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Abstract
As one of the most important economic crops for both staple food and fruit widely cultivated in the tropics and subtropics, banana (Musa spp.) is

susceptible to a plethora of abiotic and biotic stresses. Breeding cultivars resistant to abiotic and biotic stressors without adverse effects on yield

and fruit  quality  are the objectives  of  banana improvement programs.  However,  conventional  breeding approaches are time-consuming and

severely hampered by inherent banana problems (polyploidy and sterility). Therefore, genetic transformation is becoming increasingly popular

and can provide rapid solutions. Numerous efforts have been made to develop superior banana cultivars with better resistance to abiotic and

biotic  stresses  and  optimum  yields  using  genetic  modification  strategies.  Somatic  embryogenesis  (SE)  through  embryogenic  cell  suspension

(ECS) cultures is an ideal recipient system for genetic transformation in banana. The purpose of this paper is to review the current status of banana

somatic embryo research, clarify the process of banana somatic embryo induction and culture, and summarize the main influencing factors in the

process of somatic embryogenesis. At the same time, their applications in breeding technologies such as cryopreservation, protoplast culture,

genetic transformation and gene editing were also summarized, in order to provide reference for the research and practical application of banana

somatic embryogenesis in the future.
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 Introduction

Banana  (Musa spp.),  the  most  vital  economic  crop  for  both
staple  food  and  fruit  extensively  planted  in  the  tropics  and
subtropics, are a perennial herbaceous monocotyledonous plant
pertaining  to  the Musaceae family  of  the  order Scitamineae.
Based  on  the  data  of  the  United  Nations  Food  and  Agriculture
Organization,  bananas are planted in 138 countries and regions
around the world.  As a staple food for the largely impoverished
continent of  Africa,  it  is  the fourth largest staple food crop after
rice,  wheat  and  maize.  As  a  fresh  fruit,  it  stands  the  second
largest  fruit  in  the  world  after  citrus,  and  the  consumption  and
trade volume of fresh fruit rank first in the world[1].

The  most  vital  cultivated  banana  cultivars  globally  are  trip-
loids,  originating  from  interspecific  or  intraspecific  hybridiza-
tion  of  two  wild  diploid  species, Musa  acuminata (A  genome)
and M. balbisiana (B genome)[1].  Owing to their parthenocarpy
and polyploidy, it is very hard to cultivate new varieties through
conventional  breeding[2].  Banana  plants  are  extremely  threa-
tened  by  diverse  biotic  and  abiotic  stresses,  such  as  diseases,
salt,  drought,  and  cold.  Currently,  fusarium  wilt  (commonly
known as panama disease) caused by Fusarium oxysporum f. sp.
cubense (Foc) seriously threatens global banana production. At
present, there are a lack of banana cultivars with both excellent
production and Foc-resistance[2].

It is a fundamental way out for the sustainable development
of global banana production to improve the new varieties with
excellent production and Foc-resistance. Biotechnology involv-

ing  plant  tissue  culture  is  a  powerful  complementary  strategy
in  conventional  plant  breeding  programs[3].  There  are  two
processes  of  plant  regeneration,  namely  organogenesis  and
somatic embryogenesis (SE). In general, organogenesis involves
the  sequential  formation  of  shoots  and  roots  from  tissues,
relying  on  the  appropriate  culture  conditions.  On  the  other
hand,  SE  is  a  totipotent  embryonic  stem  cell  formed  by
dedifferentiation  of  plant  somatic  cells.  This  new  embryo  can
go on to  develop into a  complete  plant[4].  Currently,  there  are
two different ways to induce explants to form SE: direct SE and
indirect  SE.  In  the  direct  SE  pathway,  explants  directly  form
somatic  embryos  without  callus  formation.  SE  also  can  be
formed indirectly through a callus stage.

Banana  plant  regeneration via organogenesis  based  on
meristemic  tissue,  such  as  shoot  tips  and  floral  apices,  are
widely used for clonal propagation. Although the regeneration
system  based  on  organogenesis  has  also  been  applied  to
genetic transformation, it has the problems of low efficiency of
genetic transformation and high proportion of chimeric plants.
SE  through  embryogenic  cell  suspension  (ECS)  cultures  is  an
ideal  recipient  system  for  genetic  transformation  in  several
plants,  including  banana,  due  to  their  oocyte  characteristics,
strong  ability  to  accept  foreign  genes  and  fewer  chimeras[5,6].
Genetic  transformation  through  ECS  is  a  most  widely  used
strategy in different banana varieties[5].

The  purpose  of  this  paper  is  to  review  the  current  status  of
research  on  the  process  of  SE  for Musa spp.  Indirect  SE  from
IMFs and scalps are the focus of this review. At the same time,
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their  applications  in  breeding  technologies  were  also  summa-
rized  in  order  to  provide  reference  for  the  research  and
practical application of banana SE in the future.

 General aspects of banana somatic
embryogenesis

The  regenerative  system  of  banana  somatic  embryogenesis
based  on  ECS  provides  an  ideal  raw  material  for  mutation
breeding,  somatic  hybridization  and  genetic  transformation[5,6].
Based  on  the  type  of  explant,  there  are  four  recognized  proce-
dures  for  the  establishment  of  banana  EC  and  proliferation  of
embryogenic cell suspension (ECS). In majority of the reports, the
immature male flowers (IMFs) and/or shoot-tip derived scalps are
a  preferred  choice  for  developing  ECS  cultures.  Similar  to  other
plants,  banana  plant  regeneration via somatic  embryogenesis
based  on  ECS  mainly  includes  callus  induction,  embryogenic
callus selection, embryogenic callus proliferation and initiation of
cell suspension culture, development and maturation of somatic
embryo, and plant regeneration[7,8] (Fig. 1).

Although  somatic  embryogenesis  in  banana  is  now  a  well-
established method, the initiation of a 'genotype-independent'
embryogenic cell  culture is  still  far  from routine.  There are still
some  problems  that  need  to  be  solved  in  the  reported
protocols  for  banana  SE.  These  problems  include  either  all  or
some  of  the  following:  low  SE  initiation  frequency  from  the
explants, reduction or loss of embryogenic competence conco-
mitant with the increased time of subculture,  and low embryo
germination and plant conversion rates (Fig. 1).

 Factors affecting somatic embryogenesis in
banana

In banana, indirect SE was mostly observed. The main culture
stages of indirect SE are induction and proliferation of embryo-
genic  callus  (EC),  maturation  and  germination  of  somatic
embryos[7,8].  Therefore, various factors affect the efficiency and
quality  of  EC  formation,  including  the  explant  type,  the
genotype of the donor plant, plant growth regulators,  and the
media and other additives, etc.

 Explant
The selection of suitable explants is one of the key factors for

the  success  of  EC  induction.  Since  early  reports  in  the  late
1980s,  a  series  of  explants  have  been  successfully  used  in
banana  EC.  In  a  word,  there  are  mainly  four  different  types  of
explants  used  in  banana:  immature  and  mature  zygotic
embryos[9−14],  Rhizome  slices  and  leaf  sheaths[15],  IMFs  and
female  flowers[5,16−21],  and  scalps[22,23].  Recently,  somatic
embryos were also successfully induced by secondary explants
from  male  buds  and  bracts  in  medium  containing  TDZ[24,25].
While,  direct  somatic  embryos developed from split  shoot tips
under a combination of picloram and 6-benzyladenine (BA)[26].
Despite  many  options,  the  most  used  explants  to  establish  a
renewable  ECS  for  seedless  banana  are  still  limited  to
scalps[27−31] and IMFs[32−34].

It  is  reported  that  factors  such  as  the  developmental  and
physiological  state  of  the  explant  and  the  location  of  the
material  can  affect  SE.  Strosse  et  al.[35] suggested  that  the
immature flowers should be taken from position 8 to 16, which
were  the  most  responsive  ones  in  terms  of  embryogenesis.
From the reports, sensitive positions are mainly concentrated in
7-13[17];  8-15[36],  4-11[37],  and  6-11[34].  Interestingly,  higher  effi-
ciency and taking a short time for EC formation were observed
by  spraying  exogenous  2,4-dichlorophenoxyacetic  acid  (2,4-D)
on immature male flower buds[38].

 Genotype
SE is highly genome dependent as the efficiency varies with

cultivars.  Using  various  explants,  SE  has  been  achieved  for
some genotypes of banana varieties (AA, BB, AB, AAA, ABB, and
AAB).  Using  IMFs  as  starting  materials,  three  genotypes
including  six  cultivars  were  tested[17].  The  efficiency  of  EC
obtained from different genotypes ranged from 0 to 7%. Even
for the different variety of the same genotype, the frequency of
EC formation varied differently. Musa AAB cvs. 'French Plantain',
'Mysore'  and  'Silk'  showed  the  efficiency  of  2%,  3%,  and  7%,
respectively.  As  for Musa AAA  cv.  'Grande  Naine',  it  had  the
highest  induction  rate  (37%)  of  all  tested  varieties[17].  Among
the  reported  genotypes,  two  cultivars  from  Cavendish
subgroup (AAA) ranged from 0.7% to 10%, responses[39]. Using

 
Fig.  1    The main phases and time required for each phase in the somatic embryogenesis  of  banana and critical  questions (Q).  (SE)  somatic
embryo; (IMFs) immature male flowers.
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the  scalps,  the  mean  embryogenic  frequency  was  6.0%,  3.8%,
and  1.8%  for  cooking  bananas  (ABB),  Cavendish-type  bananas
(AAA),  and  plantains  (AAB),  respectively[30].  Whereas,  using
inflorescence  proliferation  for  SE  induction,  the  embryogenic
frequency  was  12.5%  and  25%  under  semisolid  and  liquid
inductive medium, respectively[24].

 Plant growth regulators
PGRs  are  crucial  in  the  process  of  callus  formation,  prolife-

ration,  somatic  embryo  formation,  plant  regeneration  and
rooting.  Auxins  and  cytokinins  act  a  decisive  role  in  somatic
embryogenesis  in  various  plant  species.  At  present,  the
commonly used auxins are 2,4-dichlorophenoxyacetic acid (2,4-
D),  1-naphtaleneacetic  acid  (NAA),  indole-3-acetic  acid  (IAA),
Indole-3-butyric  acid  (IBA),  and  picloram  (4-amino-3,5,6-
trichloropicolinic  acid).  As  for  CKs,  6-benzylaminopurine  (BA),
kinetin (KN), and zeatin are the mostly used. 2,4-D is used for EC
induction,  establishment  and  proliferation  of  ECS  in  most
banana  cultivars.  It  is  often  applied  at  1–4  mg  L−1,  and  is
combined with low concentrations of  cytokinins to control  SE.
For  plant  regeneration,  BA  is  often  used  at  concentrations  of
0.1–3  mg  L−1,  and  low  concentrations  of  NAA  added,  or
sometimes hormone-free media.

Different  concentrations  and  various  combinations  of  PGRs
were  required  for  different  explants.  For  IMFs  method,  even
though  a  high  level  of  2,4-D  is  needed  for  the  EC  induction,
prolonged exposure will reduce the embryogenic nature of the
callus. At the proliferation of EC and initiation of cell suspension
cultures, reduction of the concentration of the sole auxin 2.4-D
is  improtant  for  proliferation  of  somatic  embryogenic  callus
and  expression  of  somatic  embryos[18,37,40].  However,
Nandhakumar et  al.[34] reported a MS based ECS medium with
10 mg L−1 resulted in  the  rapid  multiplication of  embryogenic
cells.  In  addition,  picloram  also  plays  a  vital  role  in  SE.  It  was
reported that  the induction percentage of  EC of M.  acuminata
cv. 'Mas' (AA) reached 15.6% when 2.4-D in the callus induction
medium  was  substituted  by  8.28 µM  picloram.  The  induction
efficiency  of  IMFs  on  medium  with  picloram  was  more  than
twice  that  of  2.4-D[41].  On  the  contrary,  the  opposite  results
were observed when the effects  of  different  concentrations of
2,4-D  and  picloram  on  callus  initiation  of M.  acuminata cv.
'Berangan'  (AAA)  were  studied[40].  It  may  be  induced  by  the
different  genotypes  of  the  explants.  As  for  the  other  explants,
both  auxin  and  cytokinin  were  used  and  maintained  in  the
medium.  Embryogenic  callus  (17.5%)  was  induced from scalps
of Musa AAB Silk 'Guoshanxiang' on MS medium with 5 µM 2,4-
D  and  1 µM  Zeatin[28].  Using  split  shoot  tips  as  explants,
maximum  embryo  induction  (100%)  for M.  acuminata AAA  cv.
'Grand Naine'  occurred in  medium with 4.14 µM picloram and
0.22 µM  BA.  The  plant  regeneration  (2%–3%)  occurred  in  MS
medium  with  NAA  (0.53–2.68 µM)  and  BA  (2.22–44.39 µM),  or
TDZ (4.54 µM) plus glutamine (200 mg/L)[26].

 Basal medium and additives
Medium  is  the  basic  substance  for in  vitro plant  culture.

According to the components, it can be divided into Murashige
and  Skoog  (MS)  medium[42],  Gamborg's  B5[43],  Woody  Plant
Medium  (WPM)[44],  and  Schenk  and  Hildebrandt  (SH)
medium[45],  etc. The basal medium may be solid, semi-solid, or
liquid.  The  commonly  used  media  for  SE  in Musa spp.  include
MS  and  SH.  MS  is  the  preferred  medium  for  callus  initiation,
establishment of ECS, and plant regeneration. SH medium with

MS vitamins  or  1/2  MS is  often used for  the development  and
maturation of somatic embryos of Musa spp.

Medium  additives,  used  along  with  basal  media  and  PGRs,
commonly  include  carbon  source,  various  amino  acids,  malt
extract (ME), and coconut water (CW), etc. Carbon source plays
a  major  role  in  plant  energy  metabolism  and  regulates  the
osmotic potential of the cell. The most preferred carbon source
for  banana  was  sucrose  (2%–4.5%;  w/v).  In  addition,  maltose,
dextrose,  fructose,  lactose  and  galactose  are  also  used  as
carbon sources in some studies. Adding maltose in the medium
promoted  the  formation  of  banana  ECS[32,34].  The  effect  of
different amino acids (L-Proline, L-Glutamine and L-Asparagine)
on  somatic  embryo  production  was  compared.  Among  the
tested amino acids, L-Glutamine (400 mg L−1) had a significant
strengthening  effect  on  primary  and  secondary  somatic
embryos  in  M3  medium[34].  It  was  in  concert  with  the  early
report[46].  The presence of  400 mg L−1 L-Glutamine resulted in
optimum somatic embryo development and high regeneration
efficiency in banana cv. Berangan (AAA). Although L-Glutamine
and  L-Proline  have  been  shown  to  promote  the  embryo
development,  high  concentrations  of  proline  (400  mg  L−1)  in
liquid  media  caused  abnormal  embryo  differentiation[46].  CW
and ME play a  promoting role in banana callus  induction[32,47].
To  avoid  rapid  browning  of  the  explants,  anti-oxidant  like
ascorbate (10 mg L−1), melatonin (50 mg L−1), and L-Glutamine
(100 mg L−1) were also added to the medium[34].

 Omics perspective on banana somatic
embryogenesis

Exploring  the  molecular  regulatory  mechanism  of  plant  SE
can  not  only  reveal  the  process  of  somatic  embryo  develop-
ment, but also afford a basis molecular mechanism for somatic
embryo development. In most banana genotypes, the potency
of  explant  to  develop  EC  is  highly  inefficient.  Therefore,  it  is
important to find the molecular regulators that can be explored
to enhance the SE potential in banana.

Based  on  the  banana  genome  database,  the  differential
transcribed  fragments  between  zygotic  and  somatic  embryo-
genesis  were  compared  by  cDNA-AFLP[48].  The  role  of  genes
including  transcription  factors  (TFs)  was  identified  in  banana
SE.  The results  showed that MaBBM2 and MaWUS2 maybe the
prospective candidate TFs and MaPIN1 could be a hopeful gene
marker for the embryogenicity in banana[49,50].

Recently,  differentially  expressed  proteins  during  the  SE  in
banana  were  identified  by  proteome  technology[51−53].  Based
on comparative proteomics,  it  is  indicated that  EC was related
to  excessive  accumulation  of  ROS  scavenging  proteins,  heat
shock proteins (HSP), and growth-regulator related proteins[51].
Furthermore, calcium signaling and PGRs were also involved in
the  development  and  germination  of  somatic  embryos.  The
important role of calcium and PGRs (IAA, BAP, and kinetin) were
confirmed  by  proper  induction  of  five  recalcitrant  banana
cultivars[52].  Based on these results, the medium for optimal SE
efficiency in several cultivars could be customized.

 Applications of somatic embryogenesis

 Cryopreservation
As  the  basal  materials,  ECS  is  very  important  for  banana

germplasm innovation. However,  the establishment of banana
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ECS  is  very  difficult,  and  after  establishment,  it  needs  to  be
subcultured regularly.  Frequent subculture not only consumes
a  lot  of  manpower  and  material  resources,  but  also  leads  to
somatic  mutation  and  the  loss  of  embryogenic  characteristics.
Furthermore,  it  is  susceptible  to  bacterial  and fungal  contami-
nation.  Therefore,  it  is  of  great  significance  to  study  the
preservation  methods  of  banana  ECS.  Cryopreservation  is  an
effective  technology  that  can  not  only  reduce  the  risk  of
contamination  and  gene  mutation,  but  also  effectively  store
plant  material  for  a  long  time.  There  are  three  main  methods
for  cryopreservation  of  banana  germplasm,  namely  slow-
freezing  (two-step  method),  quick-freezing  and  vitrification.
Panis et al.[54] successfully used a two-step method to preserve
banana  ECS  for  the  first  time.  In  2010,  Li  et  al.  successfully
cryopreserved banana ECS by vitrification[55].

 Protoplast cultures
Protoplast fusion and somatic hybridization offers the poten-

tial  to  produce  novel  crops  and  overcome  breeding  obstacles
in  polyploid  and  apomictic  banana  cultivars.  In  1993,  the
isolation and regeneration of protoplasts from an embryogenic
cell  suspension  culture  in  banana  were  successfully
received[56,57]. Science then, a number of banana cultivars inclu-
ding  various  genotypes  (AA,  AAA,  AAB,  ABB)  were  effectively
regenerated through protoplast culture[58].

Plant  regeneration via protoplast  culture  opens  up  feasible
opportunities  for  somatic  hybridization  and  protoplast
transformation,  and  eventually  leads  to  genetic  modification
and breeding of  new varieties.  Somatic  hybridization between
triploid  (Musa spp.  AAB  group,  cv.  'Maçã')  and  diploid  (Musa
spp.  AA  group,  cv.  'Lidi')  bananas  was  attempted  using
protoplast electrofusion and nurse culture techniques. Somatic
hybrids  showed  different  ploidy  levels  by  RAPD  and  flow
cytometric  ploidy  analyses[59].  Assani  et  al.[60] successfully
obtained banana somatic hybrid plants from Musa spp. triploid
cv.  'Gros  Michel'  (AAA)  and  diploid  cv.  'SF265'  (AA).  By  the
comparison  of  chemical  (PEG:  polyethylene  glycol)  and
electrical fusion technique, it was found that electric fusion was
better  for  mitotic  activities,  somatic  embryogenesis  and
plantlet,  and chemical  procedure was better  for  the frequency
of  binary  fusion.  Xiao  et  al.[58] developed  an  asymmetric
protoplast  fusion  with  20%  (w/v)  PEG  and  obtained  somatic
hybrids between Musa Silk cv.  'Guoshanxiang' (AAB) and Musa
acuminata cv.  'Mas'  (AA).  Recently,  Wu  et  al.[61] established  a
PEG-mediated protoplast transformation, which can serve as an
effective  and  rapid  tool  for  transient  expression  assays  and
sgRNA validation in banana.

 Transgenics
As a perennial fruit crop, banana is susceptible to a plethora

of  abiotic  and  biotic  stresses[6,62,63].  The  objectives  of  banana
improvement  programs  are  breeding  cultivars  resistant  to
abiotic and biotic stressors without adverse effects on yield and
fruit  quality.  Numerous  efforts  have  been  made  to  breed
superior  banana cultivars  with better  resistance to  abiotic  and
biotic  stresses  and  optimum  yields  at  the  same  time  using
conventional  breeding  and  genetic  modification  strategies.
However,  conventional  breeding  approaches  are  time-con-
suming  and  severely  hampered  by  inherent  banana  problems
(polyploidy  and  sterility).  Therefore,  genetic  transformation  is
becoming  increasingly  popular  and  can  provide  rapid
solutions.

In  summary,  the  recipients  used  for  banana  genetic
transformation  are  usually  ECS,  apical  meristem,  corm  slices,
thin  cell  layers  from  shoot  tips,  multiple  shoot  clumps  etc.
Among  them,  genetic  transformation  through  ECS  is  a  most
commonly used method in different cultivars of banana owing
to  its  strong  ability  to  accept  foreign  genes  and  the  lower
frequency  of  chimeras  shoot  production.  The  transformation
method  is  mainly  mediated  by  gene  gun  and  Agrobacterium.
The  flow  chart  of  banana  genetic  transformation  using  ECS  is
shown  in Fig.  2.  The  transformation  efficiency  was  between
1.25%  and  50.00%,  with  a  large  range  of  changes.  Except  for
NPTII, GUS, GFP and other screening genes and reporter genes,
the  transformed  functional  genes  mainly  involved  in  banana
fruit  quality,  disease  resistance,  drought  tolerance,  dwarfing
and  other  traits  improvement[62].  In  this  part,  the  studies  for
banana genetic transformation with added value from 2000 on
were mainly summarized as below.

 Improvements in disease resistance
In  banana,  the  most  serious  diseases  are  fungal  (Fusarium

wilt,  black  Sigatoka),  bacterial  (banana  Xanthomonas  wilt,
BXW), and viral (banana bunchy top disease, and banana streak
disease)[63,64].  Researchers  have  been  working  to  improve
disease  and  pest  resistance  in  bananas  using  transgenic
technology[64−66].

Various  transgenes  have  been  used  to  develop  genetically
engineered  banana  and  many  conferred  significant  levels  of
resistance to fungal pathogens (Table 1). Functional genes used
to  develop  Foc-resistance  bananas  mainly  included  the
antimicrobial  peptides  belonging  to  plant  or  animal
origin[67,68,70,72,75,78,80],  apoptosis-inhibition-related  animal
genes  (Bcl-xL, Ced-9 and Bcl-2 3'  UTR,  Ced9)[69,74,81],  different
cell-death-related  genes  (MusaDAD1, MusaBAG1 and
MusaBI1)[72],  and  defense-related  protein[82].  In  addition,  Foc-
resistance has also been conformed using RNAi silencing of key
genes of Foc[71,84]. Although the above studies demonstrate the
transgenic  plants  resistance  to  Foc  in  the  greenhouse,  field
evaluation  remains  to  be  seen.  Recently,  transgenic  bananas
with resistance gene analog 2 (RGA2), isolated from a seedling
of Musa  acuminata ssp. malaccensis with  resistance  to  TR4,
showed  promising  resistance  against  Fusarium  wilt  after  a  3-
year  field  trial  in  Australia[81].  Similarly,  two  native  genes
(MaLYK1 and MabHLH)  from  banana  germplasms  with  Foc
resistance were introduced back to Cavendish banana cv. Brazil,
had  shown  increased  resistance  to  TR4[83,85].  Several  studies
from  the  researchers  at  the  International  Institute  of  Tropical
Agriculture (IITA) reported transgenic bananas resistant to BXW
disease[88−92].  Other  studies  also  dealt  with  the  production  of
resistance  to  Black  Sigatoka[86,87] and  banana  bunchy  top
disease[93−95] (Table 1).

 Improvements in the abiotic stresses resistance
Many  transcription  factors  (TFs)  and  downstream  genes

which respond to abiotic stress have been identified in banana.
They  mainly  include  WRKY[96],  bZIP[97],  MYB[98],  NAC[99],
dehydrins  (DHN)[100],  SAP1[102],  and  aquaporins  (AQP)[103−108],
and  so  on  (Table  1).  In  transgenic  plants,  overexpression  of
these  TFs  let  them  withstand  and  survive  under  stress
conditions. Because of their important role in plant growth and
development,  it  can  cause  abnormal  growth  in  transgenic
plants by the constitutive overexpression of these TFs,  such as
bZIP53[97].  Identifying  and  overexpressing  a  key  gene  partici-
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pated in stress tolerance is a good option. Ectopic expression of
stress-related  genes  has  been  introduced  into  banana  to
enhance  the  tolerance  to  some  abiotic  stresses[100−109].  How-
ever,  the  majority  of  these  studies  have  been  reported  from  a
glasshouse evaluation. Trials in the field are necessary to further
prove their worthiness.

 Improvements in the fruit quality and others
Recently, genetic engineering was also employed to improve

fruit  nutrient  content  and  control  fruit  ripening  (Table  1).
Transgenic  bananas  with  biofortified  iron  content  and  pro-
vitamin  A  were  tested  in  the  green  house  and  field,  respec-
tively.  The  transgenic  banana  plants  overexpressing  soybean
ferritin accumulated the higher levels of iron and zinc under in
vitro conditions  as  well  as  in  the  green  house[110].  PVA-
biofortified  transgenic  Cavendish  bananas  were  also
developed[111].

Banana MaMADS transcription factors are necessary for fruit
ripening  and  molecular  tools  to  promote  shelf-life.  Repression
of either MaMADS1 or MaMADS2, resulted in delayed ethylene
synthesis and maturation[112]. Similarly, transgenic red bananas

were  obtained  with  sense  and  anti-sense  constructs  of
MaMADS36. Further  study  demonstrated  that  MaMADS36
directly binds to the CA/T(r)G box of the MaBAM9b promoter to
regulate  enzyme  activity  and  starch  degradation  during
ripening[113].

 CRISPR/Cas-based genome editing
Genome-editing  technologies  using  various  site-directed

nucleases  (SDNs)  have  become  powerful  tools  for  modifying
plant genomes. SDNs include meganucleases, ZFNs (zinc finger
nucleases),  TALENs  (transcription  activator-like  effector
nucleases),  and  CRISPR/Cas  (clustered  regularly  interspaced
short  palindromic  repeats/CRISPR-associated  protein)[114].  The
CRISPR/Cas system has been widely adopted for plants genetic
improvement due to its simplicity and high-efficiency[115].

Although  the  application  of  the  CRISPR/Cas9  system  in
banana  is  still  at  the  preliminary  stage,  CRISPR/Cas9  mediated
genome editing has been applied to improve banana nutrient
contents,  storage  time,  disease  resistance,  and  alter  the  plant
architecture[6,114,116,117].  In  summary,  the  CRISPR/Cas9-based
genome editing utilized in banana are outline in Table 2.

 
Fig. 2    Schematic representation of genetic transformation steps of banana using embryogenic cell  suspension. Scalps and immature male
flowers  (IMFs)  are  the  most  used  explants  to  establish  a  renewable  ECS  for  seedless  banana  cultivars.  The  photos  of  scalps  and  friable
embryogenic callus are cited from Tripathi et al.[31].
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 Establishing the editing system
Plant albino phenotype is a classic and indicative phenotype

for  testing  and  judging  whether  the  CRISPR/Cas9  system  is
effective. As an indicator gene, phytoene desaturase (PDS) can
easily  obtain the target albino trait  and has been knocked out
in  most  fruit  trees.  Recently,  CRISPR/Cas9-based  genome
editing  in  banana  has  been  established  using  the  PDS  as  a
marker  gene[118−121].  However,  knockout  of  PDS  has  adverse
effects  on  plant  growth.  Optionally,  RP43/CHAOS39-edited
banana  plants  were  obtained  with  pale-green  phenotype  and
no negative effects on plant growth[122]. Recently, the transient
delivery  system  by  a  PEG-mediated  protoplast  was  establi-
shed[61]. The editing efficiency of the CRISPR/Cas9, CRISPR/Cas12a,
and  ribonucleoprotein-CRISPR-Cas9  (RNP-CRISPR-Cas9)  for
targeting  the  PDS  gene  in  banana  protoplasts  was  compared.
The  results  showed  that  the  efficiency  of  CRISPR/Cas9-
mediated  mutagenesis  was  higher  than  that  of  the  other  two
systems.  In  addition,  it  was  the  first  report  by  a  RNP-CRISPR-
Cas9 system for genome editing in banana[61]. In comparison to
the previous report in banana, using endogenous U6promoter
and banana codon-optimized Cas9 in CRISPR/Cas9 cassette, the
mutagenesis efficiency has a fourfold increase[123].

 Enhance disease resistance
Banana streak virus (BSV), a double stranded DNA Badnavirus

which integrated in the B genome derived from M. balbisiana, is
called endogenous BSV (eBSV). It severely affects production of
plantain  (AAB)  in  Africa.  To  inactivate  the  virus,  a  multiplexed
gRNA strategy targeting all three ORFs of eBSV was constructed
and transformed into Gonja Manjaya (AAB). Compared with the
controls,  the  eBSV-edited  plants  exhibited  resistance  against
eBSV  and  normal  growth.  A  very  high  mutation  effciency  of
95%  using  three  gRNAs  were  observed[124].  Recently,  CRISPR/
Cas9  mediated  gene  editing  for  banana  resistance  against
bacteria  was  also  reported.  To  obtain  the  banana  cultivar
against  Xanthomonas  Wilt  (BXW),  a  Musadmr6  gene  was
edited[125].  The  edited  plants  had  a  higher  resistance  to  BXW
without adverse affecting on plant growth. Researchers are also
trying to breed TR4 resistance cultivars by CRISPR[126].

 Improve fruit quality and shelf life
Fruit quality is an important indicator to measure the value of

fruit  commodities.  Carotenoids  are  essential  for  human
nutrition.  Most Cavendish group cultivars have low β-carotene
content  in  the  fruit  pulp.  Using  CRISPR/Cas9  technology, β-
carotene-enriched  banana  plants  were  created  by  editing  the
fifth  exon  of  LCYε gene  from  A  genome,  which  determines  a
high α-/β-carotene ratio[127]. Compared with the unedited fruits,
the β-carotene  count  of  the  fruit  pulp  of  the  edited  lines
increased  by  6-fold.  More  recently,  CRISPR/Cas9-mediated
editing  of  CCD4  was  conducted  in  Rasthali.  In  comparison  to
the  controls,  the  accumulation  of β-carotene  in  roots  was
increased in the CCD4-edited plants[128].

The  shelf  life  of  post-harvest  fruits  is  an  important  factor
affecting  fruit  quality.  The  production  of  ethylene  is  closely
related to the storage time of banana fruits.  Thus,  it  is  the first
consideration  for  developing  postharvest  preservation
technology. MaACO1 encodes  for  an  O2-activating  ascorbate-
dependent non-heme iron enzyme that catalyzes the last  step
in  ethylene  biosynthesis.  The  MaACO1-editted  banana  fruit
extended shelf life and had more Vitamin C compared with the
wild-type fruit[129].

 Alter the plant architecture
Developing  semi-dwarf  and  dwarf  banana  varieties  is  also

one  of  the  objectives  of  banana  improvement  programs.
Gibberellin  (GA)  is  a  key  gene  which  determines  plant  height
and  the  mutations  in  its  biosynthesis  genes  often  leads  to
dwarf plants. CRISPR/Cas9 technology was applied to generate
a semi-dwarf banana cultivar 'Gros Michel' by manipulating the
M. acuminata gibberellin 20ox2 (MaGA20ox2) gene, disrupting
the gibberellin (GA) pathway[130].

 Problems and Prospects

At  present,  extensive  advances  has  been  made  on  banana
SE.  Reports  of  banana  genetic  improvement  using  ECS  in  the
past  five  years  has  increased  dramatically.  Nevertheless,  there
are still many problems to be solved in the research on banana
SE  and  genetic  modification.  Little  information  is  available  on
the  molecular  mechanisms  of  banana  SE.  The  embryogenic
capacity and efficiently propagated plantlets are very low. The
repeatability of the protocols early reported for SE in banana is
poor.  So  far,  SE  in  bananas  is  far  from  being  considered  a
conventional  technique  and  has  not  even  been  successfully
used in some varieties.

Hence,  an  important  consideration  for  future  work  is  to
explore  the  basic  molecular  mechanism  of  banana  embryo-
genic  potency.  The  gradual  application  of  multi-omics  techni-
que  in  plant  SE  provides  the  feasibility  to  uncover  the
regulatory  mechanism  of  SE  development  at  the  molecular
level.  Further  continuous  work  is  needed  for  optimizing  a
highly  effcient  and  versatile  transformation  and  regeneration
system  which  independent  on  genotype.  And  the  genetic
improvement at present only aims at single gene or single trait.
More genes associated with disease-resistance,  as  well  as  with
other important agronomic traits, should be characterized and
utilized  in  target  breeding  programs.  Molecular  designing
breeding with  multi-gene superposition should be carried out
to  breed  new  banana  varieties  with  good  comprehensive
characters.

Despite  the  rapid  progress  of  banana  transgenic,  there  are
no  commercial  transgenic  varieties  applied  to  the  production.
With  the  continuous  optimization  and  improvement  of
CRISPR/Cas  and other  gene editing technologies,  it  is  possible
to obtain an ideal mutant by accurately targeting target sites. In
addition,  the  key  technology  of  modern  biotechnology
breeding  is  the  delivery  system  of  plant  genetic  modification.
The  application  of  nanocarriers  in  plant  genetic  engineering
shows  a  broad  application  prospect.  The  introduction  of
nanotechnology into banana tissue culture showed significant
positive  effects  on  callus  induction,  somatic  embryogenesis
and  other  regeneration  aspects.  More  recently,  a  cut-dip-
budding  delivery  (CBD)  system  enables  genetic  modifications
in plants without tissue culture[131]. It overcomes the difficulties
posed  by  the  traditional  technology  due  to  the  plant  tissue
culture  process.  Therefore,  it  would  be  very  interesting  to
explore a simple, fast and efficient method for banana genetic
transformation or  genome editing without  the need for  tissue
culture.
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