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Abstract

Almost all drugs exert their effects in a dose-dependent fashion, but a central challenge in drug discovery and pharmacology is to bridge the gap between
observed phenotypic and the often complex underlying molecular mechanisms. Important questions to answer are: which proteins are physically bound by
the compound, which pathways are engaged in the cell and how is the cell molecularly and physiologically reprogrammed en route to its eventual, drug-
determined fate? In light of the advances in quantitative mass spectrometry speed and sensitivity over the past decade, it has become feasible to perform
systematic full dose-response experiments at the level of: (1) target deconvolution; (2) pathway engagement; (3) proteome reprogramming; and (4) cellular
consequences. Each enables the extraction of potency and effect size information for thousands of proteins and post-translational modification sites in
parallel. In this mini-review, the conceptual framework of system-level dose-response measurements is outlined and key published studies are used to

illustrate how such data inform successive layers of drug mechanisms of action.
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Introduction

Dose-response relationships are foundational in pharmacology
because the effect of almost any compound is not binary, but
graded by the dose applied. From such dose-response relationships,
we obtain information about the concentration at which half-
maximal response occurs (the ECs,, commonly expressed as pECsg =
—log, ECsp), the magnitude of the response (effect size), and the
slope of the transition. Together, these values provide mechanistic
insight into the drug's mechanism of action (MoA). In classical cell-
free or cell-based assays that measure, e.g., enzyme inhibition,
receptor binding, or phenotypes such as cell viability, fitting a
sigmoidal curve to dose-response data qualitatively and quantita-
tively describes this relationship. While powerful, it has become
increasingly clear that the characterization of a pharmacological
agent should not stop here because most drugs have more than
one target in cells, most of which are not necessarily known. There-
fore, the study of drug effects should include an assessment at the
systems level to obtain a better appreciation of all desired or unde-
sired MoAs of a compound. The proteome is particularly relevant in
this regard as almost all drugs act on proteins, are proteins, or lead
to the production or degradation of proteins in a cell-type and
organ-specific context. From a mechanistic viewpoint, embedding
dose as an axis in proteomic perturbation experiments offers several
key advantages. First, discrimination by potency: many compounds
show polypharmacology, modulating the abundance or activity of
more than one target protein or site of post-translational modifica-
tion (PTM), often at different doses. Such parallel MoAs can only be
distinguished when considering the potency dimension. Second,
discrimination by effect size: not all regulated proteins or PTMs
show the same magnitude of abundance or activity change in
response to drugs. This dimension differentiates subtle modulators
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from strong effectors, and can indicate the existence of separated
pools of target proteins in different cellular localizations, cell
populations, or activation states. Third, discrimination by cross-
comparison: dose-response parameters provide a quantitative
metric for comparing molecules, pathways, cell states, etc., beyond
binary 'up/down' classifications.

Despite these advantages, only very few studies have reported
proteome-wide experiments using full dose-response measure-
ments. Instead, most experimental designs compare replicate
experiments of proteome or PTM changes in response to an often
arbitrarily high concentration of a compound. This severely limits
the mechanistic interpretability of the data.

The authors have argued for some timel'2l that dose-response
curves are more informative than replicate experiments at all levels
of decrypting drug MoA: target deconvolution, pathway engage-
ment, and proteome reprogramming leading to cellular conse-
quences. We further argue that, considering the breathtaking
advances in quantitative mass spectrometry-based proteomics
over the past 10 years in terms of sensitivity, speed, and accessibil-
ity, systems-level full dose-response measurements are now
entirely feasible, and should replace less informative experimental
strategies.

Statistical considerations for large-
scale dose-response profiling

For proteome-scale data, the sheer number of peptides and
proteins, as well as their vast abundance range, presents major
analytical challenges. Noisy quantification, missing values, non-
sigmoidal curves, and a large multiple testing burden make distin-
guishing genuine drug-regulated curves from noise nontrivial. First,
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a four-parameter log-logistic function (front plateau, back plateau,
slope factor, and the x-value at the curve's inflection point) is fitted
to reflect the typical sigmoidal shape of a dose-response curve
(Fig. 1a). Finding the dose-response model that describes the under-
lying relationship best is surprisingly difficult, and requires opti-
mized algorithms. The central question for each fitted model is then:
do we have a real dose-response curve or not? This question is of
utmost importance because only real dose-response curves have
interpretable parameter estimates. A recently developed software
tool, CurveCuratorB! addresses these challenges by multi-start
regression and classifying regulated vs not-regulated vs unclear
curves based on statistical significance (p-values from a recalibrated
F-statistic) and biological significance (fold-change) thresholds. All
models and the relevance boundary (2D-threshold) can be visual-
ized in a volcano-plot (Fig. 1b). The statistical rigor of CurveCurator
effectively controls the false discovery rate (FDR) even in large-scale
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curve fitting scenarios that may contain millions of dose-response
measurements. The approach readily applies to molecular, as well as
phenotypic readouts, enabling discrimination of relevant regulated
(down or up) from equally informative, not-regulated proteins or
PTMs, as well as analytes with high variance in large datasets, with-
out a strict requirement for replicated data points.

Another common secondary question to multiple drug perturba-
tion data sets (after establishing that a response exists), is whether
the same protein or PTM shows significantly different potency
(ApPECsy), or efficacy (Alog, FC) across treatments. In these cases, it
is beneficial to perform multiple independent dose-response experi-
ments with independent curve estimates. A Welch's test can then
determine if the estimates are significantly different.

In the sections below, we walk through the logic of measuring
and interpreting proteome-wide dose-response data to 'decrypt’
drug MoA in a typical cascade, starting with target deconvolution

a Curve A b DOWN UP classifications
2004 IS PR Sm— .
ve 7~ .
Curve // A 104 ° °° . "down" / "up"
( ! ( ’ 4 L]
| ‘ o L regulated
1751 Curve D / o > 1 o
/ &0 @
/ % = 0
1.50 5 S ? 81 . "not" regulated
=] 2 .
2 £ g
2 o0
g 1.25 1 = A® |:| unclear
@ < 6
£ 4= S
@ 1.00 1 =) 5
-E \ Z. 9 .
] 5 1
) example curves
£ 075 1 ° 5 41 P
R ‘@ y
potency pECs) g § 2 ] Curve A
= ,
4 Curve B
0:50 PECs difference =|Q = e
=| < O 5,/ e (
e Curve D
0.25 1
" 1
[ ]
0.00 T T T T T T T 0 T T T T T T T
-11 -10 -9 -8 =7 -6 =5 -6 -4 -2 0 2 4 6
drug concentration [log,,(M)] Log; curve fold change
c The decrypt universe ?
PY ‘ | ’I (RAS [ RAS J 7
[ (/) inhibition RAF | RAF Giveo.
aw “ drugs @1 @ l neog)énesis —> Phenotype
o OF o cellular
.\“oe I’:(’G";S e m consequence
& 2
‘v'f\ binding l > 2
Y <
(E2)O — ® e.g. PCKI
’ decryptT ! ?g.. ¢ 3
targeted d ecr tc
l degradation yp — ® proteome Q.
pathway adaption 2
engagement J > "<‘
T
~
L transcriptional m
transcription reprogramming
Q99 x factor binding
A vV ——— AN
[AY

{

decryptD

L

Q

£ 2 EHERRARRRK
] @ irs

(]

T

Fig. 1 Tracing drug mechanism of action by dose-dependent proteome- and PTM-wide measurements. (a) Schematic dose response curves illustrating
extraction of pECsy: —log, effective drug concentration to achieve 50% of the maximal effect as quantitative measures of target or pathway potency. (b)
Example volcano plot of a typical omics dose-response dataset, where each data point is a dose-response curve. The relevance boundary (combination of
fold change and alpha threshold) identifies down- and up-regulated responses with false discovery rate (FDR) control. (c) Schematic of how a drug's
mechanism unfolds in a cell: target binding or degradation (decryptT/decryptC/decryptD), pathway engagement (decryptM/decryptX), proteome
reprogramming (decryptE), and ultimately cellular consequences. TFs: transcription factors.
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(decryptT for target binding, decryptC for covalent modalities or
decryptD for degraders), through pathway engagement (decryptM
for protein modifications; decryptX for interactions with RNA or
DNA), and proteome reprogramming (decryptE for protein expres-
sion), eventually leading to cellular consequences (Fig. 1c). Repre-
sentative experimental approaches that probe such layers, together
with their advantages, limitations, and the added value of dose-
response analysis, are summarized in Table 1.

Dose-response target deconvolution

Typically, the first task in drug MoA studies is to identify which
(target) proteins directly interact with a compound of interest. There
is a large body of chemical proteomics and chemical biology litera-
ture describing how scientists employ competition-binding activity-
based proteome profiling (ABPP) or competition-binding affinity
purifications (AP) for this purpose (recently reviewed!). However,
only the integration of a dose-response element into these assays
allows estimation of apparent binding affinities (for non-covalent
compounds), engagement potencies (for covalent compounds), or
degradation efficiency (for degraders and some molecular glues).
Several landmark studies have shown the feasibility and utility of
dose-response measurements in this context, notably for determin-
ing the target space and selectivity profiles of kinase inhibitors>71,
In these reports, the authors probed the binding landscape of
clinical kinase inhibitors in cancer cells using immobilized, broad-
spectrum kinase inhibitors (Kinobeads). By measuring competition
across a concentration series, they derived apparent dissociation
constants for each pair of > 200 clinical-grade compounds, > 200
kinases, and hundreds of other proteins. From the several hundred
thousand resulting dose-response curves, they could measure the
relative selectivity of each kinase inhibitor. This would not have
been easily achieved using replicate experiments performed at a
single concentration (e.g., T uM; Fig. 2). Building on this powerful
blueprint, many subsequent proteomic target identification studies
have incorporated dose-response analysis, extending to inhibitors
of HDAC complexes(®, ligands of reactive cysteines®'9 or lysines!'"],
natural products and drugs of DNA-binding proteins in conjunction
with photo-affinity labeling (PAL)"2-14], or other compounds with
unclear MoA such as lipoic acid['%l,

One limitation of affinity- or activity-based proteome profiling
methods is that they require the synthesis of suitable chemical
probes. Stability-based chemoproteomic approaches are an alterna-
tive, measuring compound-induced changes in protein structural
stability, typically reflected as increased or decreased resistance to
thermal or chemical denaturation or enzymatic degradation (a
broad range of methods is reviewed in George et al.l'?]). A widely
implemented example is thermal proteome profiling (TPP), which
quantifies changes in soluble protein abundance after heat-induced
unfolding and aggregation. Multiple variations of this principle exist,
including full melting-curve formats that quantify compound-
induced shifts in protein melting temperature (Tm) by monitoring
soluble protein abundance across a thermal gradient('”.'8], and
condensed formats such as PISA or single-temperature approaches
that directly monitor changes in protein solubility. This is distinct
from dose-response curves, which would measure soluble protein
abundance as a function of ligand concentration to report on
engagement potency!’®-2l. Complementary approaches rely on
chemical denaturation instead of thermal destabilizing proteins by
altering solvent polarity or dielectric properties, inducing precipita-
tion, for example, through the use of organic solvents22-24],
chaotropic agents!23], kosmotropic ions[2%], or pH shifts[27,
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While thermal or chemical shifts measured at a single compound
concentration can be useful for target engagement of a known hit,
but the magnitude of the shift itself is not proportional to binding
affinity28l. Proteins differ intrinsically in their thermal or chemical
stability, and numerous cellular factors, such as PTM or protein-
protein interactions, can influence apparent shift size. Embedding a
concentration series into these assays therefore provides a more
informative readout, by converting a binary yes/no stability effect
into a dose-dependent response curve. This supports discrimination
between direct and indirect effects, ranking of targets, and permits
estimation of apparent engagement potencies—information that
cannot be inferred from shift magnitude alone. As an example, the
isothermal dose-response (ITDR) configuration of TPP measures
protein stabilization (or destabilization) as a function of ligand
concentration. Applying ITDR measurements at different tempera-
tures led to the discovery of phenylalanine hydroxylase as an off-
target of the HDAC inhibitor Panobinostat?9., Similarly, the Integral
Solvent-Induced Protein Precipitation (iSPP) was recently imple-
mented in a dose-response format to identify the molecular target
of a P. falciparum antibioticl39l,

The third widely used class of proteome-wide target identifica-
tion approaches measures compound-induced protection (or
deprotection) of proteins against limited proteolysis. The LiP-MS
(limited proteolysis-mass spectrometry) methodB' and the related
peptide-centric local stability assay (PELSA)2 exploit the principle
that ligand binding alters protein conformation and thus protease
accessibility. Like TPP and related stability-based methods, LiP-MS or
PELSA do not require chemical probes and can, in principle, map the
drug binding site on the protein. Both methods have been config-
ured to measure the dose-response characteristics of compounds
such as the pan-kinase drug Staurosporine by LiP-MS and natural
product-inspired drugs, including rapamycin, geldanamycin, tane-
spimycin, and ganetespib by PELSAB2331,

Dose-response pathway engagement

Having identified candidate targets, some of the next questions
to ask are: Does the compound modulate any signaling pathways? If
so, which ones are engaged and at what drug concentration? Phos-
phoproteomics has been applied extensively to investigate these
questions. However, the interpretation of much of the published
data is complicated by the fact that drugs are typically used at far
too high concentrations, often making it difficult or even impossible
to distinguish cause and effect34-36l, Budayeva et al. have addressed
this shortcoming in a specific scenario by performing site-specific
and dose-response phosphorylation measurements in muscle cell
myotubes downstream of activating the receptor tyrosine kinase
MUSKE7L, The recently introduced decryptM technology by Zecha et
all is a compelling example of how the potency dimension helps
to address these questions in a systematic and pharmacology-
minded way. Briefly, cells of interest are treated with a dose range of
a drug, lysed, and proteolytically digested; then enrichment work-
flows (e.g., for phospho-, acetyl-, and ubiquitylated-peptides) are
applied before LC-MS/MS quantification across the dose series. For
each PTM-bearing peptide, a dose-response curve is fitted as
outlined above.

Because many signaling pathways are controlled by reversible
protein phosphorylation mediated by specific kinases (and phos-
phatases), phosphorylation events downstream of the kinase
inhibitor drug target respond with similar pECs, values if part of the
same pathway, and comparable in potency to drug-target binding.
Hence, the potency dimension can often distinguish two or more
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Table 1. Collection of experimental approaches probing each layer of drug mode of action including their advantages, limitations, and the added value of dose-
response analysis.

Technique Examples What it's used for How DRC concept adds value Pros/cons and our view Ref.
Target binding
Affinity Immobilized Capture drug-protein Converts single pulldowns  Pros: Use of native lysates preserves PTMs, cofactors, [6,8,15,
enrichment- probes/matrices  interactions in native into quantitative DRC allow complexes; broad family applicability (kinases, 29]
based (Kinobeads, HDAC proteome; Immobilized calculation of KPP, ECs; HDAGCs) or individual compounds; PAL extends to
beads, tailored matrices enrich stable, Filters out sticky or weak/transient binders; enrichment reduces
resins) high-affinity interactions;  nonspecific binders; Reveals proteome complexity.
Photoaffinity PAL uses UV-induced relative selectivity across Cons: Loses intact-cell context; Immobilization bias;  [12,13]
labeling (PAL) crosslinking to also isoforms, families, or PAL probe derivatization required; unselective
capture weak, transient complexes. photocrosslinking.
interactions that could Recommendation: Use for quantitative target space
otherwise be lost during mapping and selectivity profiling.
washes. Both enable
identification of direct
binders and selectivity
profiling.
Activity 15%-gen family- Covalent probes enable Single-dose competition Pros: Enables target deconvolution and covalent [44-46]
enrichment- directed probes labeling of active enzymes assays can overestimate ligand discovery; isoTOP-ABPP provides site-specific,
based (e.g., serine or identification of drug weak or nonspecific quantitative readouts. Some probes (e.g., kinase
hydrolases, DUBs, targets. Competitive interactions, producing probes X044) cell-permeable, allowing live cell
kinases) incubations reveal target  false-positives for profiling.
2"d-gen proteome- €Ngagement by blocking  ligandability. DRC enable Cons: Probe chemistry and steric bias can influence  [9_17,
wide (e.g., probe labeling. First- quantitative extraction of  labeling patterns; Bulky enrichment handles often 47,48]
DecryptC: cysteine- generation probes profile 1C5o/K; values, target limit cell permeability; requires well-designed
reactivity, isoTOP-  €nzyme family activity, occupancy, and relative electrophiles tailored to nucleophile classes.
ABPP, TRAP) while second-generation  selectivity across enzymes, Recommendation: Use for covalent drug profiling
approaches achieve nucleophile classes, or and site-specific ligandability mapping. The
proteome-wide reactivity  reactive cysteines, allowing competition format is also valuable for confirming
and site-specific ligand- rigorous ranking of cysteine intracellular target engagement and deconvolution of
ability mapping. reactivity and ligandability. covalent compounds.
Denaturation- 2D-TPP, ITDR, Infer drug-target In living cells, PTMs and PPIs  Pros: Applicable in intact cells; no compound [18-20,
based conc-PISA, mTSA  engagement in living cells influence thermal stability;  modification required; Detects diverse binding 23,29]

(thermal)

Denaturation- iSPP, solvent-
based induced
(chemical) precipitation

(ethanol, acetone),

chaotropic/
kosmotropic
agents (urea,

guanidinium), pH

shifts

Conformation Lip-Quant, PELSA

al/Accessibilit
y-based

or lysates via changes in
thermal stability and
protein solubility after
ligand binding.

Used to probe protein
stability, folding, and
ligand binding, particularly
useful for thermolabile
proteins or systems where
temperature-based
denaturation is unsuitable.

Detects ligand-induced
structural changes via
altered protease or
chemical reactivity,
supporting target
validation and binding-site
mapping.

Pathway modulation/consequence of binding

DecryptM

Phosphorylation,
acetylation, or
ubiquitinylation

Measures dose-dependent
PTM responses to reveal
pathway engagement and
cellular mechanisms of
drug on/off-target activity.

dose-response curves clarify
dose-dependent stabiliza-
tion, reduce false positives,
and rank direct vs indirect
targets.

Dose-dependent
stabilization reveals specific,
saturable ligand binding,
distinguishing true from
indirect targets. It enables
quantitative estimation of
apparent affinity (ECsy/
PECs5), supports target
ranking by stabilization
potency, and reduces false
positives from indirect or
nonspecific effects.

DRC analysis confirms
ligand-induced protection,
ranks stabilization, maps
binding sites, and limits
indirect false positives.

Enables separation of direct
and indirect effects, clusters

PTM sites by shared potency

(ECsp) to reveal pathway
wiring and compares

pathway engagement across

compounds or cell types.

modes, including allosteric interactions; Dose-
response analysis enables ranking and hit
prioritization beyond binary hit-calling.

Cons: 2D-TPP requires large sample numbers (dose x
temperature); Condensed TPP/iTSA are higher
throughput but less sensitive; Indirect effects
complicate interpretation; Not all proteins show
measurable thermal shifts (false negatives); PTMs and
PPIs can cause apparent stability changes (false
positives), though DRC mitigates this.
Recommendation: Use to confirm intracellular target
engagement, ideally in combination with orthogonal
approaches for higher confidence.

Pros: Suitable for proteins and complexes sensitive to [22-27]
heat; reveals ligand-induced stabilization or
destabilization; flexible across solvents, salts, and pH,
compatible with DRC analysis.

Cons: Can have reduced proteome coverage for very
insoluble or membrane-associated proteins; depends
on chemical buffer composition.

Recommendation: Use as a complementary
approach to thermal profiling when heat is
unsuitable, particularly for ligand screening or dose-
response target identification.

Pros: Can provide site-specific binding information. [32,33,
Cons: Not all compounds induce structural changes 49]
that alter the accessibility of the protein, resulting in

false negatives.

Recommendation: Use for precise binding site

mapping and target validation, ideally in combination

with orthogonal methods to confirm hits and mitigate

the risk of missed interactions.

Pros: Provides systems-level resolution of [1,37—
downstream signaling; distinguishes multiple 40]
pathways engaged by a drug; links potency

information to pharmacological effects; available

across different PTMs.

Cons: interpretation can be complicated by parallel
pathways or cell-type context.

Recommendation: Use to gain mechanistic insight

beyond direct targets, connecting drug binding to
functional signaling outcomes. Best applied over

multiple doses and, ideally, across different cell

models.
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Table 1. (continued)
Technique Examples What it's used for How DRC concept adds value Pros/cons and our view Ref.
Cellular consequence/adaptation/death
DecryptE Drug-induced Measures dose-dependent Differentiates rapid Pros: Provides a global view of proteome remodeling [2]
proteome proteome changes to abundance changes linked  with broad coverage and quantifiable ECs, values,
abundance reveal how drugs remodel to direct target effects from uncovering unexpected drug effects beyond known
changes proteostasis through direct slower, adaptive targets.
and adaptive effects. reprogramming; allows Cons: Expression changes are often indirect and slow,
quantification of potency complicating mechanistic interpretation; requires
windows; distinguishes careful temporal design.
primary MoA from Recommendation: Use to map systems-level
secondary downstream consequences of drug treatment, compare potency
effects; and helps correlate  windows across pathways and phenotypes, and
molecular changes with identify adaptive mechanisms, ideally in combination
phenotypic outcomes. with faster-acting assays like phosphoproteomics for
mechanistic resolution.
Phenotypic  Cell viability, Measures the functional Resolves the concentrations Pros: Directly links molecular perturbations to cellular  [2,39,
apoptosis, consequences of drug at which phenotypic outcomes; enables ranking of compounds by potency 42,50]

differentiation, cell
cycle arrest,
metabolic activity
assays

treatment on cellular
phenotypes across a range
of concentrations,
providing insight into
efficacy, toxicity, and
therapeutic windows.

changes arise relative to
molecular target
engagement, distinguishing
direct drug effects from
downstream or off-target
consequences. Enables

correlation of molecular ECs,

values with phenotypic
outcomes and informs safe,
effective dosing ranges.

and efficacy; provides translationally relevant data for
therapeutic assessment.

Cons: Often integrate multiple direct and indirect
mechanisms, complicating mechanistic
interpretation; slower phenotypic responses may lag
behind molecular changes; high variability may
require multiple replicates and careful experimental
design.

Recommendation: Use in combination with
molecular profiling (e.g., decryptM or decryptE) to

map drug potency, mechanism, and therapeutic
window, and to validate that molecular engagement
translates into functional cellular effects.
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Fig. 2 Distinguishing targets of Lestaurtinib by dose-response competition affinity profiling. (a) Volcano plot showing kinases identified in replicate
single-dose (1 uM) competition binding experiments using Kinobeads, illustrating limited selectivity resolution. (b) Corresponding dose-response curves
(dose range, 0-30 pM) for selected kinases derived from Kinobead profiling, enabling quantification of apparent binding affinities (pK4?°?: —log apparent

dissociation constant).

pathways that are engaged by the drug in parallel. One can further
strengthen such pathway assignments by comparing potency
responses of multiple compounds that share a molecular mecha-
nism (typically the same known targets). For instance, if multiple
inhibitors of the same kinase produce overlapping potency profiles
in downstream phosphorylation sites, the collective data reinforces
the mechanistic links. A similar argument can be applied when
analyzing the same compound across different cancer cell lines.

The value of decryptM experiments is exemplified in Fig. 3 for the
multi-kinase inhibitor Dasatinib. The drug is a very potent (~1 nM)
designated BCR-ABL inhibitor used for the treatment of BCR-ABL
positive chronic myeloid leukemia (CML), but it also has additional
targets with various potencies. Figure 3a summarizes the distribu-
tions of phosphosite potencies across three cancer cell lines.

Berner et al. Targetome 2026, 2(1): e001

Following the logic above, most drug-regulated phosphorylation
sites in the CML cell line, K562, have similar potencies and are all
downstream of the driver kinase BCR-ABL. In the cutaneous squa-
mous cell carcinoma, A431, which is driven by a genomic EGFR
amplification, the picture is entirely different because Dasatinib is
only a weak EGFR inhibitor (~1 uM), which is why most drug regu-
lated phosphopeptides cluster around that concentration. Yet
another profile is observed for KRAS-mutated A549 lung carcinoma
epithelial cells because Dasatinib inhibits a range of kinases in this
cell line that are not necessarily present in others.

DecryptM profiles thus provide valuable information about drug
MoA beyond target proteins and has already led to important
insights. For instance, a study investigating Rituximab has illumi-
nated how CD20 binding by the therapeutic antibody leads to
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Fig. 3 Measuring pathway engagement by decryptM profiling. (a) Summary plots of the potencies by which phosphopeptides are regulated by Dasatinib

showing that the polypharmacology of Dasatinib leads to different profiles
marked in color. (b) Dose-response curves of the four examples highlighted
its targets and, in turn, leading to different but matching potencies of kinase

overactivation of the MAPK pathway, resulting in cancer cell
deathl'. It also provided an explanation for the experimentally
observed cell killing synergy of the DNA-damaging agent Gemci-
tabine in combination with ATR inhibitors8, and showed that cova-
lent KRAS inhibitors exert their cytostatic effects by first shutting
down MAPK signaling, before shifting cancer cells to a quiescent
stateB9, DecryptM profiles of protein acetylation unexpectedly
showed that HDAC6 shared many substrates with other HDACs!“0l,
The decryptM approach is still very new. Therefore, all the above
examples were published by the same laboratory. Because of its
substantial utility, it can be anticipated that the method will find
increasing uptake in the community.

Dose-response proteome
reprogramming

There are many ways in which drugs can change proteostasis, and
the extent to which drugs change proteome expression can vary
drastically. Also, these changes can occur directly as a consequence
of drug MoA or more indirectly because of cellular adaptation
processes. Both are dose-dependent, both contribute to the overall
cellular fate, but often operate along different time scales, which
may or may not involve transcriptional processes of regulating
protein abundance. Studying both transcriptional and proteomic
regulation improves understanding of drug MoA because each layer
may reveal different parts of the regulatory cascade. While RNA-Seq

in different cell lines. Phosphorylation sites on Datastinib target proteins are
in panel (a), illustrating the different potencies with which Dasatinib inhibits
substrate phosphorylation.

typically detects early, rapid, and sometimes drastic transcriptional
responses, the kinetics and effect sizes of protein expression
changes, if any, often do not reflect the behavior on the mRNA level.
On the contrary, proteomics measures the actual effectors directly
that eventually determine cellular fate. Integrating both mRNA and
protein information layers might, therefore, help identify direct and
indirect effects and reconstruct a clearer mechanistic chain of
events.

Eckert et al.l? have investigated the dose dependency of drug-
induced protein abundance changes (decryptE for protein expres-
sion) systematically in a Jurkat T-cell line model for 144 clinical
drugs, covering > 8,000 proteins and generating > 1 million dose-
response curves. For instance, drugs like pomalidomide induced the
degradation of proteins such as IZKF (ECs, of 10 nM), and ZPF91
(ECso of 270 nM) within minutes to hours, and without changing
transcript levels (Fig. 4). Somewhat similarly, methotrexate led to
increased abundance of its target protein DHFR without requiring
increased transcript levels. The proposed MoA is that methotrexate
binding to DHFR releases the protein from its own mRNA so that it
can be translated, resulting in increased DHFR abundancel*',

Conversely, drugs like the proteasome inhibitor carfilzomib
interfere with a central cellular process (proteasomal protein degra-
dation), and can (indirectly) lead to very widespread changes in
protein abundance that often goes along with widespread changes
at the transcriptional level, processes that are usually slower (hours
to days) than direct drug effects on their target proteins. Carfil-
zomib creates a 'protein folding crisis' in the cell, resulting from the
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Fig. 4 Dose-response curves for proteins and their mRNA transcripts for (a) the degrader pomalidomide, (b) the DHFR inhibitor methotrexate, (c) the

proteoasome inhibitor carfilzomib, and (d) the HDAC1-3 inhibitor vorinostat.
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accumulation of proteins usually bound for degradation. One cellu-
lar response is upregulation of transcript and protein levels of the
chaperone HSPAG6, likely to increase folding capacity. While the
effect sizes of this response are very different (~300-fold at the tran-
script level, ~20-fold at the protein level), the potency dimensions
are identical. Yet other drugs such as vorinostat do not appear to
have any influence on target protein or transcript abundance. Still, a
big surprise was the finding that HDAC inhibitors can lead to the
loss of protein expression of T-cell receptor components, likely
explaining why the drug is clinically efficacious for the treatment of
certain lymphomas and autoimmune diseases but not for solid
tumors. A key insight from the Eckert et al. study was that protein
abundance of most canonical drug targets did not change in
response to drugs. In fact, only ~25% of drugs induced abundance
changes in at least one of their known target proteins, and these
were often among hundreds to thousands of other proteins that
also changed abundance. Therefore, while decryptE experiments
often reveal the molecular processes underlying the fate of drug-
treated cells, they can generally not be used for the purpose of
target identification.

These examples illustrate the challenges inherent to the integra-
tion of different layers of regulation and underscore the complexity
of drug MoA, which still lacks a comprehensive, system-level under-
standing. In our view, advancing this field requires a stronger
emphasis on dose-response measurements and multi-omics inte-
gration rather than evaluating isolated events in single layers and
using arbitrary drug concentrations. While the latter might seem-
ingly be easy to understand and interpret, it overlooks the intercon-
nected nature of cellular regulation.

Dose-response linkage of multi-omics
to cellular phenotypes

Mapping molecular perturbations to phenotypic outcomes (e.g.,
viability, apoptosis, differentiation, cell cycle arrest, etc.) is a further
important step in understanding drug MoA. Recognizing that drugs
may exert their direct and indirect effects at many levels of
biological regulation and along different time scales, a few studies
have extended dose-response measurements across time points
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and/or OMICs layers. Integrating this data can yield insight into
which molecular events correlate best with timed cellular effects
and at which dose. An example of such a 2-dimensional time-dose
linked analysis was also provided by Eckert et al. on the example of
methotrexate and its target DHFR (Fig. 5). While the potency by
which the drug led to increased protein abundance remained
broadly the same over time, the full effect was only reached after 18
h of drug treatment.

Recently, Kabella et al.?% demonstrated how all the decrypt levels
can come together to elucidate the MoA of (covalent) mutant KRAS
inhibitors. They observed very strong consistency between the
potencies of the drug in dose-dependent reactive cysteine (target
binding, decryptC), phosphoproteome (pathway engagement,
decryptM), protein expression (proteome reprogramming,
decryptE), and phenotypic (cell viability) profiling experiments
(Fig. 5). An additional temporal dimension enabled the authors to
separate the immediate mechanistic drug effects on the ERK path-
way from the later cellular drug adaptation effects, notably exit from
the cell cycle.

The consistency of the potency dimension across OMICs layers
may not always be as perfect. Zecha et al.'l measured cell viability
dose-response curves (days of drug incubation) in parallel with PTM
curves (hours of drug incubation), and noted that canonical phos-
phorylation site responses often occurred at slightly lower doses
(i.e., more potent) than the phenotypic pECs,. This is consistent with
the expectation that signaling modulation precedes phenotypic
changes. Eckert et al.2 also measured phenotypic endpoints (cell
metabolic activity and toxicity) across the same dose range used for
determining protein expression changes. They also found that most
drugs induced protein abundance changes that were more potent
than the measured phenotypic effect. This is again consistent with a
molecular cascade preceding phenotypic endpoints, which also may
reflect a certain buffering capacity of the cell against the effect of
drug perturbation.

Another example is Li et all*l who measured transcriptomics,
proteomics, and phosphoproteomics dose responses at multiple
time points to define biological responses for chemical safety
assessment. This is interesting because dose-response molecular
profiles may help delineate therapeutic windows. In other words,
what is the dose range at which target inhibition and pathway
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Fig. 5 Multi-dimensional dose-response measurements. (a) 2D time-dose coupling of DHFR abundance changes in response to methotrexate. (b) Multi-
decrypt-dimension profiling of the KRAS inhibitor sotorasib revealing potency coherence at all levels of MoA elucidation.
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modulation occur without triggering broad off-target proteome
perturbation? A drug whose binding potency is much lower than
the onset of proteome reprogramming has a favorable window.
Conversely, narrow windows may predict toxicity. Therefore, multi-
omics and time-resolved dose-dependent measurements can
inform molecular pharmacology as well as address important trans-
lational concerns.

Recommendations, limitations, and
future directions

The decrypt-technologies presented here are omics-assays where
drug effects are tested and measured in one sample at the same
time. The first important question is how many different doses
should one apply. Due to the omics-nature of the assays, an often
recommended statistical power analysis will yield a different answer
for each measured analyte because they have different, analyte-
specific, inherent variances. Thus, we base our recommendations
rather on the following logic. The goal of a well-set-up decrypt
experiment is to capture the full sigmoidal behavior of different
dose-response profiles. Thus, we strongly recommend using a very
broad concentration range (26 logs), ideally with half-logarithmic
spacing. This experimental design ensures that plateaus for on- and
off-targets are covered as well as the transition phase between
them. Adding even more data points will obviously improve the
curve-fitting statistics and the accuracy of the ECs, estimation. Addi-
tionally, the inclusion of more than one vehicle control can improve
the front plateau estimation, and thus improve the relevance scor-
ing in CurveCurator. Here we note that dose-replicates provide little
benefit and should rather be replaced by more drug doses. In other
words, an experiment with eight doses in duplicate is inferior to 16
single doses, while the experimental effort is the same. The use of
statistical tools like CurveCurator to obtain dose-response parame-
ters that are backed by relevance thresholds and proper FDR control
is strictly necessary, because only significant dose-response curves
have valid curve estimates. In short, we propose an ideal experimen-
tal design that consists of =12 individual doses plus two controls.
If replicates are needed for confidence intervals around the curve
estimates to statistically compare two dose-response curves within
or across datasets, we recommend to repeat this single-dose design
r-times.

A common concern is missing values (NaNs) from mass-
spectrometry-based assays and how they affect decrypt-
experiments. Unfortunately, there is no single solution that suits all
situations, because NaNs occur owing to different reasons.
CurveCurator can handle NaNs, and there is generally no need for
imputation. However, fewer observations will reduce the power/
confidence of the curve. If NaNs are not missing at random, e.g., in
decryptT, these NaNs could indicate perfect competition and should
not be statistically penalized. In these cases, low-value imputation is
an acceptable strategy, but in any case, we recommend careful
evaluation of the effects of imputation on results and their
interpretation.

The second important question is the choice of an optimal drug
exposure time(s) that aligns with the kinetics of anticipated molecu-
lar changes. In other words, one needs to be mindful of slow binders
(such as HDAC inhibitors), the short timescale of PTM-driven
signaling (minutes), the time required for protein expression
changes (hours), and the time until phenotypic changes manifest
(days). For the longer time scales, we advise time-dose experiments
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to distinguish signaling from endpoints. In the case of analyzing
many compounds, e.g., as part of screening campaigns, we recom-
mend prioritizing molecules by potency (first), and effect size
(second) for follow-up work using orthogonal assays to validate the
presumed target-to-phenotype hypothesis.

While applicable in many scenarios, dose-resolved proteomic
methods have limitations. At a technical level, chromatography-
coupled mass spectrometry has dynamic range limits (depending
on instrumentation and configuration), which can bias observed
dose-response curves to high-abundant analytes. In such cases (or
for confirmatory experiments), other readouts such as antibodies
can be used for proteins or PTM sites of interest, but the extent to
which these are available, and can be practically implemented for
confirming hundreds or thousands of dose response curves, is
limited.

Not all drugs follow a simple sigmoidal dose-response characteris-
tic in which case other curve-fitting models“3] may be more appro-
priate, but will also require more dose points for robust statistics. In
addition, if a compound modulates the activity of functionally unre-
lated targets with similar potency, the downstream omics layers
may be difficult to interpret. Furthermore, compounds may address,
e.g., enzymatic activity without engaging signaling pathways or
leading to changes in proteostasis. In such cases, absence of a
proteomic response does not equal absence of biological relevance.
Obviously, if a certain biology is absent in a cellular model, or the
drug cannot permeate the plasma membrane, a possible target
effect cannot be observed. Additionally, in heterogeneous cell
populations, potency and effect size values may be obscured by
opposing or synergistic cellular effects. We also note that many
proteins or PTMs with dose-response curves could represent
bystanders with no relevance for any biological effect. Because func-
tional validation approaches depend heavily on the initial discovery,
it is difficult to make general recommendations. However, it is
generally good practice to extend the investigation (in a global or
targeted fashion) to additional biologically relevant systems (or
controls). Alternative chemical probes can also be a valuable
approach, but finding probes that have the same/very similar affin-
ity, selectivity, and MoA as the compound of interest is not trivial.
Genetic perturbations are also challenging because they often oper-
ate on very different time and effect scales as drug perturbations.
Still, a (permanent or conditional) knockout or overexpression
system can be informative for certain aspects of drug MoA elucida-
tion such as establishing a particular protein as a driver of a path-
way or the mediator of a cellular adaptation or endpoint.

Many extensions of the overall approach can be envisaged. For
instance, future opportunities include combining dose-response
measurements with sub-cellular fractionation, single-cell, or protein
turnover assays. All the work published so far used 2D cell culture
models that often only partially reflect the pathology addressed by a
drug. While technically more demanding, extension of the approach
to spheroids, organoids, animal models, and, eventually, human
beings would be highly desirable. Given that the conceptual and
statistical framework, as well as the analytical technology, are now in
place, such systems-wide dose-response measurements are becom-
ing feasible and hold considerable promise for future applications in
mechanistic biology, drug discovery, and pharmacology.
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