Open Access

https://doi.org/10.48130/tp-0025-0021

Tropical Plants 2025, 4: e029

Long non-coding RNAs in *Brassica* crops: molecular hijackers of developmental processes and stress responses with implications for tropical adaptation

Sana Basharat^{1,2,3#}, Muhammad Waseem^{1,2,3#*} and Pingwu Liu^{1,2,3*}

- ¹ School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan 572025, China
- ² Fang Zhiyuan Academician Team Innovation Center, Hainan 571100, China
- ³ Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan 571100, China
- # Authors contributed equally: Sana Basharat, Muhammad Waseem
- * Corresponding authors, E-mail: m.waseem.botanist@gmail.com or drwaseem@hainanu.edu.cn; hnulpw@hainan.edu.cn

Abstract

The genus *Brassica* comprises diverse agriculturally important crops and is grown for vegetables, oil crops, forage, and industrial purposes. With the advancement of next-generation sequencing technologies in plants, hundreds of thousands of long non-coding RNAs (lncRNAs) have been identified and characterized in *Brassica* crops. LncRNAs intricately regulate diverse aspects of *Brassica* crop growth and development, including flowering time, flower fertility, pollen development, and abiotic stress tolerance, and involve unique mechanisms that regulate gene expression, miRNAs, and interaction in controlling hormone pathways. This review aims to present a comprehensive overview of lncRNAs, with a particular focus on their regulatory roles in *Brassica* crops which are increasingly grown in tropical and subtropical agricultural systems under abiotic stress conditions, such as heat, drought, and salinity.

Citation: Basharat S, Waseem M, Liu P. 2025. Long non-coding RNAs in *Brassica* crops: molecular hijackers of developmental processes and stress responses with implications for tropical adaptation. *Tropical Plants* 4: e029 https://doi.org/10.48130/tp-0025-0021

Introduction

The central dogma of molecular biology is a complex of two diverse processes of genetic information transfer: transcription and translation. In eukaryotes, nearly 90% of the whole genome is transcribed into RNA, but only RNA is translated into polypeptides^[1]. A significant proportion of RNAs do not correspond to protein-coding protein-non-coding RNA (ncRNA)[2], ncRNAs comprise a heterogeneous class of transcripts, including regulatory RNAs (miRNA and siRNA), housekeeping RNAs (tRNA and rRNA), and long non-coding RNAs (IncRNAs)[3]. Initially, IncRNAs were represented as 'junk DNA' or 'dark matter', but later gained attention due to their diverse roles in biological functions, such as in epigenetics, growth, development, and other regulatory processes, which can directly or indirectly hijack proteins or their mRNAs^[4]. An IncRNA could be more than 200 nucleotides in length; have two or more exons; and a few open reading frames, which could code for shorter proteins (fewer than 100 amino acids)[1].

Once regarded as functionless, IncRNAs are now recognized as emerging regulators that are pivotal for the smooth functioning of diverse cellular processes or genomic activities in plants. The biosynthesis of IncRNAs is a complex and multistep process involving multiple enzymes. Each step is catalyzed by a specific set of enzymes. Although IncRNA biogenesis is quite complicated, it is still similar to that of mRNAs but is enriched in the nucleus due to insufficient processing by RNA polymerase II (Pol-II)^[5]. The IncRNAs transcribed by Pol-II possess a 3'-polyadenylated (poly-A) tail and a 5-methyl-cytosine cap. In comparison, Pol-IV and Pol-V play key roles in the biogenesis of IncRNA that lack poly-A tails, and play a significant role in driving RNA-directed DNA methylation. These IncRNAs

are merely aberrantly expressed when compared to those derived from Pol-II and are characterized by high instability^[6].

However, based on their genomic context, IncRNAs are classified into the following groups: enhancer enhancer-associated IncRNAs; promoter promoter-associated IncRNAs; intronic IncRNAs; sense or exonic IncRNAs; long intergenic IncRNAs; divergent or bidirectional IncRNAs; antisense IncRNAs (Fig. 1). These IncRNAs are transcribed by Pol-II, Pol-IV, or Pol-V^[1]. To date, studies of the biosynthesis of IncRNAs in relation to specific physiological conditions and their mechanisms of action remains in their infancy.

LncRNAs have different features. IncRNAs are abundant and critical group of RNA molecules that modulate gene expression, controlling diverse biological processes related to development and response to environmental constraints. The first IncRNA, *H19*, was discovered in 1984 in mice^[7] and functions as an oncogene in many malignant tumors. With the advancement of next-generation technology and comparative genomics, *EARLY NODULIN 40 (ENOD40)* was reported as the first plant IncRNA involved in symbiotic nodule organogenesis in *Medicago truncatula*^[8]. Several IncRNAs have been characterized as riboregulators of various important biological processes in plants, including flowering, leaf development, pollen development, male sterility, plant innate immunity, nutrient toxicity and deficiency, and responses to diverse environmental constraints, such as salinity, drought, and temperature extremes (Fig. 2)^[1].

Recent advancements in studies of lncRNAs in plants have provided compelling evidence supporting the fact that despite lacking protein-coding potentials, lncRNAs play critical roles in regulating gene expression, either directly or indirectly. lncRNAs lack sequence conservation, which does not impair their function. In general, lncRNAs exhibit very low sequence conservation across different plant species. Their rapid evolutionary rate contributes to

Fig. 1 Different classes of IncRNAs, based on their origin in the genome context.

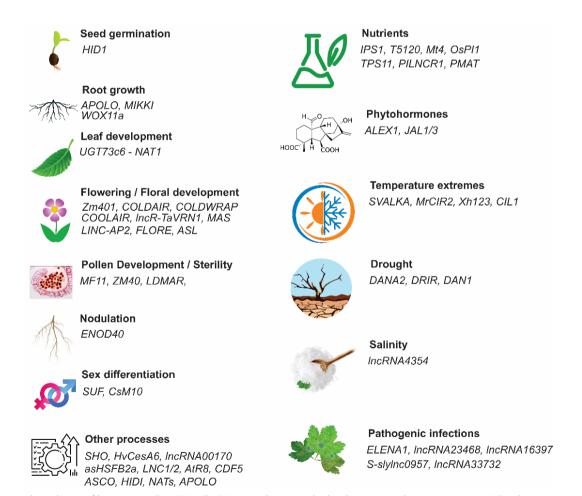


Fig. 2 Functional regulation of long non-coding RNAs (IncRNAs) in plant growth, development, and stress responses. HID1 plays an important role in seed germination, APOLO, MIKKI, and WOX11a alter root development and root system architecture, leaf morphogenesisis controlled by UGT73c6 (a NAT IncRNA) is regulated cold and spring flowering, flowering time by Zm401, COLDAIR, COLDWRAP, COOLAIR, IncR-TaVRN1, MASS, LINC-AP2, FLORE, and ASL, pollen development is control by MF11, ZM40, and LDMAR. ENOD40 promotes root nodulation. Sex differentiation is determined by SUF and CsM10. Plant ability to enhance nutrient accumulation is in addition to a protein-coding genes is also contributed by IncRNAs like IPS1, T5120, Mt4, OsP11, TPS11, PILNCR1, and PMAT. SVALKA, MrCIR2, Xh123, and CIL1 regulate tolerance to high temperatures, while DANA2, DRIR, and DAN1 regulate drought tolerance, and IncRN4354 regulates salinity stress in plants. ALEX1 and JAL1/3 regulate phytohorme-mediated responses in plants. However, there are several IncRNAs like ELENA1, IncRNA23468, IncRNA16397, S-sylnc0957, and IncR33732 that regulate pathogenic infections and enhance disease resistance^[1].

this genetic variability, and the nature of their functions depends on their structural features rather than their precise sequence identity^[9]. The diverse regulatory roles of lncRNAs are due to their high sequence variability, which assists plant breeders in developing new stress-tolerant cultivars.

IncRNAs research progress in *Brassica* crops

Brassica crops are highly nutritive, have high economic value, and have high economic value. They are cultivated as vegetables, fodder, edible oils, and other usable products^[10]. Brassicaceous crops belong to the taxa B. rapa, B. juncea, B. napus, and B. oleracea. These crops are highly susceptible to various environmental constraints; however, the introduction of genetically modified Brassica cultivars has greatly reduced the impact of harsh environmental conditions to overcome the reduction in crop production and yield. With the advancement of next-generation sequencing technologies, a plethora of IncRNAs have been identified in Brassica crops across different developmental stages and diverse environmental constraints. This review aimed to improve the current understanding of IncRNAs in Brassica crops. Altogether, this study summarized the characteristics and highlighted the regulatory roles of IncRNAs in plant biological processes, such as growth, development, and responses to biotic and abiotic stresses in *Brassica* crops.

High throughput identification of IncRNAs in *Brassica* crops

Since the advent of genomic studies that have focused on the transcriptome, the number of genome studies has increased significantly owing to their high precision and cost-effectiveness. The study of lncRNAs is challenging owing to their low expression and sequence conservation. Many lncRNAs have been identified in diverse biological processes such as growth, development, and responses to environmental constraints^[11]. Transcriptome analysis and standardization of lncRNA identification pipelines has generated significant data concerning lncRNAs in *Brassica* crops. The enormous amount of data facilitates global identification and *in silico* characterization of lncRNAs in Brassica crops to understand their potential function and expression patterns. Genome-wide identification and characterization of lncRNAs in Brassica crops in specific tissues, developmental stages, and responses to abiotic and biotic stress are provided in Table 1.

IncRNAs regulating seed traits

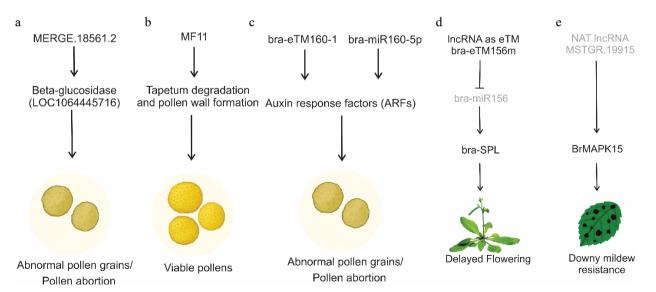
The seed of Brassica crops have unique economic value and are a vital source of edible oil, nutrients, and biofuel with key crop improvement traits. However, seed-related traits such as seed size, vigor, shape, and oil content are of paramount importance, and are target targets for crop improvement^[29]. Recently, IncRNAs were reported to be involved in regulating seed oil content and fatty acid composition in Brassica crops. For instance, the seeds of two contrasting genotypes of B. Juncea, Early Heera 2 (EH2) and Pusajaikisan (PJK), had 809 differentially expressed lncRNAs, of which 25 IncRNAs were significantly correlated with seed size, color, and accumulated oil content. The expression of 28 lncRNAs correlated with fatty acid biosynthesis genes, indicating that these IncRNAs play a critical role in oil synthesis[27]. This study is consistent with that of Shen et al.[30], which indicated that 13 lncRNAs in B. napus were significantly correlated with eight lipid-related genes. Comparative analysis of IncRNAs in two B. napus accessions, WH5557 (low oil content) and ZS11 (high oil content), indicated the role of two IncRNAs (MSTRG.22563 and MSTRG.86004) in the regulation of oil content accumulation and fatty acid composition. MSTRG.22563 might affect seed oil content by affecting respiration and the TCA cycle, while MSTRG.86004 plays a role in prolonging seed developmental time to increase seed oil accumulation[31]. Weighted Gene Correlation Network Analysis (WGCNA) indicated dynamic alterations in oil content and fatty acid composition during seed development and in low-low-high oleic acid rapeseed genotypes. Genes related to lipid biosynthesis, such as 3-ketoacyl-CoA synthase 16 (KCS16) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), were predicted in the co-expression network, suggesting that their effect on lipid metabolism might be embodied by increasing the expression of these lncRNAs^[32]. Oil biosynthesis is one of the major experimental research areas focused on the key biological process in Brassica crops. However, the role of IncRNAs in fatty acid and lipid biosynthesis vary. Understanding the role of IncRNAs in fatty acid and lipid biosynthesis is still limited or in its early stages.

IncRNAs regulating fertility

The underestimation of the roles of lncRNAs is probably due to the relatively low expression of lncRNAs compared to that of protein-coding genes or small RNAs such as miRNAs. An in-depth study of plant lncRNAs based on their molecular mechanisms and the iris based on their molecular mechanisms and related biological functions. In plants, many lncRNAs have been identified by *in-silico* approaches considered to participate in crop fertility, such as flower bud development and flowering. Pollen development is a key process in controlling productive development. In the cytoplasmic male sterile system (CMS) in rapeseed, Xing et al. [33] reported five lncRNAs *cis*-target genes in *Pol* (P5A) and *Nsa* (1258A) genotypes during pollen abortion. Among these lncRNAs, β -glucosidase (*LOC106445716*) was predicted as the target gene of lncRNA, *MERGE.18561.2* and could regulate pollen development and be related to pollen abortion (Fig. 3a).

Male Fertility (MF) is a novel pollen-specific IncRNA, involved in regulating tapetum degradation and pollen wall formation, which is a critical step in the formation of tapetum degradation and pollen wall formation, a necessary step in the formation of viable pollen^[34]. In Brassica crops, MF11 has been characterized in different species, such as B. campestris. Downregulation of BcMF11 suppresses pollen germination efficiency, delays pollen tube germination, delays tapetum degradation, and aborts the development of pollen grains (Fig. 3b)[35]. Likewise, BcMF8 encodes a putative arabinogalactan protein-encoding (AGP) gene that contributes to aperture formation, pollen tube growth, and pollen wall development in B. campestris[36]. The B. rapa IncRNAs, BcMF11, and BcMF11 are essential for tapetum and pollen development^[37]. However, Wei et al.^[20] reveal the potential role of lncRNA-mR in the NA modules in the genetic male fertility and sterility of B. rapa. Among these IncRNAmiRNA modules, MSTRG.13.532-BraA05g030320.3C (pectinesterase), MSTRG.9997-BraA04g004630.3 C (β-1,3-glucanase) and MSTRG.5212-BraA02g040020.3 C (pectinesterase) are associated with asynchronous tetrad separation, tapetum degradation, and callose degradation indicating their potential regulatory role in pollen development. The role of IncRNAs in Brassica crops was further strengthened by systematic analysis of IncRNAs during pollen development in B. rapa. For instance, systematic analysis of IncRNAs revealed two IncRNAs as endogenous target mimics of miR160 functioning in pollen development, and Huang et al.[13] predicted 15 IncRNAs as endogenous target mimics of miRNAs, particularly target mimics of miR160. For example, two lncRNAs, bra-eTM160-1 and bra-eTM160-2, were predicted to be potential eTMs for bra-miR160-5p and to affect

Table 1. Genome-scale identification of IncRNAs in Brassica crops in specific tissues, developmental stages, and environmental conditions.


Brassica plant	Number of IncRNAs	Developmental stage –	Stimuli / environmental condition		D-f
			Abiotic	Biotic	- Ref.
Brassica rapa	1,031 NAT-IncRNAs		Heat		[12]
	12,051 IncRNAs	Pollen development and fertilization			[13]
	18,253 IncRNA		Heat		[14]
	254 DE-IncRNAs	Vernalization			[15]
	407 IncRNAs	Anthers development			[16]
	278 IncRNAs		Heat		[17]
	4,594 IncRNAs		Heat		[18]
	6,392 IncRNAs	Pollen development			[19]
	385 DE-IncRNAs	Male sterility and fertility			[20]
Brassica napus	3,181 IncRNA			Sclerotinia sclerotiorum	[21]
	11,073 IncRNAs		Cold		[22]
	8,094 IncRNAs	Seed oil accumulation			
	5,546/6,997 in Q2 and 7,824/10,251 Qinyou8 down/upregulated		Drought and re-watering		[23]
	2,546 IncRNAs		Cadmium		[24]
Brassica juncea	7,613 IncRNAs with 1,614 DE-IncRNAs		Drought and heat stress		[25]
	3,602 DE-IncRNAs		Salinity		[26]
	1,539 IncRNAs	Seed development			[27]
Brassica oleraceae	148 DE-IncRNAs	Cuticular Wax Biosynthesis			[28]

the expression of its target gene, auxin response factor (ARF). *bra-eTM160-2* was predominantly expressed in inflorescences, and transgenic plants overexpressing *bra-eTM160-2* showed abnormal pollen grains without nuclei and were not viable with complete abortion (Fig. 3c).

IncRNAs regulating flowering

Flowering in plants involves non-coding cues that regulate an intricate molecular mechanism in the transition from the vegetative to the reproductive phase and ensure seed productivity. To date, studies have revealed the roles of many coding and non-coding genes, including lncRNAs, which play a central role, and their interactions ultimately influence flowering time^[38]. Vernalization, a

crucial phenomenon for successful flowering and sustainable yield in *B. rapa*, is intricately regulated by lncRNAs. In this realm, *FLOWER-ING LOCUS C*, a principal inhibitor of flowering *B. rapa* contains multiple homologs of FLC genes, three of which are syntenic orthologs of *AtFLC*. For example, Dai et al.^[39] reported an inversion of the expression of the flowering repressor genes *BrFLC1* and *BrFLC2* in *B. rapa* during vernalization and displayed acceleration in flowering in transgenic Arabidopsis. However, in *B. oleracea*, *BoFLC1* contributes to non-flowering traits through tandem duplication^[40]. A premature stop codon in *the BrFLC2 transcript of B. rapa* leads to early flowering^[41]. *BrFLC5 is* predicted as a flowering time QTL and it is possibile that *BrFLC5* is involved in flowering time variation^[42]. Furthermore, in the *B. rapa* genome, *BrFLC5* is classified as a pseudogene because it lacks two exons. A splicing site mutation in *B. rapa*

Fig. 3 Mechanisms of action of lncRNAs in different developmental and stress responses. (a) a lncRNA (*MERGE.18561.2*) impacts pollen viability by targeting beta-glucosidase genes. (b) *MF11* suppresses pollen germination efficiency, delays pollen tube germination, delays tapetum degradation, and aborts the development of pollen grains. (c) lncRNAs acting as endogenous targets of *bra-miR160*, *bra-eTM160-1*, and *bra-eTM160-2*, suppress the activity of miR160 activating ARF genes, which subsequently influence pollen development. (d) lncRNA as eTM of *bra-miR156* in Chinese cabbage, which ultimately delays flowering by activating *SPL* genes. (e) An antisense lncRNA activates the *MAPK15* gene to enhance resistance against downy mildew.

BrFLC5 is related to variation in flowering time^[43]. Akter et al.^[44] confirmed that *BrFLC5* acts as a floral repressor when it is overexpressed in Arabidopsis. In *B. rapa*, comparative transcriptome analysis provided a new perspective on the mechanism of lncRNAs during vernalization. Liu et al.^[15] found that *BraZF-HD21* (*Bra026812*) expression is correlated with *TCONS_00035129* in *B. rapa*. More recently, a precursor of miR156 from the lncRNA *bra-miR156HG* in *B. campestris*, heterologous expression in Arabidopsis, was directly linked to the delayed flowering phenotype (Fig. 3d)^[45].

Abiotic stress response

Temperature extremes are detrimental to crop production and are associated with the drastic changes in annual precipitation and global warming. Heat stress leads to alteration in biochemical and physiological factors including accumulation of reactive oxygen species (ROS) and reduced chlorophyll contents causing damage including the accumulation of reactive oxygen species (ROS) and reduced chlorophyll content, causing cellular damage^[46]. In Brassica crops, heat stress during the early seedling stage drastically affects growth and productivity by disrupting the metabolic enzymatic activity of the seed^[47]. To date, studies on Brassica crop responses to heat stress have been limited to biochemical and physiological alterations; however, recent transcriptome-wide analyses have identified and characterized several IncRNAs in Brassica crops at the genome scale. These IncRNAs modulate protein-coding genes, and protein-coding gene expression in response to heat stress. For example, transcriptome analysis of B. juncea revealed 1,614 lncRNAs in response to heat stress^[25]. In B. napus, 11,073 highly confident IncRNAs were identified under cold stress conditions^[22]. However, another study in B. rapa predicted 2,088 lncRNAs in the whole transcriptome of four-week cold stressed plants. Vernalization-related IncRNAs, including natural antisense transcripts (NATs), have been reported in BrFLC and BrMAF^[48]. In contrast, in B. rapa plants 4,594 IncRNAs were predicted to be involved in heat stress responses. Among these, a heat-responsive IncRNA, TCONS_00048391, functions as an endogenous target mimic for bra-miR164, a target of NAC1 in Chinese cabbage^[18].

Drought is another pivotal factor limiting plant growth and productivity. Brassica crops are vulnerable to drought, and their production is substantially affected. In the current scenario of global warming and shrinking precipitation, research studies have focused on characterizing or understanding the mechanisms of drought tolerance and enhanced resistance levels[23]. In B. juncea, 1,614 differentially expressed IncRNAs responded to drought, and a few were simultaneously expressed with transcription factors showing an abiotic stress response^[25]. Tan et al.^[23] indicated that lncRNAs are key players in the response to drought stress in drought-sensitive (Qinyou8) and drought-tolerant (Q2) genotypes. The differential expression of these IncRNAs regulates the expression of genes involved in hormone signal transduction and stress/defense responses. WGCNA in B. juncea indicated that the IncRNA MSTRG.150397 acts as a regulatory IncRNA, and MSTRG.107159 acts as an inhibitory IncRNA. The former was inferred to potentially modulate key photosynthetic genes (PetC, Psb27, PsbW, PetH, and PetH), whereas the latter functioned as regulators of droughtresponsive PIP genes^[49]. However, an alternative way to explore the complex mechanisms of drought tolerance in rapeseed is through transcriptome-wide analysis of drought-responsive IncRNAs, which have been suggested to act as a regulatory hub by controlling phytohormone signaling pathway genes such as ABRE-binding factors (ABFs), phosphatase 2C (PP2C), and SMALL AUXIN UPREGU-LATED RNAs (SAURs)[50].

Salinity is another global environmental stressor that causes a reduction in yield quality and productivity by the sudden induction of physiological dysfunction in plants. Salinity is a key growth-limiting factor for Brassica crops, leading to stunted plant growth and lower yields^[51]. For instance, canola is an important global oil crop; although it is considered to be salt-tolerant, its yield and productivity are still affected by salinity^[52]. Salinity has a detrimental effect on canola, including decreased potassium and elevated sodium levels, and it is imperative to mitigate the negative impacts of salt^[51]. Many IncRNAs have been reported to play critical regulatory roles in salt-stress tolerance. However, there is a significant gap in IncRNA identification and characterization under elevated salt stress conditions in Brassica crops. For instance, a few preliminary studies in Brassica crops, such as B. juncea, reported 3,602 differentially expressed IncRNAs, of which 61 were predicted to display salt stressspecific responses^[26].

Studies on the involvement of IncRNAs in various biological responses to environmental stress have increased daily. Contamination of soil by heavy metals is a global challenge. The mining and characterization of genes that control heavy metal uptake and translocation are the first steps in heavy metal tolerance^[53]. The recent discovery of IncRNAs via transcriptome-scale profiling has provided new information regarding novel regulatory pathways for plant responses to this stress. Recently, genome-scale identification of genes involved in metal uptake, detoxification, and translocation has been performed in a number of plant species. Brassica crops are ideal plants for the phytoremediation of heavy metals, with moderate to high accumulation capacities. For instance, cadmium (Cd) is a toxic heavy metal contaminant in the environment. In B. napus. Strand-specific RNA-sequencing (RNA-Seq) profiling of IncR-NAs in response to Cd stress revealed that three IncRNAs function as target mimics of heavy metal transport proteins, including Cu/Znsuperoxide dismutase copper chaperone precursor, metal transporter NRAMP3, and disease resistance response protein^[24].

Biotic stress responses

Plants are susceptible to diverse pathogens that cause diseases and affect final productivity and plant survival. Plant diseases are major contributors to global food scarcity. Plants have acquired many molecular non-coding genetics and physiological strategies to fine-tune their defense mechanisms. One such strategy at the molecular and genetic levels includes the regulation of gene expression by non-coding RNAs, particularly IncRNAs. The study of the robust plant immune system mediated by IncRNAs is an emerging field in plants^[54]. It is estimated that approximately 20%-40% of global agricultural productivity is lost owing to pathogenic diseases. Of these, 50%-60% of crop yield losses occur in Brassica. Brassica crops are cultivated for oil, animal fodder, high nutritional value, low fat content, and antioxidant properties^[55]. The primary pathogens responsible for biotic stress in Brassica crops include Fusarium oxysporum^[56], Sclerotinia sclerotiorum^[21], Plasmodiophora brassicae, and Hyaloperonospora brassica^[57,58]. For example, a study in B. napus using a strand-specific RNA-Seq approach in clubroot-resistant and clubroot-susceptible lines, 530 differentially expressed IncRNAs were identified, of which 24 differentially expressed IncR-NAs associated with chromosome A8 conferred resistance to clubroot disease^[59]. The role of IncRNAs in *P. brassicae* in Chinese cabbage was also explored, of which 114 differentially expressed IncRNAs had 16 differentially expressed IncRNAs interacting with 15 defense-related genes^[58]. Furthermore, IncRNAs have been reported in S. sclerotiorum^[21]. Additionally, Zhang et al.^[57] identified a candidate IncRNA, MSTRG.19915, related to downy mildew disease

resistance, which is a natural antisense transcript of the MAPK gene, *BrMAPK15*. *MSTRG.19915*-silenced seedlings showed enhanced resistance to downy mildew, probably because of the upregulated expression of *BrMAPK15* (Fig. 3e).

Subtropical and tropical adaptation of *Brassica* crops

Although *Brassica* species are traditionally temperate crops, their expanding cultivation in tropical and subtropical regions—particularly through winter cropping systems and highland agriculture highlights the critical need to elucidate the molecular mechanisms underlying their adaptation to warmer and more variable environments. The rising global demand for oilseeds and vegetables, coupled with climate-induced shifts in agricultural zones, has led to increased efforts to cultivate crops like B. juncea, B. rapa, and B. oleracea in non-temperate environments^[60]. However, these environments pose unique challenges, including high temperatures, erratic rainfall, humidity, and altered photoperiods, which can significantly affect growth, flowering time, and yield^[46]. Recent transcriptomic and epigenetic studies have begun to uncover regulatory pathways and gene networks—such as those involving heat shock proteins (HSPs), hormone signaling, and reactive oxygen species (ROS) detoxification—that are activated under stress conditions in subtropical environments^[25]. Importantly, IncRNAs have emerged as novel regulatory elements in these adaptive responses, modulating gene expression post-transcriptionally and interacting with micro-RNAs (miRNAs) to fine-tune stress tolerance pathways^[18, 61].

The adaptation of Brassica crops—such as broccoli, cauliflower, mustard, and canola—to subtropical and tropical climates has garnered significant research interest due to the challenges posed by high temperatures, humidity, and changing photoperiods provided by the new regions. This summary synthesizes findings from recent studies, highlighting genetic, physiological, and agronomic strategies employed to enhance the resilience and productivity of Brassica species in warmer climates.

Traditionally, temperate *B. oleracea* varieties, such as broccoli and cauliflower, require vernalization—a period of low temperatures—to initiate flowering. However, in subtropical environments like Taiwan, breeding programs have identified genotypes that bypass this requirement. Notably, the gene *BoFLC3*, rather than the typical *BoFLC2*, regulates curd induction in these varieties, enabling flowering without cold exposure. Research involving 112 breeding lines of broccoli selected under high-temperature and high-humidity conditions in Taiwan led to the identification of QTLs associated with days to curd induction and curd quality. These findings provide valuable markers for breeding programs aiming to develop heat-tolerant *Brassica* cultivars^[62].

In southeastern Brazil, studies on *B. juncea* and *B. rapa* evaluated their growth, yield, and oil content under tropical conditions. *B. rapa* accessions matured earlier and had higher oil content, while *B. juncea* exhibited greater pod numbers and overall yield. These results suggest that both species hold promise as alternative oilseed crops for biodiesel production in tropical climates^[63].

By targeting specific IncRNAs and their associated regulatory networks, it may be possible to enhance the heat tolerance of these crops, ensuring better yield and resilience in warmer climates. The identification of heat-responsive IncRNAs provides valuable insights for breeding programs aimed at developing *Brassica* crops suited for subtropical and tropical regions. Understanding these complex regulatory mechanisms not only provides insights into environmental resilience but also facilitates the development of climate-resilient *Brassica* cultivars through molecular breeding and genome editing.

Conclusions and perspective

The study of IncRNAs is a challenging task because they are differ from the genomic context of protein-coding genes, are highly non-conserved, and display sequence similarities with structural genes. LncRNAs have been reported to play roles in diverse biological processes, including growth, development, and abiotic and biotic stress responses in plants. Although in *Brassica* crops, IncRNAs have also been reported to play diverse roles in flowering, vernalization, pollen development, fertility, and stress responses to salinity, drought, and heat, understanding of the specific regulatory mechanism is still in its infancy.

Current understanding of *Brassica* crop-crop IncRNAs represents only the tip of an iceberg. The key problems are incomplete genome sequencing, lack of a comprehensive collection of IncRNAs associated with different developmental stages, and abiotic and biotic stresses. Therefore, there is a need to establish a link between the IncRNAs and mRNAs. Functional exploration of IncRNAs in seed development, pollen development, flowering time, and heat stress tolerance can be achieved by genetic and molecular modulation using CRISPR-Cas genome-editing approaches, RNAi, and over-expression.

As global temperatures rise, the adaptation of *Brassica* crops to warmer climates becomes increasingly critical. Breeding programs focusing on heat tolerance, drought resistance, and pest resilience are essential. LncRNAs play a significant role in the adaptation of *Brassica* crops to heat stress, a common challenge in subtropical and tropical agriculture. Moreover, integrating traditional breeding with molecular techniques, such as lncRNAs mapping and genetic modification, can accelerate the development of climate-resilient *Brassica* varieties. Understanding and manipulating these lncRNAs offer promising avenues for improving crop resilience and productivity in the face of climate change.

Although this review demonstrates that IncRNAs play a role in a variety of biological processes in Brassica crops, such as pollen development, flowering, and abiotic stress responses, research on IncRNAs in Brassica crops is still in its early stages. In particular, little research has been conducted on the precise regulatory mechanisms of IncRNAs in Brassica species. Research methods for IncRNAs in animals and model plants such as Arabidopsis and rice should be extended to IncRNAs in Brassica crops. Exploration of the function and mechanism of IncRNAs in Brassica crops has just begun, and rapid progress and development of technology will bring new opportunities and breakthroughs for IncRNA research in Brassica crops.

Author contributions

The authors confirm their contributions to the paper as follows: conceptualization: Basharat S, Waseem M; supervision, funding acquisition: Waseem M, Liu P; writing – original draft preparation: Basharat S, Waseem M; writing – review & editing: Basharat S, Waseem M, Liu P. All authors reviewed the results and approved the final version of the manuscript.

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgments

This work was supported by grants from the China NSFC Research Fund for International Young Scientists (Grant No. 32250410291),

the Key Research Program of Hainan Province (Grant No. ZDYF2022XDNY185), and a Special PN on coding the Academician Team Innovation Center of Hainan Province (Grant No. YSPTZX202206).

Conflict of interest

The authors declare that they have no conflict of interest.

Dates

Received 26 March 2025; Revised 6 June 2025; Accepted 9 June 2025; Published online 28 August 2025

References

- Waseem M, Liu Y, Xia R. 2020. Long non-coding RNAs, the dark matter: an emerging regulatory component in plants. *International Journal of Molecular Sciences* 22:86
- Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M. 2015. Battles and hijacks: noncoding transcription in plants. *Trends in Plant Science* 20:362–71
- Yang H, Cui Y, Feng Y, Hu Y, Liu L, et al. 2023. Long non-coding RNAs of plants in response to abiotic stresses and their regulating roles in promoting environmental adaption. Cells 12:729
- Zhao X, Li F, Ali M, Li X, Fu X, et al. 2024. Emerging roles and mechanisms of lncRNAs in fruit and vegetables. Horticulture Research 11:uhae046
- Statello L, Guo CJ, Chen LL, Huarte M. 2021. Gene regulation by long non-coding RNAs and its biological functions. *Nature Reviews Molecular Cell Biology* 22:96–118
- Chao H, Hu Y, Zhao L, Xin S, Ni Q, et al. 2022. Biogenesis, functions, interactions, and resources of non-coding RNAs in plants. *International Jour*nal of Molecular Sciences 23:3695
- Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, et al. 2012. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and lgf1r. Nature Cell Biology 14:659–65
- Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, et al. 1994. enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. *The EMBO Journal* 13:5099–112
- Chen L, Zhu QH. 2022. The evolutionary landscape and expression pattern of plant lincRNAs. RNA biology 19:1190–207
- Ashraf M, McNeilly T. 2004. Salinity tolerance in *Brassica* oilseeds. *Critical Reviews in Plant Sciences* 23:157–74
- Domínguez-Rosas E, Hernández-Oñate MÁ, Fernandez-Valverde SL, Tiznado-Hernández ME. 2023. Plant long non-coding RNAs: identification and analysis to unveil their physiological functions. Frontiers in Plant Science 14:1275399
- Yu X, Yang J, Li X, Liu X, Sun C, et al. 2013. Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa. BMC Plant Biology 13:208
- 13. Huang L, Dong H, Zhou D, Li M, Liu Y, et al. 2018. Systematic identification of long non-coding RNA s during pollen development and fertilization in Brassica rapa. *The Plant Journal* 96:203–22
- Song X, Hu J, Wu T, Yang Q, Feng X, et al. 2021. Comparative analysis of long noncoding RNAs in angiosperms and characterization of long noncoding RNAs in response to heat stress in Chinese cabbage. Horticulture Research 8:48
- Liu T, Wu P, Wang Q, Wang W, Zhang C, et al. 2018. Comparative transcriptome discovery and elucidation of the mechanism of long non-coding RNAs during vernalization in Brassica rapa. *Plant Growth Regulation* 85:27–39
- Tan C, Liu H, Ren J, Ye X, Feng H, Liu Z. 2019. Single-molecule real-time sequencing facilitates the analysis of transcripts and splice isoforms of anthers in Chinese cabbage (*Brassica rapa* L. ssp. *pekinensis*). *BMC Plant Biology* 19:517

- 17. Eom SH, Lee HJ, Wi SH, Kim SK, Hyun TK. 2021. Identification and functional prediction of long non-coding RNAs responsive to heat stress in heading type Chinese cabbage. *Zemdirbyste-Agriculture* 108:371–76
- Wang A, Hu J, Gao C, Chen G, Wang B, et al. 2019. Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (*Brassica rapa* ssp. chinensis). Scientific Reports 9:5002
- Lohani N, Golicz AA, Allu AD, Bhalla PL, Singh MB. 2023. Genome-wide analysis reveals the crucial role of IncRNAs in regulating the expression of genes controlling pollen development. *Plant Cell Reports* 42:337–54
- Wei X, Wang X, Zhao Y, Chen W, Nath UK, et al. 2024. Transcriptome analysis reveals the potential lncRNA-mRNA modules involved in genetic male sterility and fertility of Chinese cabbage (*Brassica rapa* L. ssp. pekinensis). BMC Plant Biology 24:289
- Joshi RK, Megha S, Basu U, Rahman MH, Kav NNV. 2016. Genome wide identification and functional prediction of long non-coding RNAs responsive to Sclerotinia sclerotiorum infection in Brassica napus. PLoS One 11:e0158784
- Waseem M, Yang X, Aslam MM, Li M, Zhu L, et al. 2022. Genome-wide identification of long non-coding RNAs in two contrasting rapeseed (*Brassica napus* L.) genotypes subjected to cold stress. *Environmental* and *Experimental Botany* 201:104969
- Tan X, Li S, Hu L, Zhang C. 2020. Genome-wide analysis of long noncoding RNAs (IncRNAs) in two contrasting rapeseed (*Brassica napus* L.) genotypes subjected to drought stress and re-watering. *BMC Plant Biology* 20:81
- 24. Feng SJ, Zhang XD, Liu XS, Tan SK, Chu SS, et al. 2016. Characterization of long non-coding RNAs involved in cadmium toxic response in *Brassica napus. RSC Advances* 6:82157–73
- Bhatia G, Singh A, Verma D, Sharma S, Singh K. 2020. Genome-wide investigation of regulatory roles of IncRNAs in response to heat and drought stress in *Brassica juncea* (Indian mustard). *Environmental and Experimental Botany* 171:103922
- Tribhuvan KU, Shivakumaraswamy M, Mishra T, Kaur S, Sarkar B, et al. 2024. Identification, genomic localization, and functional validation of salt-stress-related IncRNAs in Indian Mustard (*Brassica juncea L.*). *BMC Genomics* 25:1121
- Yadav P, Priyam P, Yadav G, Yadav A, Jain R, et al. 2024. Identification of IncRNAs regulating seed traits in *Brassica juncea* and development of a comprehensive seed omics database. *Functional & Integrative Genomics* 24:189
- Zhu X, Tai X, Ren Y, Chen J, Bo T. 2019. Genome-wide analysis of coding and long non-coding RNAs involved in cuticular wax biosynthesis in cabbage (*Brassica oleracea* L. var. Capitata). *International Journal of Molecular Sciences* 20:2820
- 29. Ahmed W, Xia Y, Li R, Bai G, Siddique KHM, et al. 2020. Non-coding RNAs: functional roles in the regulation of stress response in *Brassica* crops. *Genomics* 112:1419–24
- Shen E, Zhu X, Hua S, Chen H, Ye C, et al. 2018. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics 19:745
- 31. Li Y, Tan Z, Zeng C, Xiao M, Lin S, et al. 2023. Regulation of seed oil accumulation by IncRNAs in Brassica napus. *Biotechnology for Biofuels and Bioproducts* 16:22
- 32. Wang X, Zhao D, Li X, Zhou B, Chang T, et al. 2023. Integrated Analysis of LncRNA–MRNA regulatory networks related to lipid metabolism in High-Oleic-Acid rapeseed. *International Journal of Molecular Sciences* 24:6277
- 33. Xing M, Peng Z, Guan C, Guan M. 2023. Comparative study on abortion characteristics of Nsa CMS and Pol CMS and analysis of long non-coding RNAs related to pollen abortion in Brassica napus. PLoS One 18:e0284287
- Song JH, Cao JS, Yu XL, Xiang X. 2007. BcMF11, a putative pollen-specific non-coding RNA from *Brassica campestris* ssp. *chinensis*. *Journal of Plant Physiology* 164:1097–100
- Song JH, Cao JS, Wang CG. 2013. BcMF11, a novel non-coding RNA gene from *Brassica campestris*, is required for pollen development and male fertility. *Plant Cell Reports* 32:21–30

- 36. Lin S, Dong H, Zhang F, Qiu L, Wang F, et al. 2014. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. *Annals of Botany* 113:777–88
- 37. Zhang F, Dong H, Liu Y, Feng Y, Zhou D, et al. 2018. BcMF11 and its homologous sequences may form a IncRNA family in *Brassica diploids*. *Acta Physiologiae Plantarum* 40:65
- 38. Liu Y, Zhu QF, Li WY, Chen P, Xue J, et al. 2023. The pivotal role of noncoding RNAs in flowering time regulation. *Genes* 14:2114
- 39. Dai Y, Gao X, Zhang S, Li F, Zhang H, et al. 2024. Exploring the regulatory dynamics of BrFLC-associated IncRNA in modulating the flowering response of Chinese cabbage. *nternational Journal of Molecular Sciences* 25:1924
- Kinoshita Y, Motoki K, Hosokawa M. 2023. Upregulation of tandem duplicated BoFLC1 genes is associated with the non-flowering trait in Brassica oleracea var. capitata. Theoretical and Applied Genetics 136:41
- 41. Kim S, Kim JA, Kang H, Kim DH. 2022. A premature stop codon in BrFLC2 transcript results in early flowering in oilseed-type *Brassica rapa* plants. *Plant Molecular Biology* 108:241–55
- 42. Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, et al. 2011. Identification of quantitative trait loci controlling late bolting in Chinese cabbage (*Brassica rapa* L.) parental line Nou 6 gou. *Breeding Science* 61: 151-59
- 43. Xi X, Wei K, Gao B, Liu J, Liang J, et al. 2018. BrFLC5: a weak regulator of flowering time in *Brassica rapa*. *Theoretical and Applied Genetics* 131:2107–16
- Akter A, Kakizaki T, Itabashi E, Kunita K, Shimizu M, et al. 2023. Characterization of FLOWERING LOCUS C 5 in Brassica rapa L. Molecular Breeding 43:58
- 45. Zhou D, Zhao S, Zhou H, Chen J, Huang L. 2023. A IncRNA *bra-miR156HG* regulates flowering time and leaf morphology as a precursor of miR156 in *Brassica campestris* and *Arabidopsis thaliana*. *Plant Science* 337:111889
- 46. Pillai AJ, Walia P. 2024. Heat stress in Indian mustard (*Brassica juncea L.*):
 A critical review of impact and adaptation strategies. *Plant Cell Biotechnology and Molecular Biology* 25:1–11
- 47. Rani R, Mawlong I, Balbeer B, Sujith Kumar MS, Rai PK, et al. 2024. Proteomic, biochemical and peptidomics based analysis reveals heat responsive changes in the seedlings of *Brassica juncea*. *Journal of Plant Biochemistry and Biotechnology* 33:570–89
- Shea DJ, Nishida N, Takada S, Itabashi E, Takahashi S, et al. 2019. Long noncoding RNAs in *Brassica rapa* L. following vernalization. *Scientific Reports* 9:9302
- 49. Wei J, Li H, Huang X, Zhao Y, Ouyang L, et al. 2024. Elucidating the regulatory role of long non-coding RNAs in drought stress response during seed germination in leaf mustard. *PeerJ* 12:e17661
- Tan X, Long W, Ma N, Sang S, Cai S. 2024. Transcriptome analysis suggested that IncRNAs regulate rapeseed seedlings in responding to drought stress by coordinating the phytohormone signal transduction pathways. BMC Genomics 25:704

- 51. Ilyas M, Maqsood MF, Shahbaz M, Zulfiqar U, Ahmad K, et al. 2024. Alleviating salinity stress in canola (*Brassica napus* L.) through exogenous application of salicylic acid. *BMC Plant Biology* 24:611
- 52. Bandehagh A, Dehghanian Z, Henry R, Hossain MA. 2021. Salinity tolerance in Canola: insights from proteomic studies. In *Brassica breeding and biotechnology*. London: IntechOpen. doi: 10.5772/intechopen.96649
- 53. Aslam MM, Okal EJ, Waseem M. 2023. Cadmium toxicity impacts plant growth and plant remediation strategies. *Plant Growth Regulation* 99:397–412
- Nandni, Bhuria M, Kaur R, Singh K. 2024. Role of non-coding RNAs in disease resistance in plants. In *Biotechnological Advances for Disease Tolerance in Plants*. Singapore: Springer. pp. 167-90 doi: 10.1007/978-981-99-8874-7
- Das Laha S, Kundu A, Podder S. 2024. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits. *Planta* 259:97
- 56. Akter MA, Mehraj H, Miyaji N, Takahashi S, Takasaki-Yasuda T, et al. 2021. Transcriptional association between mRNAs and their paired natural antisense transcripts following *Fusarium oxysporum* inoculation in *Brassica rapa* L. *Horticulturae* 8:17
- Zhang B, Su T, Li P, Xin X, Cao Y, et al. 2021. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage. Horticulture Research 8:44
- 58. Zhu H, Li X, Xi D, Zhai W, Zhang Z, et al. 2019. Integrating long non-coding RNAs and mRNAs expression profiles of response to *Plasmodio-phora brassicae* infection in Pakchoi (*Brassica campestris* ssp. *chinensis Makino*). *PLoS One* 14:e0224927
- 59. Summanwar A, Basu U, Rahman H, Kav N. 2019. Identification of IncR-NAs responsive to infection by *Plasmodiophora brassicae* in clubroot-susceptible and -resistant *Brassica napus* Lines carrying resistance introgressed from rutabaga. *Molecular Plant-Microbe Interactions* 32:1360–77
- Hafeez U, Ali M, Hassan SM, Akram MA, Zafar A. 2023. Advances in breeding and engineering climate-resilient crops: a comprehensive review. *International Journal of Research and Advances in Agricultural* Sciences 2:85–99
- 61. Yadav A, Mathan J, Dubey AK, Singh A. 2024. The emerging role of non-coding RNAs (ncRNAs) in plant growth, development, and stress response signaling. *Non-Coding RNA* 10:13
- 62. Lin YR, Lee JY, Tseng MC, Lee CY, Shen CH, et al. 2018. Subtropical adaptation of a temperate plant (*Brassica oleracea var. italica*) utilizes nonvernalization-responsive QTLs. *Scientific Reports* 8:13609
- 63. Bassegio D, Zanotto MD. 2020. Growth, yield, and oil content of *Brassica* species under Brazilian tropical conditions. *Bragantia* 79:203–12

© **()**

Copyright: © 2025 by the author(s). Published by Maximum Academic Press on behalf of Hainan

University. This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.