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Abstract
Araucaria  angustifolia is  a  notable  tree  species  distributed  in  the  Atlantic  forest  of  central-eastern  South  America.  It  has  been  considered  a
critically  endangered  species.  Due  to  competition  from  other  land  uses,  including  agriculture  and  Pinus  plantations, A.  angustifolia has  lost
distribution and plantation area. This study aims to investigate new co-products of A. angustifolia waste products that can be used to prevent
agricultural diseases. Brown spot is the most common foliar disease of soybeans and is caused by Septoria glycines. In this work, we evaluated the
antifungal  activity  of  plant tissue-derived compounds against S.  glycines.  The ethyl  acetate extract  of A.  angustifolia leaves showed antifungal
activity and was analyzed by HPLC-PDA and GC-MS. The results show two compounds as the principal constituents of antifungal activity. Both
compounds showed a base peak at m/z 79.08, but they could not be identified by comparison with GC-MS spectral libraries. However, peaks at
m/z 91 and 119 indicate that both compounds may contain aromatic structures. As a result of this study, we found that A. angustifolia can be used
to obtain reliable antifungal compounds against S. glycines.
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 Introduction

Biomass  from  plantations  and  native  forests  are  an  impor-
tant  source  of  secondary  metabolites  from  which  new  bioac-
tive  compounds  can  be  obtained[1].  These  co-products  are
derivatives  that  can  be  exploited  as  biofuels,  cosmetics,  food
additives,  pharmaceuticals,  and  natural  products.  Co-products
have  a  high  value-to-volume  ratio  and  previous  research  has
shown  that  they  can  increase  the  profitability  of  forest
species[2].  Co-products  can  be  obtained  from  forest  residues.
The volume of  forest  residues produced during forest  harvest-
ing operations varies significantly and is contingent upon forest
type,  harvesting  techniques,  and  site  features.  For  example,
forest  residues  in  Canada  range  from  8.6  to  59.5  million  dry
tonnes  per  year[3].  The  theoretical  potential  of  the  residues
composed  of  branches  and  tree  tops  derived  from  all  Turkish
forests  has  been  estimated  at  5  to  7  million  fresh  tonnes[4].
Forest  waste,  including  litter,  slash,  and  bark,  is  an  important
biomass  resource  for  energy  production,  providing  a  renew-
able energy solution in many countries. However, these wastes
can  also  be  used  to  extract  natural  products  such  as  antifun-
gals.  In  addition,  the  term  'Low-Value  Biomass'  is  used  to
describe  this  category  of  forest  waste,  which  consists  of  non-
commercial materials typically left on site after harvesting. The
emergence  of  co-product  markets  has  increased  the  motiva-
tion  to  harvest  and  use  this  material.  Additionally,  removing
'Low-Value  Biomass'  could  reduce  the  risks  to  forest  health
associated with wildfire, disease, and pests[5].

Araucaria angustifolia is a striking subtropical tree growing in
the  Atlantic  Forest  of  Brazil,  Argentina,  and  Paraguay.  This
species has high-quality timber and is therefore harvested and

cultivated  for  timber.  It  also  plays  an  important  role  in  the
phytogeographic  characterization of  the  Atlantic  Forest  and is
considered  a  critically  endangered  species[6].  This  species  has
16,000 ha planted in Argentina alone, yet A. angustifolia has lost
distribution and plantation area due to competition from other
land  uses,  including  agriculture  and  pinus  plantations,  which
have a higher growth rate and a more developed international
market[7].  Other  factors  include  a  lower  growth  rate  and  poor
seed  availability.  Nevertheless, A.  angustifolia shows  high
growth  potential  under  good  development  conditions[8].  In
addition,  previous  observations  have  shown  that  the  initial
application  of  nitrogen  and  phosphorus  is  necessary  to
improve the growth and quality of A. angustifolia[9].

This  paper  highlights  the  importance  of  co-products  to
increase  the  range  of  uses  of A.  angustifolia.  In  this  sense,  the
search for new uses for A. angustifolia can revalue its plantation
for productive purposes. The study of secondary metabolites in
the  tissues  of  this  species  has  been  carried  out  by  several
authors  who  have  reported  lignans  and
proanthocyanidins[10,11].  However,  no  studies  were  found  on
the  evaluation  of  antifungal  activity  in  soybean  end-of-cycle
diseases.  New  co-products  of A.  angustifolia may  help  to
increase  its  profitability  as  a  plantation  tree  and  improve  its
conservation status.

In this context, the aim of this study is to investigate novel A.
angustifolia co-products.  These  co-products  can  be  used  as
botanical  fungicides  against Septoria  glycines Hemmi.  This
fungus  causes  Septoria  brown  spot  in  soybean  production
areas  such  as  the  United  States,  Argentina,  Brazil,  and  China,
where  it  is  a  very  common  foliar  disease[12].  Sensitivity  to
quinone outside inhibitor (QoI) fungicides due to single amino
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acid substitutions in the cytochrome b gene has been reported
in  soybean  fungal  pathogens[13,14].  In  this  line,  fungicides  with
quinone  outside  inhibitor  (QoI)  active  ingredients  have
contributed to the selection and development of  QoI-resistant
populations of S. glycines.  Recently, the molecular mechanisms
of  QoI  resistance  in  these  populations  were  investigated  by
targeted  analysis  of  the  cytochrome  b  gene,  and S.  glycines
isolates  showed  differential  susceptibility  to  QoI  fungicides.
Characterization  of  the  cytochrome  b  gene  revealed  a  muta-
tion when glycine was replaced by alanine[15] .

The results of this investigation have helped to highlight the
importance  of  by-products  of A.  angustifolia and  have  contri-
buted to the research of new compounds with antifungal activ-
ity against resistant fungal isolates of S. glycines.

 Materials and methods

 Experimental design
The  experimental  design  is  based  on  bio-guided  assays,

which involve separating the active fractions from the inactive
fractions. In this study, the ethyl acetate extract of A. angustifo-
lia leaves  was  first  obtained  and  then  fractionated  by  column
chromatography.  The fractions obtained were further fraction-
ated until the final fraction was obtained. This fraction was then
injected into GC-MS and HPLC-DAD for analysis.

 Isolation and structural elucidation of the
antifungal compound

The  botanical  identification  of A.  angustifolia was  based  on
the  original  descriptions.  The  taxonomic  determination  was
made with the help of specific literature[16] and a specimen was
deposited  in  the  herbarium  as  a  voucher.  The  leaves  of A.
angustifolia leaves  were  dried,  ground  in  a  mill,  and  then
extracted using ethyl acetate solvent at room temperature. The
plant material was immersed for 24 h, filtered, and evaporated
under reduced pressure. The material was stored at 2 °C. Then,
the  ethyl  acetate  extract  (4  g)  was  dissolved  in  28  mL
dichloromethane  (DClM) :  ethyl  acetate  (AcOEt),  (3:1,  v/v)  and
loaded onto a glass column packed with silica gel 60 (240−400
mesh).  The  column  was  then  eluted  with  a  series  of  liquid
mobile  phases:  200  mL  DClM  :  AcOEt  (3:1,  v/v),  25  mL  AcOEt
and  70  mL  (methanol)  MeOH.  Following  this  procedure,  four
fractions were obtained. These were named F1, F2, F3, and F4.
Thin  layer  chromatograms  of  F1,  F2,  F3,  and  F4  were  then
performed on silica gel G60 F254 using DClM : MeOH (3:1, v/v)
as the mobile phase. F1 was then associated with the inhibition
zone observed in bioautography.  Ten sub-fractions of  F1 were
then  obtained.  These  were  numbered  F1.0  to  F1.9.  To  obtain
them, 1.9 g of F1 was introduced into the fractionation column
packed with silica gel 60 (240−400 mesh) equilibrated in DClM.
The column was then eluted with a series of mobile phases: 25
mL  DClM,  40  mL  DClM  :  AcOEt  (3:1),  10  mL  AcOEt  and  30  mL
MeOH.  Then,  F1.1,  F1.2,  and  F1.3  fractions  were  pooled  and
259.9 mg were injected into a column equilibrated with DClM :
hexano  (1:1).  The  column  was  then  eluted  with  a  series  of
mobile phases: 30 mL DClM : Hex (1:1), 20 mL DClM and 40 mL
AcOEt. These fractions were combined and new silica gel chro-
matograms  were  run,  eluted  with  n-hexane  and  ethyl  acetate
to give f1.123 (Scheme 1). The antifungal activity of f1.123 was
tested in triplicate using the bioautography test method.

 Gas chromatography–mass spectrometry (GC-
MS)

The  f1.123  fraction  was  dissolved  in  ethyl  acetate  and  then
injected  into  a  gas  chromatograph  (Clarus  580-SQ8,  Perkin
Elmer). Data was analyzed using TurboMass 6.1.0 software. The
chromatographic  column  used  was  a  DB5  (30  m  length,  0.25
mm  internal  diameter,  0.25 µm  film  thickness).  Helium  was
employed  as  the  carrier  gas  at  a  flow  rate  of  1  mL·min−1.  The
injector  temperature  was  set  at  250  °C.  The  temperature
program  began  at  100  °C  for  3  min,  followed  by  a  ramp  from
100 to 280 °C at a rate of 5 °C per min, and then held at 280 °C
for 7 min. A volume of 1 µL of the f1.123 fraction was injected.
Compound identification was accomplished by comparing the
mass spectra fragmentation patterns of the f1.123 fraction with
those stored in NIST MS Search 2.0.

 Liquid chromatography analysis (HPLC-DAD)
Fraction  f1.123  was  dissolved  in  methanol  to  obtain  a

concentration  of  2.05  mg·ml−1.  The  analysis  was  conducted
using  an  HPLC  system  consisting  of  a  Waters  1525  pump
coupled  with  a  PDA  detector  (Waters  2998).  Chromatograms
were  acquired  at  220  nm,  and  spectra  were  recorded  in  the
range of  200 to  300 nm.  The chromatographic  separation was
performed on a C18 column (25 cm × 4.6 mm × 5 µm, Agilent).
The  mobile  phase  consisted  of  a  mixture  of  water  and
methanol (3:7), flowing at a rate of 1.0 mL·min−1[17] ).

 In vitro antifungal assay-bioautography test
The  fungal  strains Septoria  glycines (EO  001)  were  obtained

from  LABIFITO  (National  University  of  Tucuman,  Argentina).
Thin layer chromatograms of the ethyl acetate leaf extract were
obtained on silica gel G60 F254 using DClM : MeOH (3:1, v/v) as
mobile  phase.  They were allowed to dry in  a  laminar  flow and
then  each  was  covered  with  5  mL  of  YMDAL  medium  (4  g·L−1

yeast  extract,  4  g·L−1 malt  extract,  10  g·L−1 dextrose,  4.5  g·L−1

agar)  containing S.  glycines inoculum.  The  bioautographies
were incubated at 25 °C for 7 d. The absence of fungal growth
on  the  bioautogram  indicated  the  presence  of  antifungal
agents.  To  identify  the  antifungal  bands,  TLC  chromatograms
similar to those obtained for the bioautograms were observed
under 254 nm UV light. Solvent plates were used as controls[18].

 Statistical analysis
The  data  obtained  from  the  bioautography  test  were  anal-

ysed using Rmedic software. The Chi-square test was used[19].

 Results

The absence of fungal growth on the bioautogram indicates
the  antifungal  activity  of  the  acetate  extract  of A.  angustifolia
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Scheme  1    Scheme  of  fraction  production  (f1.123)  by
chromatography on a silica gel column.
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leaves against S. glycines (Fig. 1). A statistically significant differ-
ence (p = 0.04) was found between the control and the tested
fractions using the Chi-square test. The antimicrobial activity of
A. angustifolia has been reported by several authors[20,21]. In the
present  work,  it  is  reported  for  the  first  time  the  antifungal
activity of A. angustifolia against S. glycines. A notable aspect of
the  results  is  the  absence  of  fungal  growth  observed  in  the
upper half of the chromatogram. This pattern suggests that the
mobile phase (DClM : AcOEt; 3:1) can be utilized to separate the
bioactive components.

Antifungal  zones  were  observed  in  the  TLC  chromatograms
using  254nm  ultraviolet  light. Figure  2 compares  the  chro-
matograms  obtained  of  initial  fractions  F1,  F2,  F3,  F4,  and  the
f1.123  fraction.  As  seen,  the  f1.123  fraction  is  presented  as  a
single  band  that  shows  the  degree  of  purification  of  the
compound. The most interesting aspect of Fig. 2 is the location
of  the  spot  of  f1.123,  which  coincides  with  the  absence  of
fungal growth observed in Fig. 1. A similar association between
bioautograms  and  TLC  chromatograms  has  been  reported  by
other  authors  when  evaluating  the  antifungal  activity  of  plant
extracts against Fusarium species[22].

Phytochemical  compounds  of  plant  extracts  can  be  identi-
fied  by  spray  reagents.  Fraction  f1.123  was  revealed  with

reagents  to  determine  his  natural  chemistry.  The  fraction
showed  positive  results  after  spraying  with  p-anisaldehyde
reagent (to triterpene). Positive results were observed as purple
spots,  similar  to  those  reported  in  other  studies[23].  Neverthe-
less,  the fraction f1.123 showed negative results after spraying
with  Dragendorff's  reagent  (to  alkaloids)  and Natural  Products
Reagent (to flavonoids).

Chromatogram  of  f1.123  is  shown  in Fig.  3.  The  analysis
performed by HPLC–PDA showed the split of two compounds,
one eluted at 7.90 min, and the other at 8.84 min.

Gas chromatogram of f1.123 is  shown in Fig.  4.  Results  indi-
cated  that  the  fraction  is  enriched  in  two  compounds.  These
compounds  represent  76.6%  of  the  fraction  and  were  provi-
sionally  named compound 1  and compound 2.  The  difference
between the peaks of compounds 1 and 2 is minor (29.928 and
30.448  respectively).  It  can  be  highlighted  that  the  HPLC–PDA
chromatogram also showed two compounds with small  differ-
ences  between  peaks  (7.901  and  8,839).  These  relationships
may partly be explained by the similitude of compounds 1 and
2. Similar to our work, two compounds have been reported by
other  authors  using  the  relationship  between  the  chro-
matograms  obtained  by  HPLC-DAD  and  GC-MS.  This  relation-
ship has also been used by these authors to identify antifungal
compounds from plant species[24].

Figure  5 displays  the  fragmented  mass  spectra  and  low-
intensity molecular  ion peaks of  both compounds.  Compound

 
Fig.  1    Antifungal  activity  of  ethyl  acetate  leaves  extract  of A.
angustifolia against S. glycines. Arrow indicates the inhibition zone.

a b

 
Fig. 2    TLC of fractions viewed under UV light of 254 nm. (a)  F1,
F2, F3, and F4. (b) f1.123.
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Fig. 3    Chromatogram of f1.123, obtained by HPLC–PDA.
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1 (Fig. 5a) exhibited molecular ion peaks at m/z 374.1556, while

compound  2  exhibited  molecular  ion  peaks  at  m/z  302.2969

(Fig. 5b).  The presence of a base peak at m/z 79.08 and strong

peaks  at  m/z  147,  119,  91,  and  m/z  55  can  be  identified.

However,  neither  compound  can  be  identified  by  comparison

with NIST MS Search 2.0.

 Discussion

New natural products are needed to complement the use of
synthetic  chemicals  due  to  recent  reports  of  phytopathogen
resistance. Botanical fungicides are natural products and can be
used to control phytopathogens such as S. glycines. In line with
the  results,  the  antifungal  activity  of  ethanolic  extracts  of
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Fig. 4    Gas chromatogram of f1.123 fraction.
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Fig. 5    Mass spectra analysis of (a) compound 1 and (b) 2.
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Reynoutria  japonica against S.  glycines has  recently  been
reported[25].  Antifungal  activity  by  bioautography  is  reported
on thin layer chromatograms. These results are similar to other
researchers  who  found  antifungal  activity  against Septoria  trit-
ici[26]. These authors confirmed six antifungal sesquiterpenes as
natural  products.  In  this  paper,  two  new  co-products  from A.
angustifolia are  reported  for  the  first  time.  Both  compounds
showed  antifungal  activity  against  a  widespread  phytopatho-
gen  of  soybean, S.  glycines.  These  results  are  significant  consi-
dering  that  recent  publications  have  reported  up
to 47.5% resistance in various S. glycines isolates[15].

The  low  intensity  of  molecular  ion  peaks  suggests  the  pre-
sence  of  a  long  carbon  chains  in  compound  1  and  2.  Further-
more, the base peak at m/z 79 indicates that both compounds
could contain a diene or a triene in their chain[27−29].  Secondly,
the  mass  spectrum  of  1  and  2  compounds  present  prominent
peaks at  m/z 91 and 119,  which had been associated with the
presence of  aromatic  structures[30−32].  In  addition to  the  peaks
found at m/z 91 and 119, the mass spectra of both compounds
exhibit an additional peak at m/z 121, which has been ascribed
to  the  phydroxybenzoyl  cation[33,34].  Finally,  the  presence  of
peaks  at  m/z  147  has  been  associated  with  the  p-coumaroyl
radical's  loss[35,36].  These  results  support  the  idea  of  the  pre-
sence  of  aromatic  structures  in  compounds  1  and  2.  Other
researchers  have  associated  antifungal  activity  with  the  pre-
sence  of  aromatic  structures,  which  could  explain  the  bio-
activity observed in this study[37,38].

In accordance with the results obtained, we are of the opin-
ion that it is of great importance to continue the elucidation of
the bioactive compounds reported in this article.

 Conclusions

Two compounds have been isolated from A. angustifolia that
could  potentially  inhibit  Septoria  brown  spot  in  soybeans.  An
interesting  implication  of  this  study  is  that  the  co-products
from the waste of a critically endangered tree species such as A.
angustifolia can  be  used  to  produce  antifungal  compounds.
This  may increase its  ability  to  compete with other  species  for
land use.
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