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Abstract

Target discovery is pivotal in cutting-edge drug development and impacts translational outcomes and efficacy, the current state of research depends

heavily on empirical approaches that can be costly, while there is no publicly available database of drug-target for polypharmacological correlates

incorporating relevant clinical data. In the present perspective, 3 Therapeutic Target Database (TTD) exports are utilized: (1) counts of unique target classes
having at least one approved drug, (2) approved-drug counts per target class, and (3) the top 20 de-duplicated drug-driven target co-occurrence pairs.
These data enabled development of a data-driven map of the targetome. Through comparison of class richness versus translational yield, rating of
frequency of drug driven co-occurrence target pairs, we identified emerging, high-yield and biologically plausible but understudied target families, and
guide rational combination therapies. The next generation of research should update drug-target databases with more clinical information, quantitative

polypharmacology, and provenance metadata to advance combination therapy.
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TTD is a professional resource database integrated with therapeu-
tic targets, related drugs, clinical data and various forms of associ-
ated information. The aim of TTD is to offer drug developers and
researchers data required for target priority setting and drug deve-
lopment('l. Inputs comprised three TTD-derived tables: target class
counts (e.g., G-protein coupled receptor (GPCR) rhodopsin = 99
classes), approved drug counts by target class (e.g., GPCR rhodopsin
= 585 approved drugs; kinase = 201), and a ranked list of the drug
driven top 20 target co-occurrence pairs (Frequency = Number of
distinct drugs annotated to both targets). Comparing class richness
and approved drug density enabled identification of translation
gaps, and ranking co-occurrence frequency identified robust co-
target observations. Co-occurrence was treated as an empirical
hypothesis generator but not proof of clinical synergism/safety.

From Supplementary Figs ST and S2, it is observable that, GPCR
Rhodopsin Family2=31 (99 classes; 585 approved drugs) and
kinasesl6-191 (62 classes; 201 approved drugs) are dominant of the
translational research. This reflects the comprehensive study of drug
chemical space and target structure. Other drug-rich classes include
peptidases'’=13], nuclear hormone receptors!'®-19, paired-donor
oxidoreductases??, voltage-gated ion channels2’-23], cytokine
receptors26-39, and immunoglobulins®'-35, mRNA targets36-411 (21
classes; 25 approved drugs) indicate their ability for translation. This
strengthen the value of sustained study in delivery
technologiesB742431 and modification engineering™-4¢l. Multiple
oxidoreductasel*’-491  subclasses, certain carbonic anhydrase
isoformsl59-571 specialized transferasesi®>9, and selected solute
carrierslo9-651 are consistently represented in the class catalog.
However, they have relatively few approved drugs associated with
them. These gaps likely owing to the challenges in target tractabil-
ityl6667], or inadequate probe development©869), rather than a lack
of biological relevance.

© The Author(s)

Empirical co-occurrence targets

As shown in Fig. 1, target co-occurrence (is observed in several
approved drugs) does not imply to be identical to direct biological
synergy. Nevertheless, the targets of co-occurring that have been
identified in the current perspective are not arbitrary coincidences;
all potential co-occurrence pairs are based on the approved drug
entries in TTD (all drugs have been through regulation process and
shown to be clinically effective). In large groups of major co-occur-
rences, we also confirm its biological and clinical significance by
referencing mechanistic research and combination therapies (as
described in each subsection), to make sure that these co-occurre-
nce pairs are of real therapeutic interest and not random associations.

The most common co-occurrence (shared by 10 drugs) is nore-
pinephrine transporter (NET)-serotonin transporter (SERT)70-74],
Dopamine transporter (DAT)-NET70.72751 and DAT-SERT6-79 are also
recurrently  observed. Also, several pairs of serotonin/
dopaminel80-83] receptors (e.g., 5-HT 2A receptor (HTR2A)-dopamine
D2 receptor (D2R)B4-87l) overlap. These trends indicate the
widespread polypharmacological strategy in central nervous system
(CNS) studies and provide a perspective of rationally optimised
multi-target therapy or controlled combinations in affective and
cognitive illnesses with stringent safety recording.

Bacterial DNA gyrasel®-90 and Staphylococcus topoisomerase
IV co-occur frequently®2-91 (shared by nine drugs). This supports
the development of dual-target strategies to surmount antibiotic
drug resistancel®’],

Prostaglandin G/H synthase 1 (COX-1) and prostaglandin G/H
synthase 2 (COX-2) co-occur frequently®8-101]  reflecting the
polypharmacology of nonsteroidal anti-inflammatory drugs
(NSAIDs) in the prostanoid signaling pathway. Furthermore, recur-
rent Janus kinase (JAK) pairings (e.g., JAK1-JAK2)[102-105] have been
identified as empirically validated combinations for immunomodu-
lation. Building on this observation, we hypothesize that potential

www.maxapress.com/targetome


mailto:xujz@cpu.edu.cn
mailto:assaraf@technion.ac.il
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
mailto:xujz@cpu.edu.cn
mailto:assaraf@technion.ac.il
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
https://doi.org/10.48130/targetome-0026-0001
http://www.maxapress.com/targetome

Targetome

5-HT 1D receptor (HTR1D

ATP-binding cassette transporter C9 (ABCC9
Carbonic anhydrase Il (CA-Il
Cyclin-dependent kinase 6 (CDK6
Dopamine D2 receptor (D2R

-4

Dopamine D3 receptor (D3R)-

Erbb2 tyrosine kinase receptor (HER2

Janus kinase 2 (JAK-2

Monoamine oxidase type A (MAO-A)-
Monoamine oxidase type B (MAO-B
Muscarinic acetylcholine receptor M3 (CHRM3
Prostaglandin G/H synthase 2 (COX-2
Proto-oncogene c-Ros (ROS1)-

Target

Serotonin transporter (SERT)-

Staphylococcus Topoisomerase IV (Stap-coc parC
T-cell surface glycoprotein CD3 (CD3)-

Vascular endothelial growth factor receptor 2 (KDR)-
Vasopressin V2 receptor (V2R

Data-driven targetome discovery and databases

10

5-HT 1B receptor (HTR1B)
5-HT 2A receptor (HTR2A
ALK tyrosine kinase receptor (ALK

ATP-binding cassette transporter C8 (ABCC8)

Janus kinase 1 (JAK-1)

Leukocyte surface antigen Leu-16 (CD20)
Monoamine oxidase (MAO

Carbonic anhydrase | (CA-l)
Muscarinic acetylcholine receptor M2 (CHRM2
Proto-oncogene c-Ret (RET
Tyrosine-protein kinase Kit (KIT)
Vasopressin Vla receptor (V1AR
Vasopressin V1b receptor (V1BR

Cyclin-dependent kinase 4 (CDK4)
Dopamine D2 receptor (D2R) _

Epidermal growth factor receptor (EGFR
Norepinephrine transporter (NET)

Bacterial DNA gyrase (Bact gyrase)
Prostaglandin G/H synthase 1 (COX-1

Target

Fig. 1 Top 20 de-duplicated drug-driven target co-occurrence pairs. The relation between targets is represented by the number of shared drugs.

co-occurrences linking JAKs to broader categories, such as cytokine
receptors!'9! and immune surface markers('97], could further expand
the immunomodulatory combination therapies. Collectively, these
empirically observed JAK pairings and the apparent JAK-associated
co-occurrences (with cytokine receptors or immune surface mark-
ers), constitute inflammation-related JAK-centric
combinations!'9%8-1191, This mapping facilitates the identification of
synergistic immunomodulatory windows, while immune-related
adverse events should be carefully profilied.

Specific oncology oncogenes clusters, including epidermal
growth factor receptor (EGFR)-ErbB2 tyrosine kinase receptor
(HER2)['11-1141 cyclin-dependent kinase 4 (CDK4)-cyclin-dependent
kinase 6 (CDK6)['15-117], tyrosine-protein kinase kit (KIT), and vascu-
lar endothelial growth factor receptor 2 (KDR)!''8-121], as well as
multiple intra-family receptor tyrosine kinase links['22-124, recur
among top co-occurrences. This indicates the common multi-inhibi-
tion of the kinasel'2>-130, |t is worth noting that SynLethDB['31.132] js
a mechanistic database of experimentally confirmed synthetic
lethality (SL) interactions. Unlike the drug-driven co-occurrence
targetets shown in our analysis of TTD database, the SL target
combinations listed in the SynLethDB database are carefully assem-
bled including specific annotations of their underlying molecular
mechanisms. Moreover, the database adds a parameter of Statistic
Score which quantifies the reliability of a certain genetic interaction,
with the help of which the positive SL pairs can be distinguished in
comparison with negative pairs. It is important to underline that SL
pairs offer sound evidence of a synergistic effect of two different
targets that is strictly genetically validated, and its lethal activity
depends on a co-effect between two different targets, therefore,
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giving high therapeutic specificity. Here are examples of this: the
DNA damage response associated kinase group PARP1-BRCA20'33], is
one of the core SL interactions of DNA damage response pathways,
and is widely annotated in SynLethDB. The relevance of oncology
kinase clusters in translation research is emphasised from both our
drug-driven co-occurrence targets and the SL-validated genetic
interactions. Such results warrant the design of selective multi-
kinase inhibitors, or biomarker-directed combination, which over-
come acquired chemoresistance. A specialized database with drug
combinations, namely DrugCombDBU'34 is also important in targe-
tome research. It is a database of pairings of clinically applied drug
combinations, a large part of which applies to cancer treatment
wherein combination therapy has become a clinical practice. It is
worth noting that at present DrugCombDB pays much attention to
drug-drug combination without recording the associations between
such combinations and their corresponding targets (genes/
proteins). It is hoped that more can be done to update drug-target
databases with cross databases in the future. For example, combin-
ing DrugCombDB'’s clinical combination data with TTD's drug-target
associations, SynLethDB's synthetic lethality gene pairs, and func-
tional genomics data (e.g., CRISPR analysis) will enable the construc-
tion of a comprehensive "genetic interaction-target-drug-combina-
tion therapy" network. In addition to increasing the identification of
target combinations by anchoring them to clinically validated thera-
pies, this cross combined platform will support the rational design
of biomarkers-directed combinations therapies, which ultimately
will advance the targetome-precision combination therapies.
Additional intra-family pairs (e.g, carbonic anhydrase
isoformsl'35-137] vasopressin receptor subfamilies!'38-140] muscarinic
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receptor subfamilies!'-144) and immune surface marker
pairings['45-1481 show mechanistic plausibility across diverse thera-
peutic areas, both in malignant and non-malignant disorders.

Future perspective

Underinvested but biologically plausible classes should be
studied through structural biology, ligand activity measurements
and the development of probes. To further justify the notion that
these targets are underinvested and yet biologically plausible, three
essential strategies might be considered in future research and
database integration that include: bibliometric measurements to
compare levels of published studies, citations and distribution of
research institution of these targets against dominant classes (e.g.
GPCRs and kinases) by PubMed or Web of science; clinical pipelines
measures can be used to measure distribution of drugs across
preclinical and clinical development; and database derived
measures can combine measures of target druggability, probe qual-
ity and preclinical efficacy (e.g., in vivo tumor growth inhibition
rates) to confirm that these targets which lack sufficient trans-
lational support have actual comparable biological potential to
well-invested classes. Such attempts should use fragment-based
screeningl'#915%,  DNA-encoded libraries!'51152],  cryo-EMI153.154],
Alpha Fold, and phenotypic assays!'5>156], The excellent quality of
the probes!’>”] will reduce the risk of downstream research
programs and validate therapeutic hypotheses. There is a high
translational potential of the mRNA/oligonucleotide targets, the
tissue-targeted deliveryl58-1601 systems, chemistry to reduce the
immunogenicity!'61-163], and the evaluation of the safety of the
chronic administrationt'41651 should be studied. Design of CNS
multi-target single-molecule agents['66-169 combinations that can
regulate the activity of NET/SERT/DAT70-791 and HTR2A-D2R[84-87]
are possible. Selective multi-kinase inhibitors or biomarker-directed
combinations based on EGFR/HER2/KIT/KDRI'11-114118-121] c|ysters
can be engineered which can overcome anticancer resistance in
tumorsl'701711 Dual-target antibiotics®2-%1 (e.g., bacterial DNA
gyrase and Staphylococcus topoisomerase V) has been adopted as a
combination practice to overcome antibiotic resistance. JAK-centric
combinations!08-1101 in preclinical stages could be investigated to
show the regions of synergy and safety of immunomodulation. Initi-
ating clinical combination regimens can be done with high-
frequency co-occurrence pairs combining preclinical screening, and
combinations with already well-established safety profiles can be
considered first, which ultimately can reduce the time and cost of
clinical translation.

Although TTD is significant, the research community needs more
interactive, interoperable targetome data resource with indication
level mappings (e.g., line of therapy and patient subgroup); quanti-
tative polypharmacology metadata (e.g., potency and exposure-
adjusted potency such as Ki, I1C5, values, engagement ratio of each
target and combination target selectivity); annotations of clinical
outcome and safety data (e.g., trial endpoints, phase transitions,
reasons why some treatments can fail); metadata on chemical/probe
quality and structure-activity relationship (e.g., GWAS findings,
somatic mutation prevalence, RNA expression levels, CRISPR results);
curated records of negative or failed combination therapies includ-
ing specific failure cases (such as side effects of antidepressant
drugs which are associated with their blockade of the SERT, NET,
and DATU72); and open data sharing. Notably, future drug-target
databases ought to incorporate the capability of resources by target
synergy i.e. SynLethDBI'3".132], which provides a Statistic Score which
differentiates positive SL interactions over negative pairs, a crucial
gap in the current drug-target database in terms of genetic
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understanding. This complements the drug-driven co-occurrence
data analyzed in our perspective. Integrating SL data ensures a
comprehensive representation of drug combinations. Modernized
databases can provide a more comprehensive risk-benefit assess-
ment framework for researchers through incorporating parameters
like Statistic Score in SynLethDBU'31.132), thereby reducing transla-
tional failure rates and accelerating the development of safe and
effective drug combinations. And efforts should be put into the
curation and sustainability of dynamic targetome databases!73-1751,

In dealing with gap in the technology of database construction,
there is a need to consider the incorporation of superior data inte-
gration modalities and standard mapping of terminologies in the
elegization of targetome-related databases!'76-178], Intersection of
heterogeneity in the context of multi-source data (e.g. clinical
records, omics data and drug information) can be addressed by
leveraging semantic interoperability protocols (e.g., Unified Medical
Language System (UMLS)['79) to cross-align terms) and privacy-
preserving record linkage (PPRL) methods!'8%181], Automated data
validation pipelines (e.g. rule-based cheques to maintain consis-
tency of coding, e.g. MedDRA to classify adverse events) can reduce
manual curation errors, and improve data quality!'821831, Also, using
modular database structures, with dynamic schema designs (e.g.
graph databases to capture target-drug-pathway relationships),
enables updates of new data (e.g. SL pairs, polypharmacology pro-
files) and ensure complex querying to answer polypharmacology
studies!'84, Incorporation of these technical features will enhance
the efficiency, scalability as well as utility of targetome databases,
allowing more accurate combination therapy to be designed!'83],

This perspective analysis is based on the number of classes,
approved drug density, and co-occurrence frequency trends. These
measures should be validated experimentally and they cannot be
substituted with genetic evidence, intensive efficacy data and safety
profiles.

Our current TTD-driven targetome analysis confirms GPCRs and
kinases as dominant translational classes, mRNA modalities as high-
yield emerging therapies, and oxidoreductases, carbonic anhydrase
isoforms, and specific transporters as underinvested, but biologi-
cally plausible opportunities, and we also show common drug
driven co-occurrence targets which offer potential combination
translation. To translate these insights into precision medicine,
future databases must prioritize integration of multi-dimensional
data (specific clinical details, quantitative polypharmacology
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Approved drug counts per
target class

Therapeutic Target Database

Top 20 de-duplicated drug driven
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Fig. 2 Data-driven targetome discovery and databases.
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metrics, functional genomics data, and curated negative/failure
records), achieving cross-database interoperability (linking TTD's
drug-target associations with SynLethDB's synthetic lethality pairs
and DrugCombDB's clinical combinations via "drug-gene" meta-
data), and implementing provenance tracking and realizing open
data sharing, and ultimately creating a comprehensive "genetic
interaction-target-drug-combination therapy" network, as shown in
Fig. 2, that facilitates combination therapies and reduces transla-
tional risk.
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