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Abstract
Target  discovery  is  pivotal  in  cutting-edge  drug  development  and  impacts  translational  outcomes  and  efficacy,  the  current  state  of  research  depends

heavily  on  empirical  approaches  that  can  be  costly,  while  there  is  no  publicly  available  database  of  drug-target  for  polypharmacological  correlates

incorporating relevant clinical data. In the present perspective, 3 Therapeutic Target Database (TTD) exports are utilized: (1) counts of unique target classes

having at  least  one approved drug,  (2)  approved-drug counts  per  target  class,  and (3)  the top 20 de-duplicated drug-driven target  co-occurrence pairs.

These  data  enabled  development  of  a  data-driven  map  of  the  targetome.  Through  comparison  of  class  richness  versus  translational  yield,  rating  of

frequency of  drug driven co-occurrence target pairs,  we identified emerging,  high-yield and biologically  plausible but understudied target families,  and

guide rational combination therapies.  The next generation of research should update drug-target databases with more clinical information, quantitative

polypharmacology, and provenance metadata to advance combination therapy.
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TTD is a professional resource database integrated with therapeu-

tic  targets,  related  drugs,  clinical  data  and  various  forms  of  associ-
ated  information.  The  aim  of  TTD  is  to  offer  drug  developers  and
researchers data required for target priority setting and drug deve-
lopment[1].  Inputs  comprised  three  TTD-derived  tables:  target  class
counts  (e.g.,  G-protein  coupled  receptor  (GPCR)  rhodopsin  =  99
classes), approved drug counts by target class (e.g., GPCR rhodopsin
= 585 approved drugs;  kinase = 201),  and a  ranked list  of  the drug
driven  top  20  target  co-occurrence  pairs  (Frequency  =  Number  of
distinct drugs annotated to both targets). Comparing class richness
and  approved  drug  density  enabled  identification  of  translation
gaps,  and  ranking  co-occurrence  frequency  identified  robust  co-
target  observations.  Co-occurrence  was  treated  as  an  empirical
hypothesis generator but not proof of clinical synergism/safety.

From Supplementary  Figs  S1 and S2,  it  is  observable  that,  GPCR
Rhodopsin  Family[2−5] (99  classes;  585  approved  drugs)  and
kinases[6−10] (62  classes;  201  approved  drugs)  are  dominant  of  the
translational research. This reflects the comprehensive study of drug
chemical space and target structure. Other drug-rich classes include
peptidases[11−15],  nuclear  hormone  receptors[16−19],  paired-donor
oxidoreductases[20],  voltage-gated  ion  channels[21−25],  cytokine
receptors[26−30],  and immunoglobulins[31−35].  mRNA targets[36−41] (21
classes; 25 approved drugs) indicate their ability for translation. This
strengthen  the  value  of  sustained  study  in  delivery
technologies[37,42,43] and  modification  engineering[44−46].  Multiple
oxidoreductase[47−49] subclasses,  certain  carbonic  anhydrase
isoforms[50−57],  specialized  transferases[58,59],  and  selected  solute
carriers[60−65] are  consistently  represented  in  the  class  catalog.
However,  they  have  relatively  few  approved  drugs  associated  with
them. These gaps likely owing to the challenges in target tractabil-
ity[66,67],  or  inadequate  probe  development[68,69],  rather  than  a  lack
of biological relevance.

 Empirical co-occurrence targets
As  shown  in Fig.  1,  target  co-occurrence  (is  observed  in  several

approved drugs)  does not imply to be identical  to direct  biological
synergy.  Nevertheless,  the  targets  of  co-occurring  that  have  been
identified in the current perspective are not arbitrary coincidences;
all  potential  co-occurrence  pairs  are  based  on  the  approved  drug
entries in TTD (all  drugs have been through regulation process and
shown to be clinically  effective).  In large groups of  major co-occur-
rences,  we  also  confirm  its  biological  and  clinical  significance  by
referencing  mechanistic  research  and  combination  therapies  (as
described  in  each  subsection),  to  make  sure  that  these  co-occurre-
nce pairs are of real therapeutic interest and not random associations.

The  most  common  co-occurrence  (shared  by  10  drugs)  is  nore-
pinephrine  transporter  (NET)-serotonin  transporter  (SERT)[70−74].
Dopamine transporter (DAT)-NET[70,72,75] and DAT-SERT[76−79] are also
recurrently  observed.  Also,  several  pairs  of  serotonin/
dopamine[80−83] receptors (e.g., 5-HT 2A receptor (HTR2A)-dopamine
D2  receptor  (D2R)[84−87])  overlap.  These  trends  indicate  the
widespread polypharmacological strategy in central nervous system
(CNS)  studies  and  provide  a  perspective  of  rationally  optimised
multi-target  therapy  or  controlled  combinations  in  affective  and
cognitive illnesses with stringent safety recording.

Bacterial  DNA  gyrase[88−90] and Staphylococcus topoisomerase
IV[91] co-occur frequently[92−96] (shared by nine drugs). This supports
the  development  of  dual-target  strategies  to  surmount  antibiotic
drug resistance[97].

Prostaglandin  G/H  synthase  1  (COX-1)  and  prostaglandin  G/H
synthase  2  (COX-2)  co-occur  frequently[98−101],  reflecting  the
polypharmacology  of  nonsteroidal  anti-inflammatory  drugs
(NSAIDs)  in  the  prostanoid  signaling  pathway.  Furthermore,  recur-
rent  Janus  kinase  (JAK)  pairings  (e.g.,  JAK1-JAK2)[102−105] have  been
identified as  empirically  validated combinations  for  immunomodu-
lation.  Building  on  this  observation,  we  hypothesize  that  potential
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co-occurrences linking JAKs to broader categories, such as cytokine
receptors[106] and immune surface markers[107], could further expand
the  immunomodulatory  combination  therapies.  Collectively,  these
empirically  observed JAK pairings and the apparent JAK-associated
co-occurrences  (with  cytokine  receptors  or  immune  surface  mark-
ers),  constitute  inflammation-related  JAK-centric
combinations[108−110].  This  mapping  facilitates  the  identification  of
synergistic  immunomodulatory  windows,  while  immune-related
adverse events should be carefully profilied.

Specific  oncology  oncogenes  clusters,  including  epidermal
growth  factor  receptor  (EGFR)-ErbB2  tyrosine  kinase  receptor
(HER2)[111−114],  cyclin-dependent  kinase  4  (CDK4)-cyclin-dependent
kinase  6  (CDK6)[115−117],  tyrosine-protein  kinase  kit  (KIT),  and vascu-
lar  endothelial  growth  factor  receptor  2  (KDR)[118−121],  as  well  as
multiple  intra-family  receptor  tyrosine  kinase  links[122−124],  recur
among top co-occurrences. This indicates the common multi-inhibi-
tion of the kinase[125−130]. It is worth noting that SynLethDB[131,132] is
a  mechanistic  database  of  experimentally  confirmed  synthetic
lethality  (SL)  interactions.  Unlike  the  drug-driven  co-occurrence
targetets  shown  in  our  analysis  of  TTD  database,  the  SL  target
combinations listed in the SynLethDB database are carefully assem-
bled  including  specific  annotations  of  their  underlying  molecular
mechanisms.  Moreover,  the  database  adds  a  parameter  of  Statistic
Score which quantifies the reliability of a certain genetic interaction,
with the help of which the positive SL pairs can be distinguished in
comparison with negative pairs. It is important to underline that SL
pairs  offer  sound  evidence  of  a  synergistic  effect  of  two  different
targets  that  is  strictly  genetically  validated,  and  its  lethal  activity
depends  on  a  co-effect  between  two  different  targets,  therefore,

giving  high  therapeutic  specificity.  Here  are  examples  of  this:  the
DNA damage response associated kinase group PARP1-BRCA2[133], is
one of the core SL interactions of DNA damage response pathways,
and  is  widely  annotated  in  SynLethDB.  The  relevance  of  oncology
kinase clusters  in translation research is  emphasised from both our
drug-driven  co-occurrence  targets  and  the  SL-validated  genetic
interactions.  Such  results  warrant  the  design  of  selective  multi-
kinase  inhibitors,  or  biomarker-directed  combination,  which  over-
come  acquired  chemoresistance.  A  specialized  database  with  drug
combinations,  namely  DrugCombDB[134] is  also  important  in  targe-
tome research. It  is  a database of pairings of clinically applied drug
combinations,  a  large  part  of  which  applies  to  cancer  treatment
wherein  combination  therapy  has  become  a  clinical  practice.  It  is
worth noting that at present DrugCombDB pays much attention to
drug-drug combination without recording the associations between
such  combinations  and  their  corresponding  targets  (genes/
proteins).  It  is  hoped that more can be done to update drug-target
databases with cross databases in the future. For example, combin-
ing DrugCombDB’s clinical combination data with TTD’s drug-target
associations,  SynLethDB’s  synthetic  lethality  gene  pairs,  and  func-
tional genomics data (e.g., CRISPR analysis) will enable the construc-
tion of  a  comprehensive  "genetic  interaction-target-drug-combina-
tion therapy" network. In addition to increasing the identification of
target combinations by anchoring them to clinically validated thera-
pies,  this  cross  combined  platform  will  support  the  rational  design
of  biomarkers-directed  combinations  therapies,  which  ultimately
will advance the targetome-precision combination therapies.

Additional  intra-family  pairs  (e.g.,  carbonic  anhydrase
isoforms[135−137], vasopressin receptor subfamilies[138−140], muscarinic

 

Fig. 1  Top 20 de-duplicated drug-driven target co-occurrence pairs. The relation between targets is represented by the number of shared drugs.
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receptor  subfamilies[141−144])  and  immune  surface  marker
pairings[145−148] show  mechanistic  plausibility  across  diverse  thera-
peutic areas, both in malignant and non-malignant disorders.

 Future perspective
Underinvested  but  biologically  plausible  classes  should  be

studied  through  structural  biology,  ligand  activity  measurements
and  the  development  of  probes. To  further  justify  the  notion  that
these targets are underinvested and yet biologically plausible, three
essential  strategies  might  be  considered  in  future  research  and
database  integration  that  include:  bibliometric  measurements  to
compare  levels  of  published  studies,  citations  and  distribution  of
research  institution  of  these  targets  against  dominant  classes  (e.g.
GPCRs and kinases) by PubMed or Web of science; clinical pipelines
measures  can  be  used  to  measure  distribution  of  drugs  across
preclinical  and  clinical  development;  and  database  derived
measures can combine measures of target druggability, probe qual-
ity  and  preclinical  efficacy  (e.g., in  vivo tumor  growth  inhibition
rates)  to  confirm  that  these  targets  which  lack  sufficient  trans-
lational  support  have  actual  comparable  biological  potential  to
well-invested  classes.  Such  attempts  should  use  fragment-based
screening[149,150],  DNA-encoded  libraries[151,152],  cryo-EM[153,154],
Alpha  Fold,  and  phenotypic  assays[155,156]. The  excellent  quality  of
the  probes[157] will  reduce  the  risk  of  downstream  research
programs  and  validate  therapeutic  hypotheses.  There  is  a  high
translational  potential  of  the  mRNA/oligonucleotide  targets,  the
tissue-targeted  delivery[158−160] systems,  chemistry  to  reduce  the
immunogenicity[161−163],  and  the  evaluation  of  the  safety  of  the
chronic  administration[164,165] should  be  studied.  Design  of  CNS
multi-target  single-molecule  agents[166−169],  combinations  that  can
regulate  the  activity  of  NET/SERT/DAT[70−79] and  HTR2A-D2R[84−87]

are possible. Selective multi-kinase inhibitors or biomarker-directed
combinations  based  on  EGFR/HER2/KIT/KDR[111−114,118−121] clusters
can  be  engineered  which  can  overcome  anticancer  resistance  in
tumors[170,171].  Dual-target  antibiotics[92−96] (e.g.,  bacterial  DNA
gyrase and Staphylococcus topoisomerase IV) has been adopted as a
combination practice to overcome antibiotic resistance. JAK-centric
combinations[108−110] in  preclinical  stages  could  be  investigated  to
show the regions of synergy and safety of immunomodulation. Initi-
ating  clinical  combination  regimens  can  be  done  with  high-
frequency co-occurrence pairs combining preclinical screening, and
combinations  with  already  well-established  safety  profiles  can  be
considered  first,  which  ultimately  can  reduce  the  time  and  cost  of
clinical translation.

Although TTD is significant, the research community needs more
interactive,  interoperable  targetome  data  resource  with  indication
level mappings (e.g.,  line of therapy and patient subgroup); quanti-
tative  polypharmacology  metadata  (e.g.,  potency  and  exposure-
adjusted potency such as  Ki,  IC50 values,  engagement ratio  of  each
target  and  combination  target  selectivity);  annotations  of  clinical
outcome  and  safety  data  (e.g.,  trial  endpoints,  phase  transitions,
reasons why some treatments can fail); metadata on chemical/probe
quality  and  structure-activity  relationship  (e.g.,  GWAS  findings,
somatic mutation prevalence, RNA expression levels, CRISPR results);
curated records of negative or failed combination therapies includ-
ing  specific  failure  cases  (such  as  side  effects  of  antidepressant
drugs  which  are  associated  with  their  blockade  of  the  SERT,  NET,
and  DAT[172]);  and  open  data  sharing.  Notably,  future  drug-target
databases ought to incorporate the capability of resources by target
synergy i.e. SynLethDB[131,132]. which provides a Statistic Score which
differentiates  positive  SL  interactions  over  negative  pairs,  a  crucial
gap  in  the  current  drug-target  database  in  terms  of  genetic

understanding.  This  complements  the  drug-driven  co-occurrence
data  analyzed  in  our  perspective.  Integrating  SL  data  ensures  a
comprehensive  representation  of  drug  combinations.  Modernized
databases  can  provide  a  more  comprehensive  risk-benefit  assess-
ment  framework  for  researchers  through incorporating parameters
like  Statistic  Score  in  SynLethDB[131,132],  thereby  reducing  transla-
tional  failure  rates  and  accelerating  the  development  of  safe  and
effective  drug  combinations.  And  efforts  should  be  put  into  the
curation and sustainability of dynamic targetome databases[173−175].

In  dealing  with  gap  in  the  technology  of  database  construction,
there is  a  need to consider  the incorporation of  superior  data inte-
gration  modalities  and  standard  mapping  of  terminologies  in  the
elegization  of  targetome-related  databases[176−178]. Intersection  of
heterogeneity  in  the  context  of  multi-source  data  (e.g.  clinical
records,  omics  data  and  drug  information)  can  be  addressed  by
leveraging semantic interoperability protocols (e.g., Unified Medical
Language  System  (UMLS)[179] to  cross-align  terms)  and  privacy-
preserving  record  linkage  (PPRL)  methods[180,181].  Automated  data
validation  pipelines  (e.g.  rule-based  cheques  to  maintain  consis-
tency of coding, e.g. MedDRA to classify adverse events) can reduce
manual curation errors, and improve data quality[182,183]. Also, using
modular  database  structures,  with  dynamic  schema  designs  (e.g.
graph  databases  to  capture  target-drug-pathway  relationships),
enables  updates of  new data (e.g.  SL pairs,  polypharmacology pro-
files)  and  ensure  complex  querying  to  answer  polypharmacology
studies[184].  Incorporation  of  these  technical  features  will  enhance
the  efficiency,  scalability  as  well  as  utility  of  targetome  databases,
allowing more accurate combination therapy to be designed[185].

This  perspective  analysis  is  based  on  the  number  of  classes,
approved drug density,  and co-occurrence frequency trends.  These
measures  should  be  validated  experimentally  and  they  cannot  be
substituted with genetic evidence, intensive efficacy data and safety
profiles.

Our  current  TTD-driven  targetome  analysis  confirms  GPCRs  and
kinases as dominant translational classes, mRNA modalities as high-
yield emerging therapies, and oxidoreductases, carbonic anhydrase
isoforms,  and  specific  transporters  as  underinvested,  but  biologi-
cally  plausible  opportunities,  and  we  also  show  common  drug
driven  co-occurrence  targets  which  offer  potential  combination
translation.  To  translate  these  insights  into  precision  medicine,
future  databases  must  prioritize  integration  of  multi-dimensional
data  (specific  clinical  details,  quantitative  polypharmacology

 

Fig. 2  Data-driven targetome discovery and databases.
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metrics,  functional  genomics  data,  and  curated  negative/failure
records),  achieving  cross-database  interoperability  (linking  TTD's
drug-target  associations  with  SynLethDB's  synthetic  lethality  pairs
and  DrugCombDB's  clinical  combinations  via  "drug-gene"  meta-
data),  and  implementing  provenance  tracking  and  realizing  open
data  sharing,  and  ultimately  creating  a  comprehensive  "genetic
interaction-target-drug-combination therapy" network, as shown in
Fig.  2,  that  facilitates  combination  therapies  and  reduces  transla-
tional risk.
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