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Abstract

Drought stress severely limits seed propagation in /ris. This study aimed to improve the seed germination of Iris typhifolia Kitag. and mitigate the effects of
drought stress on seed germination. The mitigating effects of potassium nitrate (KNO;) solution dipping, microwave irradiation, and gibberellin (GA;)
treatment on seed germination under polyethylene glycol (PEG) to simulate drought conditions were systematically evaluated. The results showed that all
three treatments significantly improved seed germination rate, germination index, and germination potential. In terms of mitigating the drought stress
inhibition on seed germination, dipping the seeds in KNO; solution was the most effective treatment. The optimum treatment for KNO; was 2 d of dipping at
a concentration of 1.0 g-L~". Compared with the control treatment, the KNO; treatment increased the germination rate of /. typhifolia seeds by 165% under
20% PEG-simulated drought stress conditions. These findings provide important insights for the development of effective seed treatment programs and
water management strategies, and provide technical support for the application of I. typhifolia in drought areas.
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Introduction

Drought is generally regarded as a complex periodic climate
phenomenon that has significant ramifications for agriculture, water
resources, the environment, and human worldwide. Drought is one
of the major abiotic stress factors that limit plant growth and deve-
lopment. It obstructs plant respiration and photosynthesis, thus
affecting growth, development, and physiological metabolismt'l.
Drought has a significant impact on the biosynthesis of plants at
different growth stages, resulting in a reduction in dry matter, accel-
erated abnormal yellowing of leaves, and detrimental effects on
ornamental quality. These effects can lead to substantial economic
lossesl?l. The process of seed germination represents a pivotal phase
in the life cycle of a plant, marking the commencement of its growth
and development. This stage is of paramount importance because
of the subsequent growth of the seedling and the formation of its
root system. Additionally, drought stress adversely affects metabolic
processes at the cellular level, resulting in the disruption of cell divi-
sion and elongation as well as the water status of tissues and the
retardation of seed germinationBl. Therefore, appropriate treat-
ment strategies are essential to alleviate abiotic stresses during the
process of seed germination.

Seed treatment can increase plant resistance by improving
defence mechanisms and retaining induction memory and also
ensures rapid and uniform germination of seeds, accompanied by a
minimal incidence of abnormal seedlings!*5l. Seed treatment can be
used as a solution to overcome the problems of low-level germina-
tion and seedling establishment under soil drought conditions. Its
main advantages are simplicity, low cost, and the absence of expen-
sive equipment®l, Common methods for promoting seed germina-
tion can include treatment with KNO3, microwaves, and GA;, among
others. K* in KNOj3 is an essential nutrient for plant growth and
development, and NO3- is one of the nitrogen sources. KNO; treat-
ment improves the germination indices of yarrow seeds!”! and has
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also been observed to be beneficial for the restoration of the germi-
nation vigour of seeds of Oryza sativa L. seeds!® and Solanum lycop-
ersicum L' seeds under drought stress. KNO; treatment can also
effectively protect Amygdalus L. plants from abiotic stresses and can
be applied as a stress relieverl'%, Microwave treatment provides a
nonpolluting, efficient and low-energy consumption seed treat-
ment method, which actively promotes seed germination and plant
growth[112 The effects of microwave radiation on Abelmoschus
esculentus (L.) Moench (okra) seeds resulted in an increase in their
germination indices!'3! and on castor and lupin seeds, that have
been subjected to analogous treatments!'4'5, Muhammad et al.'s
study on spinach indicated that microwaves promote seed germina-
tion and reverse the adverse effects produced by abiotic stresses!'6l,
Microwave can alleviate the adverse effects of drought on wheat
seed germinationl'7.18l, GA; is a plant hormone that plays a pivotal
role in regulating diverse aspects of plant growth and development
through a complex biosynthetic pathway. GA; is able to release seed
dormancy in Syagrus coronata seeds and alleviate the damage
caused by drought stress to seedlings!'l. Furthermore, GA; treat-
ment has been demonstrated to increase the emergence of
seedlings and the vitality of seeds in species such as Cicer arietinum
L. and Cannabis sativa L., even under conditions of drought stress2l,
Irises represent a particularly rewarding genus of garden perenni-
als. They have long been considered fundamental to the success of
any flower garden. Iris typhifolia is a perennial herbaceous plant of
the Iris L. in the Iridaceae Juss. I. typhifolia has strong stress resis-
tance, shows no signs of aging after growing for many years, and
has high ornamental value. It is a valuable ecological restoration
material for basic planting in arid regions. /. typhifolia is cultivated
extensively in areas of China including Jilin, Inner Mongolia and
other regions, in wetlands and grasslands. /. typhifolia is considered
to be an excellent garden flower in the northern region of China.
The market demand is also increasing, indicating the potential for

www.maxapress.com/tihort
WWw.maxapress.com


mailto:sy1016@jlau.edu.cn
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
mailto:sy1016@jlau.edu.cn
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
https://doi.org/10.48130/tihort-0025-0037
http://www.maxapress.com/tihort
http://www.maxapress.com

Technology in
Horticulture

large-scale popularisation and application, as well as high commer-
cial promotion valuel29, Although Iris L. is drought tolerant, its
growth and development are often affected by drought
conditions2'l, Elucidating the regulatory mechanism of drought
tolerance during the germination period of I. typhifolia could be
instrumental in facilitating cultivation and molecular breeding.
Consequently, the need to increase the seed germination rate under
drought conditions and enhance plant cultivation techniques has
become an urgent problem.

In arid regions, ornamental plants are mostly groundcovers and
foliage plants with relatively homogeneous landscape effects with
poor urban landscape quality. Therefore, research on drought toler-
ance of ornamental plants holds significant value. In addition to Iris
L. other than I. typhifolia are also highly resilient to stress. Iris japon-
ica is also resistant to significant drought stress (up to 63 d) through
various physiological responsesi?2l. Current research on drought
tolerance in Iris germanica L. focuses on physiological changes and
regulatory processes at the molecular levell?3l. |. germanica L. has
intense drought resistance and can effectively resist drought stress
by retaining water. Several important metabolic pathways were
regulated by Iris tectorum Maxim. under drought stress and key
genes that may be involved in short-term drought response have
been identified?4. Iris lactea Pall. is a perennial herbaceous plant
that is tolerant to salt and drought. The gene expression of /. lactea
Pall. under abiotic stress was obtained through transcriptional
studies, laying the foundation for further research on response
mechanisms[2>., Yang et al. (2018) revealed salt tolerance, Na* and
K* accumulation, and partial tolerance mechanisms in Iris halophila
Pall.28l, Subsequent studies explored the expression patterns of
differentially expressed genes and related molecular regulatory
mechanisms under salt stress in I. halophila Pall.l?’], It has been
demonstrated that Iris L. plants exhibit unique properties and mech-
anisms in response to drought and other abiotic stresses. The
present study contributes to the existing body of knowledge on the
subject of Iris L. through the provision of new insights into the
plant's resistance physiology of plants. In addition, this study
provides a theoretical basis for the rational selection of ornamental
plants and improvement of landscape quality in arid areas. There-
fore, it is necessary to further strengthen the comprehensive
research on the resistance mechanisms of Iris and promote the
application.

In this study, KNO;, microwaves, and GA; were used for treatment.
The optimal treatment programme for the seeds of /. typhifolia was
determined based on the specific requirements of its seed germina-
tion. This programme has been shown to improve the germination
rate, alleviate the impact of drought on seed germination, and
enhance stress resistance.

Materials and methods

Treatments and growth conditions

Mature seeds of I. typhifolia were harvested from the Ornamental
Plant Resource Nursery of Jilin Agricultural University (43.49'1.283"
N, 125.240'33.964" E). The seeds were subjected to a sterilisation
process involving the application of sodium hypochlorite (NaClO,
10%) for a duration of 10 min. Afterwards, the seeds were thor-
oughly washed with running water for a period of 5 min. Next, they
were allowed to air-dry at room temperature. The seeds were then
divided into four groups for the experiments: untreated seeds, GA;-
treated seeds, KNOs-treated seeds, and microwave-treated seeds
(Table 1). After treatment, the seeds were transferred to sterilised
and filter paper-lined Petri dishes. A volume of 3 mL distilled water
was added to each Petri dish. The Petri dishes were subsequently
placed in an artificial climate incubator under the following light
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Table 1. Treatments with different solution concentrations, power levels, and
treatment durations.
Number Designation Treatment
1 Control water
2 K1 1.0 g-L~"KNOs, for1d
3 K2 3.0g-L7"KNO;, for 1d
4 K3 5.0 g-L="KNO;, for 1d
5 K4 1.0 g.L=" KNO3, for2d
6 K5 3.0g-.L"TKNO;, for2 d
7 K6 5.0 g-.L""KNO;, for 2 d
8 K7 1.0 g.L=" KNO;, for 4 d
9 K8 3.0g-L""KNO;, for4 d
10 K9 5.0 g-.L='KNO;, for 4 d
11 M1 Microwave 450 W, for 5 s
12 M2 Microwave 450 W, for 10 s
13 M3 Microwave 450 W, for 15 s
14 M4 Microwave 450 W, for 20 s
15 M5 Microwave 700 W, for 5 s
16 M6 Microwave 700 W, for 10 s
17 M7 Microwave 700 W, for 15 s
18 M8 Microwave 700 W, for 20 s
19 G1 0.1g-L7'GA;, for 1d
20 G2 0.2g-L7'GA;, for1d
21 G3 03 gL' GA;, for1d
22 G4 04g-L7'GA;, for1d
23 G5 0.5gL"GA; for1d
24 G6 0.1 g~L’1 GA;, for2d
25 G7 0.2g-L7' GA;, for2d
26 G8 0.3 g-L™'GA;, for2d
27 G9 0.4g-L7'GA;, for2d
28 G10 0.5 gL' GA;, for2d
29 P1 Control followed by 5% PEG-6000
30 P2 Control followed by 10% PEG-6000
31 P3 Control followed by 15% PEG-6000
32 P4 Control followed by 20% PEG-6000
33 PG1 G3 followed by 5% PEG-6000
34 PG2 G3 followed by 10% PEG-6000
35 PG3 G3 followed by 15% PEG-6000
36 PG4 G3 followed by 20% PEG-6000
37 PK1 K4 followed by 5% PEG-6000
38 PK2 K4 followed by 10% PEG-6000
39 PK3 K4 followed by 15% PEG-6000
40 PK4 K4 followed by 20% PEG-6000
41 PMR1 M6 followed by 5% PEG-6000
42 PMR2 M6 followed by 10% PEG-6000
43 PMR3 M6 followed by 15% PEG-6000
44 PMR4 M6 followed by 20% PEG-6000

conditions: 16 h (light)/8 h (darkness) and 24 h (darkness), a light
intensity of 2,600 Ix and a temperature of 25/15 °C (alternating
between 16 and 8 h) for cultivation for 21 d (chamber: RDN-300B,
Yanghui, Ningbo, China). The radicle protruding 1-2 mm from the
seed coat was used as the germination standard, observe and
record the germination status of the seeds was observed and
recorded at 9:00 AM on a daily basis, with the relevant germination
indices calculated accordingly.

Drought treatment

Following treatment of the three groups, the seeds were germi-
nated under drought conditions simulated by 5%, 10%, 15%, and
20% PEG-6000. The experiment involved a design of 15 treatments
in total (Table 1). Each group of treatments was replicated five times.
The untreated seeds were used as the control group. The lost water
was replenished on a daily basis by means of weighing. The filter
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paper was replaced on a 4 d cycle to ensure the stability of the
osmotic potential. The cultivation environment and the germina-
tion standard were identical to those previously described.

Data statistics and analysis

The data were statistically analysed using SPSS (version 26.0) and
Excel (version 2023). This study used Duncan's method for signifi-
cance analysis, the membership function analysis method for
comprehensive analysis, and Origin (version 2024) for the graphical
representation of data.

Germination rate (%) = (Number of germinated seeds / Total
number of seeds) x 100%

Germination potential (%) = (The number of germinated seeds at
the peak of germination / The total number of seeds) x 100%

Germination index (Gl) = Y Gt / Dt

Membership function value: R(Xi) = (X; = Xinin) / Kmax = Xmin)

In the formula, Dt represents the number of days of germination,
Gt represents the number of germinated seeds per day correspond-
ing to Dt, X; represents the measured value of the germination
index, and X, and X.x represent the minimum and maximum
values of a certain index among all treatments, respectively.

Results

Effects of KNO; treatment on the germination of /.
typhifolia seeds

The germination rate of I. typhifolia seeds had been significantly
increased after KNO; solution treatment. Compared with those
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under the 1 and 2 d treatments, the seed germination dynamics
under the 4 d treatment were more consistent, and the average
germination time was reduced (Fig. 1).

Under normal light and moisture conditions, compared with
those in the control group, the germination rate and index of /.
typhifolia seeds in the KNO; treatment group significantly increased
(Fig. 2a—c) (p < 0.05). The germination rate and potential reached
their maximum values with 2 d of treatment time. Moreover, the
highest germination rate was observed in the treatment group that
received a solution concentration of 1.0 g-.L~'. The findings of this
study demonstrated a clear trend of the germination index and the
potential for decrease in response to an increase in solution concen-
tration. The values under 1, 2, and 4 d of light and darkness were
93.3%, 92.2%, 86.7%, 81.1%, 73.4%, and 70% respectively. In conclu-
sion, under light conditions, treatment of the seeds with a
1.0 g-L=" KNOj; solution for 2 d resulted in a significant increase in
seed germination.

Comprehensive analysis of the membership function
of the seed germination of /. typhifolia seeds after
KNO; treatment

A comprehensive evaluation using the membership function was
carried out for the three germination indices, namely the germi-
nation rate, germination potential and germination index, of . typhi-
folia seeds treated with KNO;. The response effects of seed germina-
tion to KNO; were K4 > K1 > K5 > K2 > K3 > K7 > K8 > K6 > K9
(Fig. 2d). Therefore, the KNO; treatment with the best treatment
effect on I. typhifolia seeds was K4. Furthermore, the germination
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Fig. 1

Germination dynamics of I. typhifolia seeds treated with different KNO; concentrations. (a) Seeds treated with KNO; solution for 1 d. (b) Seeds

treated with KNOj; solution for 2 d. (c) Seeds treated with KNOj3 solution for 4 d. Note: Different vertical bar heights ( £+ SE) within the same column indicate

a significant difference at p < 0.05.
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Fig.2 Germination indexes of I. typhifolia seeds treated with KNO5 solution for 1, 2, and 4 d. (a) Germination rate. (b) Germination index. (c) Germination
potential. (d) Comprehensive analysis of the membership function of seed germination of /. typhifolia seeds after KNO; treatment. Note: Different letters
within the same column indicate a significant difference at p < 0.05 according to ANOVA and Duncan's test.

indices of the treated I. typhifolia seeds under light conditions were
consistently greater than those under completely dark conditions.
Consequently, all subsequent experiments were conducted under
light conditions.

Effects of microwave treatment on the germination of
I. typhifolia seeds

As shown in Fig. 3, the microwave treatment can improved the
seed germination rate. Compared with treatment at 700 W, the
germination time of the seeds in the treatment at 450 W was
greater.

After microwave treatment, the germination index of 1. typhifolia
seed:s first increased, but then decreased with increasing treatment
time (Fig. 4a—c). The germination rates peaked at 10 s at 450 W and
700 W (65.6% and 68.9%, respectively). When the treatment time
was 20 s, the germination rates decreased to their lowest values
(47.8% and 28.9%, respectively). These values were significantly
greater than those of the control group (p < 0.05). When treated at a
power of 450 W for 5, 10, or 15 s, the seed germination index
increased by 9.97%, 45.86%, and 31.27% respectively. When treated
for 20 s, it decreased by 10.5%. The inhibitory effect of the treat-
ment at a power of 700 W was more significant than that of the
control group. In summary, the promoting effect of microwave
treatment on seed germination is proportional to the treatment
duration and power. Excessively protracted treatment duration or
elevated power levels can clearly impede the efficacy of microwave

Page4of 10

treatment in promoting seed germination. The degree of inhibition
is positively correlated with the radiation intensity.

Comprehensive analysis of the membership function
of I. Typhifolia seed germination after microwave
treatment

A thorough evaluation was conducted utilising membership func-
tion was carried out for the three germination indices, namely the
germination rate, germination potential and germination index, of
I. typhifolia seeds following microwave treatment. The response
effects of seed germination to microwaves were M6 > M2 > M3 >
M1 > M7 > M5 > M4 > M8 (Fig. 4d). Therefore, the microwave treat-
ment with the best treatment effect on I. typhifolia seeds was Mé.

Effects of GA; treatment on seed germination

Treatment with GA; can reduce the time required for I. typhifolia
seeds to germinate (Fig. 5).

After treatment with GA; for 1 d, the germination rate of /. typhi-
folia seeds increased sharply with the increasing of the GA; concen-
tration (Fig. 6a). The promoting effect was the strongest (69.97%)
when the concentration was 0.3 g-L~, after which promoting effect
decreased. As the treatment time increased from 1 to 2 d and as the
concentration increased, the germination rate tended to increase.
The maximum value of 67.77% was attained at a concentration
of 0.5 g-L~". Compared with the control group, all the treatment
groups except the 0.1 g-L~' showed significant improvement
compared to the control group (p < 0.05). When the treatment time
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column indicate a significant difference at p < 0.05.
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according to ANOVA and Duncan's test.

was 1 d, the seed germination index and germination potential of
I. typhifolia seeds tended to increase in response to increasing
solution concentration. The maximum value occurred at a concen-
tration of 0.3 g-L7!, after which a decrease was observed (Fig. 6b, c).
As the treatment time increased to 2 d, the germination index and
the germination potential tended to increase. The maximum value
attained was 67.8% at a concentration of 0.5 g-L~" (p < 0.05).

Yu et al. Technology in Horticulture 2025, 5: €041

Comprehensive analysis of the membership function
of I. typhifolia seed germination after GA; treatment

A comprehensive evaluation was conducted utilising the
membership function for the three germination indices, namely, the
germination rate, germination potential and germination index, of /.
typhifolia seeds following GA; treatment. The response effects of
seed germination to GA; were G3 > G10 > G2 > G9 > G4 > G8 > G5 >
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G7 > G1 > G6 (Fig. 6d). Therefore, GA; treatment with the best
treatment effect on /. typhifolia seeds was G3.

Effects of different treatments on the germination
characteristics of I. typhifolia seeds under drought
stress

The application of 5% PEG-6000 to induce mild drought condi-
tions resulted in the promotion of seed germination, with an
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observed germination rate of 52.2% (Fig. 7a, b). Under the treatments
with 10%, 15%, and 20% PEG-6000, the germination rates of the
seeds were 40.07%, 26.7%, and 20% respectively. In comparison
with those of the control group, the germination rate and index of
the seeds subjected to treatment with 20% PEG-6000 were signifi-
cantly lower, with decreases of 60.78% and 57.9%, respectively.
Compared with those in group P, the germination rates of /. typhifo-
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lia seeds subjected to treatment with KNO; under drought stress at
various concentrations increased. Specifically, the KNOs-treated
groups exhibited 53.8%, 75.0%, 141.0%, and 165.0% increases in the
germination rate, with corresponding increases in the germination
index elevations of 67.2%, 118%, 130.6% and 180.5% respectively.
For the seeds in the PG treatment group, the germination rates
increased by 23.1%, 52.2%, 81.5%, and 110%, and the germination
index increased by 12.9%, 63.4%, 35.5%, and 56.1%, respectively.
After microwave treatment, there was no obvious promoting effect
in the treatment groups of PMR1, PMR2, and PMR3 treatment
groups compared with the P group. The PMR4 treatment group
showed an inhibitory effect under high-concentration drought
stress. In summary, the application of KNO3 and GA; significantly
mitigated the inhibitory effect of drought stress on 1. typhifolia seed
germination. Compared with GA; treatment, KNO; treatment is
more efficacious at facilitating seed germination under drought
stress in comparison with GA; treatment.

Discussion

Effects of different treatment methods on the seed
germination of I. typhifolia

Chemical treatment is advantageous for improving the speed,
efficiency, and control of seed germination[?8l. The judicious selec-
tion and application of appropriate chemicals is of paramount
importance. In this study, the germination rate and germination
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index of . typhifolia seeds subjected to KNO; treatment were found
to be considerably greater than those of the control group. KNO;
treatment also promotes the germination of seeds of Oriental Lily!?%),
Eremurus spectabilisi®9, and sweet granadillai®'l. This may be due to
the positive roles played by both K* and N* in enhancing the
membrane stability3233 and in promoting the initiation of the inter-
nal metabolic processes in seeds34. K+ and N* have been demon-
strated to reduce the cell osmotic potential by altering water
absorption, thereby stabilising the water absorption of cells?%], and
shortening the germination time without affecting uniformity or
synchronicity36-39, However, the efficacy of KNO; is contingent
upon factors such as on the plant species, the concentration of the
solution, and the duration of the treatment. Extending the treat-
ment time to more than 2 d will reduce the germination-promoting
effect of KNO3M9, which was also confirmed in the present study.
The germination indexes decreased when the treatment duration
was 4 d. However, the most effective treatment duration for
promoting the germination of I. typhifolia seeds was observed to
be 2d.

The study of the accelerated germination of I typhifolia seeds
after microwave treatment indicated that microwave treatment has
a positive impact on seed germination under certain treatment
conditions. Similar results were obtained in studies on Solanum
melongena L. seeds*'l, Microwave treatment under appropriate
power and treatment duration can increase the seed germination
rate. However, it should be noted that excessive power and
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extended treatment times can impede seed germination. There is
clearly a discrepancy in the tolerance ranges exhibited by diverse
plant species with respect to microwave radiation. In comparison
with the results of a germination study of Daucus carota L. seeds
under microwave treatment conducted by Dorota et al., it can also
be concluded that I. typhifolia seeds demonstrate a reduced toler-
ance range to microwave radiation in comparison with carrot
seeds!*Z, The increase in the germination rate after microwave treat-
ment may be related to the accelerated activation of metabolic
enzyme activity and alterations in the internal component structure
after microwave treatment*3l. However, microwave treatment for
an extended duration and at elevated power levels can result in the
inactivation of enzymes within the seeds*¥, thereby reducing the
germination rate.

The results of this study indicate that the treatment with GA;
promotes the germination of I. typhifolia seeds. GA; also signifi-
cantly affects has a significant impact on the germination rates of
plants such as Mini-watermelon*3), and Penstemon digitalis cv.
Husker Red.[*6l, Tamarindus indica L"), and Elaeocarpus prunifolius
Wall. Ex Mull. Berol.“8l. This may be because GA; promotes seed
germination by enhancing growth-hormone synthesis, increasing
the content of endogenous cytokinins, increasing enzyme activity
within the seeds, and accelerating the metabolic processes#950,
Mahak Rani further clarified the mode of action of GA; in the study
of Carica papaya L. 'Red Lady'>'l. Treatment with GA; has an inflec-
tion point. When the concentration of GA; is lower than this point,
the germination rate of the seeds increases with the increasing
concentration. However, when the concentration exceeds this
inflection point, the germination rate decreases as the concentra-
tion increases!>'. A similar trend is evident in this experiment. When
the seeds were treated with GA; for 1 d, all the germination indices
peaked values at a concentration of 0.3 g-L~'. After this concentra-
tion was exceeded, these indices tended to decrease as the concen-
tration increased. This phenomenon may be due to anaerobic
fermentation caused by the high concentration of the solution soak-
ing. This results in the production of acid within the seed, thereby
hindering the process of germination.

Effects of different treatments on the germination of
I. typhifolia seeds under drought stress

In order to combat damage to plants from various adverse living
environments, such as drought, plants have evolved a series of
complex defence response mechanisms over a long period of evolu-
tion. The findings of this study show that the treatment with 5%
PEG-6000 can increase the process of I. typhifolia seeds. Conversely,
the germination rate of the seeds substantially decreased at concen-
trations of 15% and 20%. This may be attributed to the stimulation
of self-protective mechanisms in seeds, triggered by the presence of
a low concentration of PEG-6000 solution. The seeds can regulate
the internal moisture content and prevent water absorption expan-
sion, thereby preventing damage to the membrane®2l. When the
stress exceeds a certain concentration, it breaks through the self-
protection mechanism of the seeds. Osmotic adjustment substances
are no longer capable of regulating the internal water balance of the
seeds. This can result in a severe shortage of water, which leads to
the seeds being unable to absorb sufficient water immediately.
Consequently, the vitality of the seeds decreased, and their germi-
nation was impeded®.

Duermeyer et al. reported that KNO; treatment affects the antioxi-
dant metabolism of plant seeds and promotes the accumulation of
antioxidants. KNOj3 helps to counteract the generation of reactive
oxygen species and improve the stress resistance of seeds!3l. For
instance, a study by Kaya et al. demonstrated that the application of
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KNO; can increase the germination of Helianthus annuus L. seeds
under conditions of drought stress®l. The results of the present
study similarly corroborated the finding that KNO; treatment allevi-
ated the germination of /. typhifolia seeds under drought stress, and
the effect became more significant with increasing the stress levels.

In this study, the seed germination rate of /. typhifolia increased
under PG treatment, which effectively alleviated the effects of
drought injury on seed germination. These results are consistent
with the conclusions of previous studies. In a research on industrial
Cannabis sativa L. seeds, revealed that treatment with GA; can
increase the drought tolerance of Cannabis sativa L. seeds!. There-
fore, soaking seeds with an appropriate concentration of GA; can
also significantly increase the germination rates of seeds such as
Ammopiptanthus mongolicus, Linum usitatissimum L., Sesamum
indicum L., Allium cepa L., and Cucumis melo L. under drought
stress4531 As a pivotal plant hormone that regulates plant growth,
development, and stress resistance, GA;z plays a pivotal role in miti-
gating the impact of abiotic stress on plants©¢. This may be
attributable to the capacity of GA; to curtail the minimum effective
contact time of various germination inhibitors or to stimulate the
enzyme activity within the seeds, therebyincreasing the germina-
tion index.

Some scholars have hypothesised that microwave treatment can
significantly inhibit the infection of pathogenic bacteria during the
seed germination period, reduce the germination time, and increase
the germination ratel>”. However, the results of this study demon-
strate that the alleviating effect of microwave treatment on the
seeds of I. typhifolia under drought stress is not evident. Further-
more, when the seeds are subjected to high-concentration drought
stress, the inhibitory effect of microwave treatment on seed germi-
nation intensifies. This discrepancy may be attributed to the varying
degrees of sensitivity exhibited by different plant species to
microwave treatment.

Conclusions

Following treatment with KNO3;, GA3;, and microwaves, the seed
germination index of I. typhifolia increased, with a reduction in
germination time and an increase in germination rate. The seeds of
I. typhifolia exhibited optimal germination parameters after treat-
ment with 1.0 g-L=" KNOj; solution for 2 d. Furthermore, the applica-
tion of KNO; and GA; treatments resulted in a positive regulatory
effect on the seed germination of /. typhifolia under drought stress.
An increase in the concentration of PEG above 10% resulted in a
substantial inhibition of germination. KNO; was found to be the
most efficacious at reducing this effect. Under drought stress with
20% PEG, the application of KNO; increased the germination rate of
I. typhifolia seeds from 20% to 53%, representing a 165% increase.

Treatments with KNO3; and GA; can improve the drought resis-
tance of I. typhifolia seeds to promote their use in landscaping. KNO;
and GA; are commonly used chemical reagents that are inexpen-
sive, stable, and readily available. The effective pretreatment solu-
tion obtained in this study can be mechanically coated onto the
seed surface as a seed coating agent, or the seeds can be dipped in
the solution before sowing or sprayed after sowing, thus achieving
precise, efficient, and automated large-scale treatment. Further-
more, it can also be amalgamated with other technical measures,
such as the incorporation of water-retaining agents or covering with
plastic film. This study will also optimise irrigation schemes for natu-
ral seeding of 1. typhifolia to reduce labour costs and economic and
resource losses during cultivation and production. The provision of a
theoretical basis and technical support for the breeding of more
resistant ornamental plant varieties in the future is highly important.
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