteins  and  their  mRNA  transcripts  for  (a)  the  degrader  pomalidomide,  (b)  the  DHFR  inhibitor  methotrexate,  (c)  the
proteoasome inhibitor carfilzomib, and (d) the HDAC1-3 inhibitor vorinostat.
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accumulation of proteins usually bound for degradation. One cellu-
lar  response  is  upregulation  of  transcript  and  protein  levels  of  the
chaperone  HSPA6,  likely  to  increase  folding  capacity.  While  the
effect sizes of this response are very different (~300-fold at the tran-
script  level,  ~20-fold  at  the  protein  level),  the  potency  dimensions
are  identical.  Yet  other  drugs  such  as  vorinostat  do  not  appear  to
have any influence on target protein or transcript abundance. Still, a
big  surprise  was  the  finding  that  HDAC  inhibitors  can  lead  to  the
loss  of  protein  expression  of  T-cell  receptor  components,  likely
explaining why the drug is clinically efficacious for the treatment of
certain  lymphomas  and  autoimmune  diseases  but  not  for  solid
tumors.  A  key  insight  from  the  Eckert  et  al.  study  was  that  protein
abundance  of  most  canonical  drug  targets  did  not  change  in
response to drugs.  In  fact,  only ~25% of  drugs induced abundance
changes  in  at  least  one  of  their  known  target  proteins,  and  these
were  often  among  hundreds  to  thousands  of  other  proteins  that
also  changed  abundance.  Therefore,  while  decryptE  experiments
often  reveal  the  molecular  processes  underlying  the  fate  of  drug-
treated  cells,  they  can  generally  not  be  used  for  the  purpose  of
target identification.

These examples illustrate the challenges inherent to the integra-
tion of different layers of regulation and underscore the complexity
of drug MoA, which still lacks a comprehensive, system-level under-
standing.  In  our  view,  advancing  this  field  requires  a  stronger
emphasis  on  dose-response  measurements  and  multi-omics  inte-
gration  rather  than  evaluating  isolated  events  in  single  layers  and
using  arbitrary  drug  concentrations.  While  the  latter  might  seem-
ingly be easy to understand and interpret, it overlooks the intercon-
nected nature of cellular regulation.

 Dose-response linkage of multi-omics
to cellular phenotypes

Mapping  molecular  perturbations  to  phenotypic  outcomes  (e.g.,
viability,  apoptosis,  differentiation, cell  cycle arrest,  etc.)  is  a further
important step in understanding drug MoA. Recognizing that drugs
may  exert  their  direct  and  indirect  effects  at  many  levels  of
biological  regulation  and  along  different  time  scales,  a  few  studies
have  extended  dose-response  measurements  across  time  points

and/or  OMICs  layers.  Integrating  this  data  can  yield  insight  into
which  molecular  events  correlate  best  with  timed  cellular  effects
and at  which dose.  An example of  such a  2-dimensional  time-dose
linked analysis was also provided by Eckert et al. on the example of
methotrexate  and  its  target  DHFR  (Fig.  5).  While  the  potency  by
which  the  drug  led  to  increased  protein  abundance  remained
broadly the same over time, the full effect was only reached after 18
h of drug treatment.

Recently, Kabella et al.[39] demonstrated how all the decrypt levels
can come together to elucidate the MoA of (covalent) mutant KRAS
inhibitors.  They  observed  very  strong  consistency  between  the
potencies  of  the  drug  in  dose-dependent  reactive  cysteine  (target
binding,  decryptC),  phosphoproteome  (pathway  engagement,
decryptM),  protein  expression  (proteome  reprogramming,
decryptE),  and  phenotypic  (cell  viability)  profiling  experiments
(Fig.  5).  An  additional  temporal  dimension  enabled  the  authors  to
separate  the  immediate  mechanistic  drug  effects  on  the  ERK  path-
way from the later cellular drug adaptation effects, notably exit from
the cell cycle.

The  consistency  of  the  potency  dimension  across  OMICs  layers
may not  always  be as  perfect.  Zecha et  al.[1] measured cell  viability
dose-response curves (days of drug incubation) in parallel with PTM
curves  (hours  of  drug  incubation),  and  noted  that  canonical  phos-
phorylation  site  responses  often  occurred  at  slightly  lower  doses
(i.e., more potent) than the phenotypic pEC50. This is consistent with
the  expectation  that  signaling  modulation  precedes  phenotypic
changes.  Eckert  et  al.[2] also  measured  phenotypic  endpoints  (cell
metabolic activity and toxicity) across the same dose range used for
determining protein expression changes. They also found that most
drugs  induced  protein  abundance  changes  that  were  more  potent
than the measured phenotypic effect. This is again consistent with a
molecular cascade preceding phenotypic endpoints, which also may
reflect  a  certain  buffering  capacity  of  the  cell  against  the  effect  of
drug perturbation.

Another  example  is  Li  et  al.[42] who  measured  transcriptomics,
proteomics,  and  phosphoproteomics  dose  responses  at  multiple
time  points  to  define  biological  responses  for  chemical  safety
assessment.  This  is  interesting  because  dose-response  molecular
profiles  may  help  delineate  therapeutic  windows.  In  other  words,
what  is  the  dose  range  at  which  target  inhibition  and  pathway

 

a b c

Fig. 5  Multi-dimensional dose-response measurements. (a) 2D time-dose coupling of DHFR abundance changes in response to methotrexate. (b) Multi-
decrypt-dimension profiling of the KRAS inhibitor sotorasib revealing potency coherence at all levels of MoA elucidation.
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modulation  occur  without  triggering  broad  off-target  proteome
perturbation?  A  drug  whose  binding  potency  is  much  lower  than
the  onset  of  proteome  reprogramming  has  a  favorable  window.
Conversely,  narrow windows may predict  toxicity.  Therefore,  multi-
omics  and  time-resolved  dose-dependent  measurements  can
inform molecular pharmacology as well as address important trans-
lational concerns.

 Recommendations, limitations, and
future directions

The decrypt-technologies presented here are omics-assays where
drug  effects  are  tested  and  measured  in  one  sample  at  the  same
time.  The  first  important  question  is  how  many  different  doses
should  one  apply.  Due  to  the  omics-nature  of  the  assays,  an  often
recommended statistical power analysis will yield a different answer
for  each  measured  analyte  because  they  have  different,  analyte-
specific,  inherent  variances.  Thus,  we  base  our  recommendations
rather  on  the  following  logic.  The  goal  of  a  well-set-up  decrypt
experiment  is  to  capture  the  full  sigmoidal  behavior  of  different
dose-response profiles.  Thus,  we strongly  recommend using a  very
broad  concentration  range  (≥ 6  logs),  ideally  with  half -logarithmic
spacing. This experimental design ensures that plateaus for on- and
off-targets  are  covered  as  well  as  the  transition  phase  between
them.  Adding  even  more  data  points  will  obviously  improve  the
curve-fitting statistics and the accuracy of the EC50 estimation. Addi-
tionally, the inclusion of more than one vehicle control can improve
the front  plateau estimation,  and thus  improve the  relevance scor-
ing in CurveCurator. Here we note that dose-replicates provide little
benefit and should rather be replaced by more drug doses. In other
words, an experiment with eight doses in duplicate is inferior to 16
single  doses,  while  the  experimental  effort  is  the  same.  The  use  of
statistical  tools  like CurveCurator to  obtain  dose-response  parame-
ters that are backed by relevance thresholds and proper FDR control
is  strictly  necessary,  because  only  significant  dose-response  curves
have valid curve estimates. In short, we propose an ideal experimen-
tal  design  that  consists  of  ≥ 12  individual  doses  plus  two  controls.
If  replicates  are  needed  for  confidence  intervals  around  the  curve
estimates  to  statistically  compare two dose-response curves  within
or across datasets, we recommend to repeat this single-dose design
r-times.

A  common  concern  is  missing  values  (NaNs)  from  mass-
spectrometry-based  assays  and  how  they  affect  decrypt-
experiments.  Unfortunately,  there is no single solution that suits all
situations,  because  NaNs  occur  owing  to  different  reasons.
CurveCurator  can  handle  NaNs,  and  there  is  generally  no  need  for
imputation.  However,  fewer  observations  will  reduce  the  power/
confidence of  the curve.  If  NaNs are not missing at random, e.g.,  in
decryptT, these NaNs could indicate perfect competition and should
not be statistically penalized. In these cases, low-value imputation is
an  acceptable  strategy,  but  in  any  case,  we  recommend  careful
evaluation  of  the  effects  of  imputation  on  results  and  their
interpretation.

The second important  question is  the  choice  of  an optimal  drug
exposure time(s) that aligns with the kinetics of anticipated molecu-
lar changes. In other words, one needs to be mindful of slow binders
(such  as  HDAC  inhibitors),  the  short  timescale  of  PTM-driven
signaling  (minutes),  the  time  required  for  protein  expression
changes  (hours),  and  the  time  until  phenotypic  changes  manifest
(days). For the longer time scales, we advise time-dose experiments

to  distinguish  signaling  from  endpoints.  In  the  case  of  analyzing
many compounds,  e.g.,  as  part  of  screening campaigns,  we recom-
mend  prioritizing  molecules  by  potency  (first),  and  effect  size
(second) for follow-up work using orthogonal assays to validate the
presumed target-to-phenotype hypothesis.

While  applicable  in  many  scenarios,  dose-resolved  proteomic
methods  have  limitations.  At  a  technical  level,  chromatography-
coupled  mass  spectrometry  has  dynamic  range  limits  (depending
on  instrumentation  and  configuration),  which  can  bias  observed
dose-response  curves  to  high-abundant  analytes.  In  such  cases  (or
for  confirmatory  experiments),  other  readouts  such  as  antibodies
can be used for  proteins  or  PTM sites  of  interest,  but  the extent  to
which  these  are  available,  and  can  be  practically  implemented  for
confirming  hundreds  or  thousands  of  dose  response  curves,  is
limited.

Not all drugs follow a simple sigmoidal dose-response characteris-
tic in which case other curve-fitting models[43] may be more appro-
priate, but will also require more dose points for robust statistics. In
addition, if a compound modulates the activity of functionally unre-
lated  targets  with  similar  potency,  the  downstream  omics  layers
may be difficult to interpret. Furthermore, compounds may address,
e.g.,  enzymatic  activity  without  engaging  signaling  pathways  or
leading  to  changes  in  proteostasis.  In  such  cases,  absence  of  a
proteomic response does not equal absence of biological relevance.
Obviously,  if  a  certain  biology  is  absent  in  a  cellular  model,  or  the
drug  cannot  permeate  the  plasma  membrane,  a  possible  target
effect  cannot  be  observed.  Additionally,  in  heterogeneous  cell
populations,  potency  and  effect  size  values  may  be  obscured  by
opposing  or  synergistic  cellular  effects.  We  also  note  that  many
proteins  or  PTMs  with  dose-response  curves  could  represent
bystanders with no relevance for any biological effect. Because func-
tional validation approaches depend heavily on the initial discovery,
it  is  difficult  to  make  general  recommendations.  However,  it  is
generally  good  practice  to  extend  the  investigation  (in  a  global  or
targeted  fashion)  to  additional  biologically  relevant  systems  (or
controls).  Alternative  chemical  probes  can  also  be  a  valuable
approach, but finding probes that have the same/very similar affin-
ity,  selectivity,  and  MoA  as  the  compound  of  interest  is  not  trivial.
Genetic perturbations are also challenging because they often oper-
ate  on  very  different  time  and  effect  scales  as  drug  perturbations.
Still,  a  (permanent  or  conditional)  knockout  or  overexpression
system can be informative for certain aspects of drug MoA elucida-
tion  such  as  establishing  a  particular  protein  as  a  driver  of  a  path-
way or the mediator of a cellular adaptation or endpoint.

Many  extensions  of  the  overall  approach  can  be  envisaged.  For
instance,  future  opportunities  include  combining  dose-response
measurements with sub-cellular fractionation, single-cell, or protein
turnover  assays.  All  the  work  published  so  far  used  2D  cell  culture
models that often only partially reflect the pathology addressed by a
drug. While technically more demanding, extension of the approach
to  spheroids,  organoids,  animal  models,  and,  eventually,  human
beings  would  be  highly  desirable.  Given  that  the  conceptual  and
statistical framework, as well as the analytical technology, are now in
place, such systems-wide dose-response measurements are becom-
ing feasible and hold considerable promise for future applications in
mechanistic biology, drug discovery, and pharmacology.
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