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Abstract
Drying  inhibits  the  growth  of  microorganisms  by  reducing  the  amount  of  available  moisture.  This  slows  the  process  of  food  deterioration,

extends its shelf life, and makes it easier to access food year round. It is possible to use a variety of drying techniques, from expensive freeze-

drying to low-cost sun drying. For a high-quality dried aril, fruit is frequently pretreated before drying using techniques including hot water or

steam  blanching,  sulphuring,  vacuum,  microwave,  and  ultrasound.  Lower  shrinkage  and  improved  nutrient  retention  were  linked  to  freeze-

drying and ultra-assisted vacuum drying. These processes are however expensive and need to be optimized for less expensive drying techniques

and the use of pretreatment techniques that lower cost and enhance the quality of the dried arils. Fresh pomegranate arils have a shelf life of five

to seven days in cold storage, compared to more than 14 weeks for dried pomegranate arils stored in normal air. The major goals of the various

pretreatments are to maintain the final product's physical, physicochemical, and chemical characteristics and/or to accelerate drying. However,

knowledge of the fundamental causes is still incomplete and underexplored. In this review paper, the current state of research on pomegranate

aril  drying  is  critically  reviewed.  Various  pretreatments  and  drying  methods  were  assessed.  Various  drying  procedures'  energy  efficiency  and

product  attributes  are  summarized.  The  pretreatment  effects  on  the  quality  of  the  finished  product  are  highlighted.  Researchers,  engineers,

policy officials, and agroprocessors will find this material useful.
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 Introduction

 Pomegranate aril preservation with application of
drying

One  of  the  traditional  techniques  for  increasing  value  and
reducing  agricultural  produce  spoilage  is  drying.  Where  more
expensive  alternative  storage  methods  are  used,  this  is  espe-
cially  crucial[1].  Through  the  addition  of  one  or  more  energy
sources,  moisture  from  a  product  is  removed  throughout  the
drying  process[2,3].  The  physicochemical  characteristics  of  the
fruit are changed by drying, which can improve the flavor and
texture  of  specific  foods  like  raisins  and  dates[2].  It  lowers  the
product's  water  activity  (aw),  and  when  the  aw value  drops  to
less  than  0.6,  it  inhibits  the  growth  and  spread  of  spoiling
bacteria[4].  Drying also reduces product weight,  which reduces
packing,  storage,  and  shipping  costs  and  ensures  off-seasonal
production[5,6].  The  demand  for  dried  fruit  is  rising  globally  as
people become more health conscious[7].

Worldwide  pomegranate  production  is  steadily  rising,
although large post-harvest losses are also common, according
to  reports[8].  When  fruit  is  unsuitable  for  standard  processing
methods due to fruit cracking or sunburn, drying is a great way
to reduce post-harvest  losses  because it  extends  shelf  life  and
can  be  utilized  to  reduce  food  waste[9].  Numerous  products,
such  as  pharmaceuticals,  snacks,  cereals,  quick  drinks,  and
other  confectionary  items,  employ  dried  pomegranate  arils[10].

Dried  pomegranate  arils,  also  known  as  anardana,  are  utilized
both medicinally and culinarily in several regions of the world,
including  India[11].  Dried  arils  can  therefore  be  quite  useful  as
value-added  items  that  generate  revenue.  According  to
research conducted in the Indian Ramban area, anardana trade
accounts for at least 41% of all annual household income[11].

There are many different drying techniques. The most popu-
lar  are  freeze-drying,  hot  air  drying,  vacuum  drying,  and  solar
drying.  Each technique has pros and cons in terms of  the final
product's quality and how efficiently it uses energy. Pre-drying
procedures  are  frequently  used  in  conjunction  with  drying.
Pretreatment  enhances  the  drying  rate,  product  quality,  and
energy  efficiency  of  the  drying  process.  Enzymes  that  cause
enzymatic  browning,  which  lowers  the  product  quality,  are
rendered inactive by pretreatments[12−14]. Sensory qualities like
color, texture, taste, scent, microbiological activity, and general
acceptability are among the criteria that determine the quality
of  dried  pomegranate  arils[15].  These  elements  are  crucial
because  they  can  have  a  big  impact  on  customer  preferences
and,  if  not  taken  into  full  account,  can  lead  to  financial
losses[16,17].

Several  studies[12,18,19] have  looked  at  the  impact  of  drying
and  pretreatment  techniques  on  the  general  quality  of  the
completed  product.  However,  the  combined  impact  of
pretreatment and drying on quality was not sufficiently investi-
gated.  Reviews  on  pomegranate  fruit  often  discuss  the  fruit's
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chemistry,  nutritive  value,  and  pharmacology.  Therefore,  by
evaluating,  highlighting,  and  reflecting  on  recent  studies  on
pomegranate aril drying, this review seeks to close these gaps.
This  review  paper  compared  and  contrasted  several  pretreat-
ment and drying setups with an emphasis on product quality.

 The heat and mass transport phenomena of the fruit
drying process

Heat,  mass,  and  momentum  exchanges  all  occur  simultane-
ously  during  the  drying  of  fruit  materials  in  a  sophisticated
cellular  architecture  of  biological  tissue[20,21].  The  characteris-
tics of the material that affect the drying process are intricately
dependent  on  size,  shape,  porosity,  moisture  content,  and
time[22].  For  instance,  the  initial  moisture  level  and  the  bioac-
tive chemicals in pomegranate arils can vary depending on the
cultivar and fruit ripeness. The understanding, engineering, and
management of the drying process are further complicated by
the  intrinsic  diversity  of  biological  materials[23,24].  The  mass,
heat,  and  momentum  transfer  events  that  happen  during  a
typical  drying  process  are  shown  in Fig.  1[25].  Conduction  and
convection  are  the  most  common  heat  transfer  methods,  but

radiation is  typically  only  employed for  high-end items due to
its expensive cost[1,26].  Diffusion, capillary action, and bulk flow
are only a few of the processes that might transfer mass. These
mass transfer mechanisms must adapt to the ongoing physical
changes in the material that take place as it dries out[22,27].

 The drying and nutritional qualities of fresh
pomegranate arils

Although it is native to Iran, the pomegranate (Punica grana-
tum L.)  is  widely  distributed  worldwide[28].  It  belongs  to  the
family Lythraceae and is a deciduous shrub. It is a versatile plant
that  can  be  found  growing  in  both  semi-arid  and  subtropical
climates.  Pomegranates,  however,  need hot summer tempera-
tures  to  ripen[29].  Pomegranate  fruit  has  a  non-uniform  round
shape and a range of hues depending on the cultivar and fruit
development  stage,  including  yellow,  green,  pink,  deep  red,
deep purple, and black[30,31]. An outsized calyx crowns the fruit.
The  leading  producers  worldwide  are  Peru,  Australia,  South
Africa, and Chile in the southern hemisphere, and India, China,
and Iran in the northern hemisphere[32].

Pomegranate  is  a  one-of-a-kind  fruit  with  distinct  edible
seeds (arils) that must be extracted by hand (Fig. 2)[33]. An aril is
made  up  of  a  seed  and  fleshy,  moist  tissue  surrounding  the
seed. Color, sweetness, juice content, and hardness of arils vary
depending  on  cultivar  and  fruit  maturity[30,31].  While  the  arils
can  be  eaten  fresh,  they  can  also  be  made  into  jams,  jellies,
coloring  agents,  juices,  vitamins,  and  anardana  (dried  arils).
They  can also  be  mixed into  yoghurts,  biscuits,  and cereals[34].
Fresh pomegranate arils can be kept at 7 °C for up to 14 d with-
out  losing  much  quality.  Dried  pomegranate  aril  has  an
extremely  low  perishability,  with  a  potential  shelf  life  of  more
than 14 weeks in ambient air[35].

As  demonstrated  in Table  1,  pomegranate  is  high  in  ellagi-
tannins,  gallic  acids,  ferulic  acids,  anthocyanins,  flavonoids,
fiber,  and  minerals  like  vitamin  C,  calcium,  and  phosphorus.
Pomegranates'  phenolic  components  and high vitamin C con-
tent  (Table  1)  have  attracted  the  interest  of  both  researchers
and consumers due to their health advantages[36−38]. As a result
of  its  strong  antioxidant  activity  and  nutritional  benefits,
pomegranate is considered a superfruit. Pomegranate can also
be  employed  in  cosmetics  and  pharmacology  due  to  its

 
Fig.  1    A  visual  representation  of  the  drying  processes  of  solid
materials.
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Fig. 2    A typical breakdown of the material balance throughout the drying process for pomegranate aril.
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phytochemical  and  antioxidant  qualities[39].  Pomegranate  fruit
extract  (PFE)  has  bioactive  elements  that  have  been  found  to
inhibit  or  prevent  various  types  and  levels  of  cancer[40].  Puni-
calagic  acid,  ellagic  acid,  urolithin,  and  luteolin  are  the  most
important  pomegranate  components  known  to  have  anticar-
cinogenic characteristics[40,41].  Pomegranate fruit has also been
linked to the prevention of diseases such as Alzheimer's, hyper-
tension,  and  diabetes[42,43].  Pomegranate  supplements  may
also help during or after exercise because they have the poten-
tial to speed up hard exercise recovery[44].

 Pretreatments affecting the quality of dried
pomegranate arils

 Classification of pretreatments
Pretreatment  procedures  are  utilized  to  improve  the  drying

process's effect on product quality characteristics such as color,

flavor,  appearance,  and  some  physicochemical  aspects[45,46].
Figure  3 depicts  the  most  often  used  pretreatment
procedures[46].  A  product  is  immersed  in  a  chemical  solution
prior  to  drying  in  chemical  pretreatment.  Physical  pretreat-
ments,  on  the  other  hand,  necessitate  a  physical  alteration  of
the  product.  When  drying  with  heat,  Maillard  reactions  might
occur,  resulting  in  an  unpleasant  color  change[47].  As  a  result,
pretreatment  techniques  are  critical  in  many  drying  applica-
tions, including the drying of pomegranate arils[45,48,49]. There is
evidence that pretreatment reduces the product's exposure to
heat by reducing drying time[50,51].

 Soaking in acidic solutions
Soaking  in  acidic  solutions  involves  immersing  the  product

to  be  dried  in  a  hot  acidic  solution  for  many  minutes  before
drying.  Pretreatment  with  an  acidic  solution  keeps  the
product's  color  and  speeds  up  the  drying  process.  The  acidic
solution suppresses polyphenol oxidase enzyme activity,  slow-
ing  the  rate  of  enzymatic  browning  (Fig.  3).  Furthermore,
numerous investigations[53−55] have documented the retention
of  nutrients  such  as  vitamin  C  in  acidic  solution  pretreatment
samples.  Some acid-sensitive  components,  on the other  hand,
can be destroyed or leached away. As a result, while employing
this strategy, this effect must be considered. In a pomegranate
aril  drying  research,  arils  prepared  with  3%  citric  acid  had  the
highest  sensory  acceptance [56].  Vardin  &  Yilmaz[57] conducted
research on the combined effect  of  acid blanching and subse-
quent  drying  temperature.  The  authors  blanched  the  arils  in
0.1% citric solution for 2 min at 80 ± 2 °C followed by drying at
55,  65,  or  75  °C  and  discovered  that  drying  at  55  °C  had  the
maximum  antioxidant  capacity[46].  Understanding  the  connec-
tion between soaking in acid (balancing in acid) and the subse-
quent  drying  temperature  is  required  to  carry  out  the  opera-
tion correctly.

 Dipping in alkaline solutions
This entails immersing products in an alkaline solution. Alka-

line solutions  act  by  dissolving the wax covering on the fruit's
surface,  removing  resistance  to  moisture  transfer  and  increas-
ing drying rate[58]. As a result, this pretreatment accelerates the
drying process.  However,  the usage of alkaline solutions raises
food safety concerns because the residue might be harmful to
one's  health[46,59].  In  addition,  although  acidic  solutions  retain

Table 1.    The nutritional composition of 100 g of pomegranate arils.

Nutrient Value Unit

Water 77.9 g
Energy 346 kJ
Protein 1.67 g
Total lipid fat 1.17 g
Ash 0.53 g
Total dietary fiber 4 g
Total sugar 13.7 g
Calcium 10 mg
Phosphorus 36 mg
Magnesium 12 mg
Iron 0.3 mg
Potassium 236 mg
Sodium 3 mg
Zinc 0.35 mg
Vitamin C 10.2 mg
Vitamin K 16.4 µg
Vitamin E 0.6 mg
Vitamin B-6 0.075 mg
Total choline 7.6 mg
Folate 38 µg

Adapted  from  United  States  Department  of  Agriculture  (Agricultural
Research Service), FoodData Central[52].
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Fig. 3    A classification of the numerous pretreatment techniques utilized in the drying process for pomegranate aril.
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vitamin  C,  alkaline  solutions  leach  it  out  and  destroy  it[46].
Samples  dipped  in  ethyl  oleate  for  roughly  one  minute
revealed  a  considerably  reduced  drying  rate:  a  26.9,  28.5,  and
27.2% decrease in drying time at drying air temperatures of 55,
65, and 75 °C, respectively, than the control[60].

 Osmotic dehydration
The fruit is dipped into a hypertonic solution, such as salt or

sugar  solutions,  in  this  approach  (Fig.  3).  Because  of  the
osmotic  pressure  differential,  the  hypertonic  solution  causes
water  to  diffuse  out  of  the  fruit  tissue[61].  When  compared  to
other  drying  processes,  osmotically  pretreated  dried  products
have  great  rehydration  capability  and  little  losses  in  quality
parameters  such  as  color,  appearance,  and  nutrients[62].
Madhushree et al.[63] discovered that osmotic pretreatment (in
50oBrix  sugar  syrup  concentrations)  dried  arils  had  high  color
retention.  This  could  be  owing  to  the  samples'  reduced  expo-
sure to oxygen when immersed in the sucrose solution. A sepa-
rate  investigation  on  the  osmotic  pretreatment  of  pomegra-
nate arils with a 65°Brix sucrose solution revealed a decrease in

drying  rate  in  hot  air  drying  at  70  °C  compared  to  untreated
control  samples[64].  The  scientists  attributed  the  longer  drying
time (lower drying rate) to the creation of a dense sucrose layer
beneath the fruit's  surface, which created an additional barrier
to moisture transfer. To that aim, the osmotic solution concen-
tration  must  be  assessed  because  it  can  result  in  prolonged
drying times.

 Fumigation with sulfur dioxide or dipping in sulfur
solutions

Gaseous or liquid sulphur solutions have been used as a food
preservation  method  and  as  a  pretreatment  in  food  drying
procedures.  Typically,  sulphur  solutions  are  utilized  for  their
browning properties, both enzymatic and non-enzymatic[65]. In
addition, sulfur pretreatment is associated with high vitamin C
and  A  retention  after  drying,  as  well  as  inhibition  of  spoilage-
related microbial proliferation[66].

More et  al.[23] compared physical  pretreatments  to chemical
pretreatments  with  1%  potassium  metabisulphide  on  arils.
It  was  discovered  that  arils  prepared  with  potassium

Table 2.    Key findings in pomegranate aril pretreatment and drying studies.

Pretreatment method Pretreatment Drying technique Key findings Reference

Blanching Water blanching at 90 and 100 °C Hot air oven drying Blanched samples had a shorter drying
time.

[24]

Water blanching at 80 °C Hot air oven dryer Blanched samples had higher
phytonutrient retention than
unblanched samples.

[69]

Blanching using 0.1% citric solution
at 80 ± 2 °C

Cabinet tray dryer Drying process was shorter for
blanched samples and there was a
higher rate of bioactive compounds.

[57]

Sulphuring 1% potassium metabisulphide Solar drying
Cabinet tray dryer
Freeze dryer

Fruit of cv. Ganesh 1% potassium
metabisulphide was of the highest
quality and the highest acceptance.

[23]

Blanching and
Sulphuring

Hot water blanching 85 °C and 0.2%
potassium metabisulphate

Mechanical dryer
Solar dryer

Keeping quality of mechanically dried
arils was higher than the solar-dried
arils.

[70]

Steam blanching, potassium
metabisulphide and 0.3% Sulphur
fumigation

Cabinet tray dryer The highest dried aril quality was
obtained from the combination of
steam blanching and 0.3% Sulphur
fumigation.

[71]

Steam blanching, sulphuring at 0.3% Vacuum dryer
Hot oven dryer
Sun drying
Poly-tent house drying
Room drying

Sun drying had the highest moisture
content reduction and the highest
overall acceptance.

[72]

Hot water blanching 85 °C,
potassium metabisulphite varying
from 0.25% to 1%

Hot air oven dryer The best treatment was blanching in
hot water at 85 °C for 1 min and then
dipping the arils in 0.25% potassium
metabisulphite.

[70]

Steam blanching, sulphuring Sun drying
Cabinet dryer

Blanching reduced drying time.
Cabinet drying of blanched samples
without sulphuring was considered
optimum for anthocyanins.

[73]

Acidic solution 2%, 3% and 4% citric acid Cabinet tray dryer 3% acidic treatment was found to be
the most acceptable.

[56]

Microwave 100 and 200 W. Hot air oven dryer 200 W pretreatment resulted in
minimum energy utilization and
drying time.

[74]

100 and 200 W Hot air oven dryer 200 W had the highest drying rate. [75]
Osmotic treatment Sugar syrup, freezing at minus 18 °C Open sun drying,

Solar tunnel dryer,
Cabinet tray dryer

Osmotic treatment and cabinet tray
dryer produced dried arils with better
physicochemical and sensory qualities.

[63]

• 100% pomegranate juice
• 50% pomegranate and 50%
chokeberry juice
• 50% pomegranate and 50% apple
• 50% apple and 50% chokeberry
• 75% apple and 25% chokeberry

Freeze drying
Convective pre-drying
vacuum microwave finish
drying
Vacuum-drying and freeze
drying

Pomegranate and chokeberry
concentrated juice improved the
quality of the dried arils.

[12]

Sucrose solution Hot air oven drying Pretreatment increased the drying
time of the samples.

[64]
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metabisulphide  had  superior  nutritional  quality  as  well  as
improved  color,  flavor,  taste,  and  overall  acceptability  (Table
2)[23].  As  a  result,  processing  of  pomegranate  arils  with  sulfur
solutions  can  result  in  high-quality  dried  goods.  Despite  their
anti-browning,  antibacterial,  antifungal,  and nutrient retention
qualities,  sulphites  might  be  harmful  to  one's  health  if  the
recommended dosage or daily intake is exceeded[67,68]. Further-
more, while the sulfur solutions maintain vitamins A and C, they
deplete vitamin B1[65].

 Blanching with alcohol
The dipping or soaking of a product in an alcoholic solution,

usually  ethanol,  is  known  as  alcoholic  pretreatment.  Ethanol
dissolves  the  cell  wall  components,  which  increases  moisture
loss and thus the drying rate[76]. Several fruits, including melon
(Cucumis  melo L.)  and  apples  (Malus  domestica),  have  been
pretreated  in  alcoholic  solutions  before  drying[77,78].  However,
no  investigations  on  the  pretreatment  of  pomegranate  arils
with  alcohol  were  reported.  This  could  be  owing  to  the  aril's
waxy  layer,  which  could  impede  permeability  and  hence  the
efficacy of the alcohol pretreatment[79].

 Dipping in or spraying edible coatings
In  this  method,  the  fruit  is  dipped,  submerged,  or  sprayed

with  a  liquid  solution  that  forms  a  thin  coating  layer  on  the
product's  surface and then dried (Fig.  3).  According to studies,
the use of edible coatings can help to retain the color, texture,
and nutrient retention of dried items[80]. It is critical to note that
the  drying  pace  and  dried  product  quality  are  affected  by  the
coating  thickness,  drying  method,  and  coating  solution.  Most
of  the  research  on  edible  coverings  for  pomegranate  arils  has
focused on cold preservation and packing.

 Ultrasound pretreatment
Acoustic cavitation is utilized to rupture cell walls using ultra-

sound  pretreatment[81].  According  to  one  investigation  on  the
effect  of  sonification  on  osmotic  dehydration  and  subsequent
air  drying  of  pomegranate  arils,  ultrasonography  caused  a  2-
fold and 2.7-fold increase in water loss[82]. The authors hypothe-
sized  that  ultrasonic  promoted  cell  wall  disintegration  and
enhanced permeability.  While  using ultrasonic  improved color
quality, it also reduced anthocyanin content when compared to
osmotically dehydrated samples[82].

 Steam or hot water blanching
Blanching  is  a  pretreatment  technique  that  involves  rapidly

heating  and  then  cooling  a  product  that  will  be  dried[45].
Blanching  can  be  used  to  inactivate  enzymes  that  potentially
degrade  product  quality,  such  as  polyphenol  oxidase,  peroxi-
dase,  and  polygalacturonase[4].  Unwanted  sensory  traits  in
color,  flavor,  texture,  and nutritional  aspects  are examples[4,83].
Blanching also improves cell membrane permeability, resulting
in  a  faster  drying  rate[45].  Furthermore,  blanching  kills  bacteria
that  might  cause  product  spoiling[45,83].  As  indicated  in Fig.  3,
there  are  several  blanching  processes,  including  hot  water
blanching  and  modern  technologies  such  as  microwave
blanching and infrared blanching.

Adetoro  et  al.[18] discovered  that  blanching  pomegranate
arils  in  hot  water  accelerated  drying  rates  compared  to
unblanched  samples.  In  a  separate  investigation,  the  authors
found that blanching arils at 90 °C for 30 s and drying at 60 °C
had  higher  total  anthocyanin  content  and  radical  scavenging
activity than blanching at 100 °C for 60 s and drying at 60 °C. In

another work, Karaaslan et al.,[69] blanched arils in water at 80 °C
for 2 min to investigate the effects of temperature and pretreat-
ment on the arils. The authors discovered that while 75 °C had
the  fastest  drying  time,  55  °C  had  the  maximum  anthocyanin
concentration,  phenolic  content,  and  antioxidant  capacity.  In
other  studies,  pretreatment  procedures  are  combined  to
produce high-quality dried fruit products.

 Combined pretreatment techniques
Singh  et  al.[73] conducted  a  study  to  evaluate  the  drying  of

pomegranate  seeds  under  various  drying  conditions.  They
discovered that  blanched samples dried faster  and had higher
acidity than sulphured samples.  Furthermore,  the anthocyanin
concentration  of  blanched  samples  was  higher  than  that  of
blanched  and  sulphured  samples  using  the  mechanical  dryer.
The  authors  hypothesized  that  the  reduced  anthocyanin
concentration  seen  after  sun  drying  was  caused  by  the  long
drying hours in the sun. They also suggested that pomegranate
arils be dried using blanching rather than sulphuring to achieve
the maximum nutritional  quality.  Sharma et  al.[70] investigated
ideal methods for drying pomegranate arils by blanching them
in hot water at 85 °C for one minute and then immersing them
in a  solution of  potassium metabisulphite  with concentrations
ranging from 0.25% to 1% for two minutes (Table 2). The high-
est  potassium  metabisulphite  content  resulted  in  the  lowest
acidity.

Thakur  et  al.[71] used  steam  blanching  for  30  s  and  0.3%
sulphur  fumigation for  one hour  to  standardize  pretreatments
for  dried arils  from wild pomegranate.  The authors  discovered
that  cabinet  drying  outperforms  solar  drying  and  open  sun
drying. The solar dryer ranked second in terms of sensory char-
acteristics  like  texture,  taste,  and  general  acceptability.  Sun-
dried pomegranate arils, on the other hand, exhibited the high-
est reduction in moisture content and overall acceptance when
compared  to  vacuum  drying,  hot  air  oven  drying,  polytent
drying,  and  room  temperature  drying,  according  to  Bakshi  et
al.[72].

The effect of pulsed electric field treatment on the behavior
of  microwave-assisted hot air  drying of  pomegranate arils  was
examined  by  Amiali  et  al.[84].  When  compared  to  drying  at
70 °C,  they found that pulsed electric field treatment was only
advantageous  when the  subsequent  drying process  was  done
at  the lowest  temperature  (50  °C).  The lower  the temperature,
the higher the overall phenolic concentration. Arils treated with
a  pulsed  electric  field  had  a  21.02%  higher  total  phenolic
content than untreated arils.

Various pretreatment procedures on pomegranate arils have
been  utilized  with  the  goal  of  conserving  physicochemical,
physical,  and  chemical  properties  or  enhancing  drying  rates.
However,  pretreatment  standardization  is  currently  restricted
and  underexplored. Table  2 lists  some  of  the  methods  for
preparing dried pomegranate arils.

 Effect of drying on the quality of pomegranate
arils

 Preparing pomegranate arils for drying
Despite  the  fact  that  pomegranate  is  a  fruit  with  numerous

health  and  nutritional  benefits,  it  is  now  a  modest  crop  with
limited  marketability.  The  difficulty  in  collecting  the  interior
edible  seeds  (arils)  is  the  greatest  impediment  to  realizing the
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full  potential  of  this  unusual  fruit[29,31].  Only  manual  extraction
of pomegranate arils for laboratory scale testing is described in
the literature.

Pomegranates  are  first  cleaned  and  sorted  for  uniformity  in
color,  size,  shape,  and  weight  before  aril  extraction[18,85].  All
pomegranates should be washed.  To avoid introducing bacte-
ria into the arils when the fruit is sliced open, excess water from
the  fruit  surface  is  dried  before  cutting[86].  Following  that,  the
fruit is cut along the ridges and the segments are gently pulled
apart  to  form  a  flower-like  structure.  The  deconstructed
pomegranate  is  then  flipped  over  a  bowl  of  water  and  gently
tapped with a wooden spoon on the skin side.  As a result,  the
arils will begin to come out without being broken. Once all arils
have dropped out,  the white membranes are skimmed off  the
surface  of  the  water  as  it  floats,  the  water  is  drained,  the  arils
are separated, and the surplus water is gently patted off with a
towel.  This  method  involves  cutting  the  pomegranate  with  a
knife, which results in a loss of more than 30% of the arils owing
to  mechanical  damage[86].  As  a  result,  a  better  approach  was
required, such as the machinery developed by Schmilovitch et
al.[87],  which  allows  opening  the  fruit  without  cutting,  extract-
ing  the  arils  with  minimal  damage,  separating  the  arils  from
extraneous materials,  and delivering clean arils  to a packaging
machine.  This  technology  could  be  used  to  produce  dried
pomegranate on a greater scale.

The drying time is determined by the pretreatment process,
kind,  and  technique  of  dehydration  used.  The  dehydration
methods that will be investigated in this study are low-temper-
ature drying and high-temperature drying.

 Low-temperature drying methods
Low-temperature  drying  methods  employ  temperatures

ranging from subzero to 50 °C[49,88]. These drying processes are
time-consuming and are usually utilized for temperature-sensi-
tive  goods  like  herbs.  Furthermore,  low-temperature  drying
procedures  reduce  the  risk  of  scorching  the  fruit,  protecting
heat-sensitive components such as vitamin C[89]. Freeze drying,
vacuum drying, and sun drying are all  low-temperature drying
procedures[90].  Pomegranate arils  dried using low-temperature
procedures  such  as  freeze  drying  and  vacuum  drying  have  a
more  acceptable  look  and  nutrient  composition  than  most
high-temperature drying methods[12,91].

 Freeze-drying
Freeze-drying  (FD)  is  a  low-temperature  technology

frequently  used  for  drying  food  samples  for  high-quality  or
heat-sensitive  products[92].  It  is  also  recognized  as  one  of  the
most  expensive,  time-consuming,  and energy-intensive proce-
dures in the food industry[93]. It entails removing moisture from
food ingredients under low temperature and high vacuum via
ice  sublimation[48].  Because the product  is  frequently  frozen,  it
is also known as sublimation drying.

Adetoro  et  al.[94] freeze-dried  fresh  pomegranate  arils  at  a
freezer temperature of −80 °C for 96 h to examine the effect of
drying  procedures  on  pomegranate  arils.  The  researchers
discovered  that  color,  total  phenolic  compounds  (TPC),  total
anthocyanin  content  (TAC),  and  radical-scavenging  activity
stability  differed  significantly  from  the  hot  air-drying  proce-
dure  (Table  3).  More  et  al.[23] investigated  the  effect  of  drying
procedures  on  the  quality  of  dried  pomegranate  arils  from
three  varieties.  The  authors  discovered  that  FD  produced  the
greatest  results  in  terms  of  color,  flavor,  taste,  and  nutritional

factors  across  all  cultivars.  However,  FD  stood  out  due  to  its
prolonged  drying  duration,  24−48  h,  when  compared  to  solar
drying (17 h) and hot air drying (10 h). A study on the influence
of  freeze-drying  on  the  color  attributes  of  'Assiuty'  pomegra-
nate  arils  revealed  that  FD  had  the  best  color  attributes  (L*
value of 46.50 ± 4.4 and a* value of 13.97 ± 1.23)[95]. Gölükcü[91]

discovered  that  the  FD  had  the  maximum  phenolic  matter
content  (5580  mg/kg),  followed  by  vacuum,  convective,  and
sun-dried  pomegranate  arils  (Table  3).  Caln-Sánchez  et  al.[96]

investigated  the  chemical  composition,  antioxidant  capability,
and  sensory  quality  of  pomegranate  arils  and  rind  after  expo-
sure to  FD.  The investigators  found that  FD pomegranate arils
retained  the  most  sensory  characteristics  and  punicalagin
content.  Similarly,  Cano-Lamadrid  et  al.[12] discovered the best
sensory profile and sweetness in FD pomegranate arils at 65 Pa
for 24 h at  −60 °C.  The drying kinetics,  total  bioactive content,
in-vitro bio accessibility of bioactive compounds, and color and
microstructural  features  of  pomegranate  arils  were  also
studied[97]. When compared to alternative drying methods, the
FD was shown to be the best  approach in terms of  final  prod-
uct  quality  and  has  been  highly  recommended  by  multiple
reviewers[48]. FD arils have been demonstrated to have a higher
bioactive  chemical  content,  less  shrinking,  and  excellent  color
quality.  The  FD  for  pomegranate  arils  has  a  disadvantage  in
terms of bioactive chemical recovery when compared to other
methods, as well as extensive drying times[97]. Furthermore, FD
is  costly  due  to  high  energy  consumption  and  initial  invest-
ment expenses[98].

 Vacuum drying
Vacuum drying (VD) is the process of subjecting items to low

pressure in a vacuum. Because of the low pressure, water has a
lower  boiling  point,  allowing  samples  to  be  dried  at  low
temperatures.  As  a  result,  VD  is  appropriate  for  heat  and/or
oxygen-sensitive items. During VD, heat transmission can occur
by  conduction,  radiation,  or  microwave  energy.  VD  is  distin-
guished by faster drying times when compared to FD, and the
products  are  not  initially  frozen  as  necessary  for  FD[107].  This
low-temperature  operation,  combined  with  the  elimination  of
oxygen  during  vacuum  drying,  allows  nutrients  and  bioactive
components  such  as  phenolic  compounds  and  vitamins  to  be
retained[108,109].

Ozay-Arancioglu et al.[97] investigated the influence of drying
methods  on  dried  pomegranate  arils  by  comparing  four
distinct  drying  techniques:  FD,  VD,  ultra-assisted  vacuum
drying, and hot air drying. They discovered that VD had better
antioxidant  capacity  values  than  the  samples  tested  for  ABTS
following FD. According to Gölükcü[91], VD is second only to FD
as the finest choice for producing dried pomegranate (Hicazar)
arils.  Another  study  found  that  arils  dried  at  55  °C  had  higher
phytonutrient  levels  than  those  dried  at  65  and  75  °C  under
vacuum conditions[69].  When compared to other drying proce-
dures,  vacuum drying produces products  with higher  levels  of
phytochemical components. However, drying times range from
7.8  to  24  h  at  55  °C,  contributing  to  high  costs,  and  products
can only be dried in batches[91,99,110].

 Sun drying
Sun  drying  is  one  of  the  oldest  and  most  used  methods  of

drying.  Sun  drying  is  a  low-cost,  renewable  energy-based
drying process. In a nutshell, products are laid out on a flat area
where  they  can  be  fully  exposed  to  the  sun  for  as  long  as
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possible.  Because  the  drying  process  is  dependent  on  solar
radiation, the temperature is low and the drying process can
be  lengthy,  taking  approximately  15  d  for  pomegranate
arils[60].  Furthermore,  exposure  to  light  and  oxygen  can  lead
to  decreased  preservation  of  substances  like  vitamin  C.
Furthermore,  solar  drying  is  an  uncontrolled  process  with
substantial  risks  of  pest  contamination,  dust  exposure,  and
product remoistening at night. To increase safety, solar dryers
and  solar  tunnels  are  proposed  to  reduce  pest  and  dust
contamination[111]. Solar dryers use a contained environment
comprised  of  a  transparent  or  opaque  cover,  resulting  in
either  direct  or  indirect  drying[112].  The  indirect  drier  system
captures  solar  heat  and  transfers  it  to  the  product  drying
chamber via a  second  solar  collector.  A  solar  tunnel  dryer  is
typically  large  in  size  and  has  a  clear  cover  (Fig.  4).  To  regu-
late  drying  conditions  such  as  temperature  and  relative
humidity  within  the  tunnel,  solar  tunnels  often  require  a
forced  convection  facility.  A  solar  tunnel  dryer  may  also
include a  solar  air  heater[111].  Solar  dryers  have the potential
to  boost  drying  temperatures,  resulting  in  a  quicker  drying
time[113].

In  a  comparison  of  hot  air  drying  (60  °C),  solar  tunnel
drying,  and  sun  drying  by  Madushree  et  al.[63],  hot  air-dried
arils were shown to have the highest quality.  However, of all
the drying techniques, solar drying had the greatest L* values
(lightness),  a  desired  quality.  This  was  due  to  the  compara-
tively  low  temperature  of  sun  drying.  Additionally,  Bakshi  et
al.[72] discovered  that  when  compared  to  vacuum  drying,
oven drying (42 ± 2 °C), and room drying (23 ± 2 °C), sun dried
arils  had  the  highest  sensory  overall  acceptance  and  the
lowest  moisture  content.  In  their  comparative  analysis  of
drying  techniques,  Singh  et  al.[73] discovered  that  hot  air-
dried  pomegranate  arils  had  the  greatest  anthocyanin  and
acidity  contents.  But  in  hot-air  oven-dried  samples,  undesir-
able non-enzymatic browning was most pronounced. Sharma
&  Thakur[100] demonstrated  that  the  quality  of  arils  dried  in
solar  polytunnels  was  superior  to  that  of  arils  dried  in  the
open  sun  (Fig.  4).  The  ascorbic  acid,  anthocyanins,  and
phenols  were  found  to  be  significantly  greater  in  the  sun
polytunnel  dried  arils,  according  to  the  authors.  They  also
received superior sensory ratings for color, texture, taste, and
acceptability.

 High-temperature drying methods
Temperatures  above  50  °C  are  used  in  high-temperature

drying processes[88]. These drying processes are energy inten-
sive, have large operating expenses, and so are costly. These
technologies  rely  on  fossil  fuels,  which  pollute  the  environ-
ment  where  they  are  generated  and  utilized,  and  their  con-
tinued  usage  is  seriously  harming  our  environment[114].  The
drying mechanism is designed such that there is a controlled
direct or indirect heat transmission to the product, leading in
moisture  elimination.  These  drying  procedures  may  not  be
suited  for  some  foods  because  they  may  induce  nutritional
breakdown[115]. Furthermore, high temperatures might cause
product shrinkage and distortion. Hot-air drying ovens, steam
drying, heat pump drying, and spray drying are all  examples
of high-temperature drying processes.

 Hot air oven drying
Using  forced  convection,  hot  air  oven  drying  (HAD)  elimi-

nates moisture from materials. Objects dry out through evap-
oration  when  hot  air  is  forced  through  and  around  theTa

b
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substance.  As  a  result,  the  dried  product's  flavor,  color,  nutri-
ents, and ability to rehydrate may alter unintentionally[97,104,106].
The HAD techniques were shown to have a comparatively high
total color change by Ozay-Arancioglu et al.[97]. As shown in Fig.
5, hot air-dried arils were darker than freeze-dried and vacuum-
dried arils.

Başlar et al.[99] prepared dried aril  samples using the hot air-
drying  process  and  subjected  them  to  various  quality  assess-
ments. Fresh aril samples were dried at three different tempera-
tures  (55,  65,  and  75  °C).  According  to  the  authors'  findings,
high  temperatures  and  short  drying  times  are  optimal  for
retaining  valuable  food  biocomponents.  However,  whereas
bioactive  chemical  losses  increased  over  time,  they  degraded
faster  at  higher  temperatures.  The  antioxidant  activity,  on  the
other hand, decreased with drying time and was unaffected by
drying  temperatures.  Horuz  &  Maskan[104] investigated  the
effect  of  hot  air  drying  on  pomegranate  aril  cv.  Hicaz  at  three
different  drying  temperatures  and  compared  quality  metrics
such  color,  shrinkage,  rehydration  capacity,  and  drying  time
(Table  3).  The  authors  suggested  60  °C  for  pomegranate  aril
HAD. The authors also discovered that shrinkage was greater in
HAD than in microwave drying.  In  a  second study,  researchers
discovered  that  the  optimal  drying  temperature  for  retaining
bioactive chemicals  when drying pomegranate arils  (cv.  Hicaz-
nar) in a hot air dryer was 65 °C[116]. When compared to the sun
drying  method  for  anardana  made  from  wild  pomegranate,
Bhat  et  al.[105] discovered HAD dried arils  with  maximum acid-
ity  of  13.72%,  phenols  of  110.7  mg  per  100  g,  total  sugars
(24.2%), and reducing sugars (21.2%).

However,  Bakshi  et  al.[72] carried  out  a  study  with  lower
temperatures  in  which  they  studied  the  influence  of  different
drying  processes  on  the  moisture  content  of  dried  pomegra-
nate aril (cv. Wild). Lower temperatures were employed to gain
insight into the quality of the dried product when compared to

the low temperature drying methods used in the study, such as
sun drying, poly tent house drying, room drying, and VD. When
compared  to  alternative  drying  methods,  the  authors  disco-
vered  that  HAD  (42  ±  2  °C  )  for  16.5  h  and  drying  in  room  at
normal air (23 ± 2 °C ) for 10−12 d produced in the greatest loss
of moisture from fresh arils of wild pomegranate (75.12%).

Singh  et  al.[73] evaluated  the  influence  of  different  drying
conditions  on  the  quality  of  dried  pomegranate  arils  (Bassien
Seedless) samples (Table 3). The scientists discovered that sun-
drying preserved more MC while drying was faster with a HAD
dryer  and  generally  recommended  it  as  a  better  strategy  for
preparing dried pomegranate arils.

HAD drying of pomegranate arils is a standard drying proce-
dure that can be utilized in commercial settings. Although HAD
does  not  generate  high-quality  goods  like  FD,  it  does  provide
better TSS,  TA, and antioxidant capacity stability.  Furthermore,
although  having  a  higher  rate  of  bioactive  component  degra-
dation,  higher  temperatures  may  result  in  higher  retention
compared to approaches such as solar drying due to the short
drying times.

 Electric and dielectric drying
Electrical  current  is  passed  through  the  pomegranate  aril

during electric drying techniques including ohmic heating. The
intrinsic  resistance  of  the  aril  induces  internal  heating  as  the
electrical current flows through it[117,118]. Ohmic heating is typi-
cally  employed  for  liquid,  viscous,  and  particle-containing
foods[119].  Regardless  of  the  meal's  densities,  food  products
prepared  using  this  approach  are  heated  quickly  and
uniformly[120].

Dielectric  techniques,  on  the  other  hand,  use  electromag-
netic waves to directly produce heat inside the product, such as
microwave,  radio  frequency  drying,  and  infrared  radiation[121].
Dielectric  heating  results  from  the  conversion  of  electromag-
netic  energy to kinetic  energy by dipolar  molecules oscillating
in  accordance  with  the  rapidly  oscillating  electric  field[122,123].
Compared to traditional  methods like  hot  air  drying,  dielectric
technologies  dry  materials  more  quickly[124].  Additionally,  the
items  are  of  a  higher  caliber  than  those  produced  by  tradi-
tional drying techniques.

 Microwave drying
Microwave drying (MD) is  one of  the emerging drying tech-

nologies. Unlike other techniques, MD utilizes volumetric heat-
ing  to  rapidly  dehydrate  the  sample  material[104].  Some
studies[85,104] have  indicated  that  arils  desiccated  at  150  W
microwave  power  and  58  bar  (abs)  pressure  produced  the
highest  quality  arils.  In  another  study,  microwave power  of  80
W  and  vacuum  pressure  of  60  mm  Hg  provided  the  highest
drying efficiency and qualitative attributes, including color and
texture[125]. Horuz & Maskan[104] observed that microwave-dried

 
Fig.  4    This  image  depicts  a  sample  of  wild  pomegranate  arils
being dried in a solar tunnel drier. Reprinted from Thakur et al.[102].

a b c

 
Fig. 5    Illustration of dried pomegranate arils that have been dried using different methods. (a) Freeze drying, (b) vacuum drying, and (c) hot
air drying. Adapted from Ozay-Arancioglu et al.[97].
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pomegranate  samples  had  lower  levels  of  shrinkage  and  bulk
density than hot air-dried samples. The authors also noted that
microwave  drying  caused  a  greater  loss  of  color  in  terms  of
total  color  difference  (E)  compared  to  air  drying.  It  was
observed that microwave-dried samples had a brownish hue.

Drying  with  MD  reduces  drying  time,  but  essential  quality
parameters,  such  as  color,  are  sacrificed.  Since  the  product  is
directly  heated,  the  lack  of  heating  uniformity  during  MD,
which  is  difficult  to  control  and  could  contribute  to  product
burning has been cited as a disadvantage[126].

 Infrared drying
Infrared  drying  is  an  effective  technique  of  drying  in  which

the  product  is  heated  directly  without  the  use  of  air  as  the
drying medium. In a comparative study of drying methods (hot
air  drying  and  infrared  drying)  to  dry  pomegranate  arils,  the
authors  discovered  that  infrared  drying  effectively  dried
pomegranate  arils  and  that  the  polyphenol  content  in  arils
dried using infrared drying was higher at 50 and 60 °C than in
arils  dried  using  hot  air  drying  at  similar  temperatures[103].
Therefore, pomegranate arils can be infrared-dried at 50 °C for
optimal nutrient retention[103]. In contrast, a distinct study dried
pomegranate arils  under near-infrared vacuum conditions and
found  that  drying  at  60  °C  and  20  kPa  air  pressure  resulted  in
optimal colour retention and shrinkage[127].

Although  infrared  drying  is  a  rapid  drying  method,  it  is
challenging  to  control  due  to  parameters  such  as  infrared
intensity and radiation distance, and its energy consumption is
unpredictable[26].

 Modelling the drying kinetics of pomegranate
arils mathematically

Drying kinetics is the study of how factors that influence the
removal  of  moisture  from  products  during  a  drying  process
interact[110]. The drying kinetics of a substance is dependent on
its  thermal  and  mass  transport  properties.  Understanding
drying  kinetics  relates  to  process  variables,  and  therefore  aids
in  identifying  suitable  drying  methods  and  controlling  drying
processes[57,96,116].  For  optimal  operating  conditions,  drying
kinetics  can  be  used  to  estimate  drying  time,  energy  require-
ments,  and  drying  efficiency[2].  Due  to  the  complexity  of  the
drying  phenomenon,  however,  mathematical  models  describ-
ing the drying kinetic of biological tissues are devised based on
the time history of the moisture ratio from a controlled drying
experiment[128]. There are numerous mathematical models, but
Table 4 provides a summary of the most used models.

The  most  common  models  that  best  describe  the  hot  air
drying of pomegranate arils include the Logarithmic, Midili and
Page models[24,99]. Baslar et al.[99] found the Logarithmic model
as  the  best  in  describing  hot  air  drying  of  arils  at  55,  65  and
75  °C.  In  another  study,  it  was  found  the  Sigmoid  model
describing the kinetics of hot air drying of pomegranate arils at
similar drying temperatures[116].

In  their  study  on  the  infrared  drying  of  pomegranate  arils,
Briki  et  al.[103] discovered  that  the  Midili  model  was  the  most
accurate  representation  of  the  drying  kinetics.  In  a  similar
manner,  it  was  discovered  that  the  Midili  model  provided  the
best  fit  to  the  experimental  data  for  drying  using  a  combina-
tion of infrared and hot air[136]. Another investigation indicated
that the Aghbashlo model provided the greatest fit for the data
obtained from near-infrared vacuum drying at a temperature of
60 °C[127].

Based on measurement  data  from three pomegranate  culti-
vars (cvs. 'Acco', 'Herkaswitz', and 'Wonderful') at 60 °C, Adetoro
et  al.  demonstrated  cultivar  as  another  influencing  factor  in
selecting  an  optimal  model.  While  the  drying  data  of  the
blanched samples of all  the cultivars in this investigation were
best  fit  by  the Logarithmic  model,  the  unblanched samples  of
'Acco' and 'Herkaswitz' and 'Wonderful'  were best fitted by the
Page and Midili models, respectively[24].

The bioactive chemicals retained and drying periods may be
affected by the pretreatment process,  although frequently the
drying kinetics of both untreated and pretreated samples may
be described by the same model. The Page and Modified Page
were determined to be the best models to fit the drying data of
both  blanched  and  unblanched  pomegranate  arils  under
vacuum air drying by Karaslaan et al.[69]. In a different investiga-
tion, the Page and Modified Page were shown to be the model
that best suited the drying data of pomegranate arils  that had
been bathed in citric acid and dried by hot air[57]. Although the
drying  rate  of  pre-treated  samples  is  higher  than  that  of
untreated  samples,  the  scientists  noted  that  the  same  models
were found to best reflect the drying kinetics.  The Page, Loga-
rithmic,  and  Midili  drying  models  are  the  most  popular  and
effective drying models for pomegranate arils employing HAD,
MD,  and  VD.  The  mathematical  models  that  were  utilized  to
explain  the  drying  kinetics  of  pomegranate  arils  are  summa-
rized in Table 5.

 Quality change and shelf-life of dried
pomegranate arils

The  drying  procedure  aids  in  reducing  bacterial  growth,
which  can  result  in  reducing  spoilage.  However,  while  food  is
being dried, other changes may occur that degrade its quality.
To  determine  the  product's  expiration  life,  chemical,  physical,
physicochemical,  and  microbiological  changes  are
monitored[138,139]. These modifications are affected by stowage,
environment,  and  packaging  methods.  The  most  significant
factor  affecting  the  integrity  of  stored  food  products  is  tem-
perature[140].  Consequently,  most  shelf-life  experiments  are
designed  to  evaluate  the  temperature-time  history  in  relation
to  changes  in  product  quality[138,141].  To  accurately  evaluate
quality changes and safety, shelf-life evaluations should ideally
simulate  actual  storage  conditions[142].  In  the  case  of  desic-
cated goods, the actual storage period is lengthy, and the eval-
uation of shelf-life can become time-consuming and expensive.
When  the  actual  storage  time  is  lengthy  for  practical  reasons,
an  accelerated  shelf-life  test  or  analysis  of  the  worst-case
scenario  is  employed[142].  Ordinarily,  the  end  of  shelf  life  is
determined  by  relevant  food  legislation,  guidelines  issued  by

Table  4.    A  summary  of  the  mathematical  equations  that  are  most
commonly  used  to  model  the  drying  kinetics  of  pomegranate  arils  is
shown here.

Model name Model expression Reference

Page MR = exp(-ktn) [129]
Newton MR = exp(-kt) [130]
Henderson and Pabis MR = aexp(-kt) [131]

Midili et al MR = aexp(-ktn) + bt [132]
Wang and Singh MR = 1 + at + btn [133]
Two Term MR = (aexp(-k0 t) + bexp(-k1 t)) [134]
Logarithmic MR = aexp(-kt) + c [135]
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enforcement authorities or agencies, guidelines issued by inde-
pendent  professional  organizations,  current  industrial  best
practices,  self-imposed  end-point  assessment,  and  market
data[142].

Appropriate  packaging  material  can  help  to  reduce  quality
losses. The packaging and shelf-life tests on dried pomegranate
arils  are summarized in Table 6.  Sharma et al.[70] examined the
packaging  of  dried  pomegranate  arils  with  high-density
polyethylene  (HDPE),  low-density  polyethylene  (LDPE),  and
polypropylene (PP) films. For 12 months, samples were held at
7  °C  and  ambient  (14−39  °C).  They  found  that  HDPE  retained
the most color, total tannins, and acidity while gaining the least
moisture. The authors proposed a safe storage time of 6 and 9
months for HDPE packed dried pomegranate arils under ambi-
ent and refrigerated conditions, respectively.

Bhat  et  al.[105] compared  aluminum-laminated  polyethylene
(ALP,  99.8 g m−2)  and polyethylene pouches (93.9 g m−2)  each
storing  100  g  dried  pomegranate  arils  and  stored  at  ambient
(15−25  °C).  The  authors  discovered  that  aluminum  laminated
polyethylene pouches performed best after a 6-month storage
period.  Dak  et  al. [35] compared  HDPP  and  ALP  under  acceler-
ated  shelf-life  conditions  (38  ±  1  °C  and  90%  ±  1%  relative
humidity)  and  evaluated  the  correlation  between  packaging
material,  storage  period,  and  anthocyanin,  phenolics,  TSS,  TA,
and microbial count. The authors estimated that HDPP and ALP
have  shelf  lives  of  96  and  187  d,  respectively.  The  above  two
research  confirmed  that  ALP  had  the  best  performance
features. This could be owing to the pouches' thickness and the
opaque barrier of the aluminum lamination. The use of opaque
packaging  material  may  extend  the  shelf  life  of  pomegranate
arils  by  minimizing  photodegradation  of  components  such  as

carotenoids,  flavonoids,  and  lipids,  which  can  alter  qualitative
qualities  such  as  aroma,  texture,  and  color[143].  Based  on  safe
consumption criteria, Mokapane et al.[19] proposed a shelf life of
5 months for citric acid pretreatment and dried arils wrapped in
kraft paper pouches.

In  a  second  investigation,  Thakur  et  al.[144] examined  the
effectiveness  of  gunny  bags,  ALP,  and  ALP  combined  with
vacuum for storing dried pomegranate arils for a period of one
year.  According  to  the  authors'  findings,  ALP  performed  best
when performed under  vacuum. The various types of  contain-
ers  that  are  used  to  store  dried  pomegranate  arils  are  broken
down into categories and shown in Fig. 6.

Sharma & Thakur[100] investigated the effect of active packag-
ing on the quality features of dried wild pomegranate arils over
a 6-month storage period. Salt or sugar sachets were inserted in
ALP  pouches  or  Thermofoam  trays  that  had  been  wrapped  in
shrinkable  polypropylene  transparent  film  or  polyethylene
pouches.  The  researchers  reported  that  for  arils  dried  in  a
mechanical drier, ALP pouches had the best quality retention of
criteria such as ascorbic acid, anthocyanins, total phenols, color,
and texture. Furthermore, the inclusion of salt or sugar in active
packing  aids  in  the  production  of  high-quality  dried  arils.
However,  salt-based  active  packaging  had  somewhat  higher
TA,  ascorbic  acid  content,  total  sugars,  anthocyanin  content,
and total phenols than sugar-based active packaging.

 Conclusions and prospects

The shelf  life of dried pomegranate aril  can range anywhere
from  three  months  to  a  year  depending  on  the  pretreatment,
drying  procedures  and  packaging  that  were  used.  There  is,

Table 5.    A synopsis of the results of mathematical modeling of the kinetics of drying pomegranate arils.

Cultivar Drying
method Drying parameters Pretreatment Suitable drying model Reference

cv. Hicaz HAD 55, 65, 75 °C 0.1% citric acid Page and Modified Page [57]
cv. Hicaznar HAD 55, 65, 75 °C − Sigmoid [116]
− HAD 55, 55, 60 °C − Page [137]
− HAD 50, 60, 70 °C − Page [85]

MD 270, 450, and 630 W − Page [85]
cv. Hicaznar VD 55, 65, 75 °C Hot water blanching Page and Modified page [69]
− HAD 45, 50, 55, 60, 65, and 70 °C Microwave Midili [75]

cvs. Acco, Herskawitz
and Wonderful HAD 60 °C

Hot water blanching (at 90 and
100 °C, each for 30 s

and 60 s)

Logarithmic, Page,
Midili for unblanched arils

Midili and Page for blanched
[24]

Table 6.    A list of the several types of containers used to store dried pomegranate arils.

Drying method Drying
temperature Packaging material Storage period

(months) Shelf-life performance Reference

MC drier
Solar cabinet drier
Open sun

62−64 °C
50−55 °C
18−24 °C

Aluminum laminated polyethylene pouch,
polyethylene pouches and thermoform
trays.

6 Aluminum laminated polyethylene
pouches were best for packaging.

[105]

Microwave-vacuum
drying

38 °C High-density polypropylene (HDPP) and
aluminum laminated polyethylene (ALP).

3−6 Pomegranate arils stored showed
that ALP is more protective than
HDPP.

[35]

Solar tunnel 30−45 °C Gunny bags, aluminum laminated
polyethylene pouches (ALP) and vacuum-
sealed aluminum laminated polyethylene
pouches (ALPV).

12 Both refrigerated and ambient
storage can securely preserve dried
pomegranate samples for 12
months. Best performance was ALP
with vacuum and cold storage.

[144]

Hot air dryer 60 °C Aluminum laminated polyethylene pouch
(ALP), polyethylene pouch (PEP), and
thermofoam tray (TT) covered in shrinkable
polypropylene transparent sheet.

6 Moisture absorbers aid in the
preservation of samples.

[100]
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however,  no  definitive  guideline  about  the  influence  that
pretreatment and drying procedures have on the quality char-
acteristics of the product when it is being stored. Many studies
on the shelf life of dried pomegranate arils focus on examining
the  influence  that  different  types  of  packaging  material  have
on  the  storage  life.  These  studies  pay  less  attention  to  the-
physical  and  microbiological  changes  that  accompany  quality
alterations.  Additionally,  a  specialized shelf-life  testing process
and  quality  standard  for  dried  pomegranate  arils  can  be  diffi-
cult to locate in the literature.

While  high  temperatures  have  a  positive  influence  on  the
drying  rate,  it  has  a  negative  effect  on  the  product's  texture,
color,  and nutritional  content.  Because of  this,  lower  tempera-
tures are often ideal for retaining the pomegranate arils'  nutri-
tional  value  and  maintaining  their  consistency.  Freeze  dryers
offer the best result  in this  regard.  Freeze-drying,  on the other
hand,  is  a  time-  and  money-consuming  process.  When  paired
with other types of pretreatment, inexpensive procedures such
as  sun  dryers  can  be  adjusted  to  produce  high  retention  on
chemicals that are virtually identical to those obtained in freeze
dryers.  However,  before  implementation,  it  is  necessary  to
examine  the  intended  outcome  of  the  pretreated  arils.  This  is
because  pretreatments  affect  both  the  drying  rate  and  the
retention  of  nutrients.  Therefore,  in  order  to  completely  opti-
mize  the  process,  it  is  necessary  to  have  an  awareness  of  the
interaction  that  occurs  between  the  pretreatments  and  the
subsequent  drying  procedure.  It  is  proposed  that  recommen-
dations be formulated to assist in the manufacture and market-
ing  of  dried  pomegranate  arils  that  are  consistent,  nutritious,
and hygienically safe.
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