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Abstract
Apiaceae  is  one  of  the  most  important  families  in  Apiales  and  includes  many  economically  important  vegetables  and  medicinal  plants.  The

TEOSINTE  BRANCHED  1/CYCLOIDEA/PROLIFERATING  CELL  FACTOR  1/2 (TCP)  gene family  plays  an important  role  in  regulating plant  growth and

development, but it has not been widely studied in Apiaceae. In the present study, we identified 215 TCP family genes in six species of plant, of

which 122 genes were present in three Apiaceae including 29 in celery (Apium graveolens), 43 in coriander (Coriandrum sativum), and 50 in carrot

(Daucus carota). Whole-genome duplication likely contributed to TCP gene family expansion in Apiaceae. There were more paralogs in carrot than

in  coriander  and  celery,  which  was  attributable  to  the  greater  number  of  tandem  and  proximal  duplicated  genes  on  chromosome  1.  Nine

microRNAs were found to regulate 20 TCP genes in the three Apiaceae species, with miR-319 having the most target genes. Several TCP genes

showed  high  expression  in  the  root,  petiole  and  leaf  of  celery  and  coriander.  These  results  provide  a  basis  for  comparative  and  functional

genomic analyses of TCP genes in Apiaceae and other plants.

Citation:  Pei Q, Li N, Bai Y, Wu T, Yang Q, et al. 2021. Comparative analysis of the TCP gene family in celery, coriander and carrot (family Apiaceae).
Vegetable Research 1: 5 https://doi.org/10.48130/VR-2021-0005

  
INTRODUCTION

The  Apiaceae  family  of  plants  includes  more  than  400
genera and 3,000 species[1,2]. Several Apiaceae species such as
carrot  (Daucus  carota),  celery  (Apium  graveolens),  and
coriander  (Coriandrum  sativum)  are  cultivated as  a  vegetable
or for medicinal purposes worldwide[3,4].

Celery is an annual or biennial herbage species originating
from the Mediterranean and Middle  East[5,6].  Besides  being a
vegetable,  celery  is  also  used  as  a  medicinal  plant[7].
Coriander,  which is  also  known as  cilantro,  is  a  popular  herb
and a major ingredient of curry powder[8]. Carrot is an econo-
mically  important  vegetable  with  a  high  nutritional  value[9].
All  three  of  these  plants  are  diploid  species  although  their
chromosome  number  and  genome  size  differ:  celery  and
coriander each have 22 chromosomes (2n = 2x = 22) whereas
carrot has 18 (2n = 2x = 18)[3,10,11], and the assembled genome
size  of  celery  is  3.33  Gb,  which  is  larger  than  coriander  (2.11
Gb) and carrot (421.5 Mb)[3,11,12].

The TCP gene  family  in  plants  is  named  after  the  first
identified members—ie, TEOSINTE BRANCHED 1 (TB1) in maize
(Zea  mays)[13], CYCLOIDEA (CYC)  in  snapdragon  (Antirrhinum
majus)[14], and PROLIFERATING CELL FACTOR 1 (PCF1) and PCF2
in rice (Oryza sativa)[15]. TCP genes regulate multiple processes
in plant growth and development such as shoot branching[16],
seed  germination[17,18],  gametophyte  development[19,20],  leaf

development[21−25],  leaf  senescence[26−28],  mitochondrial
biogenesis[29],  flower  development[30−32] and  cell  cycle[29,33].
There  are  24 TCP genes  in Arabidopsis thaliana[34],  22  in
rice[34], 24 in tomato[35], 19 in plum[26], 42 in switchgrass[36], 36
in  carrot[37],  and  32  in  celery[38].  However,  to  date,  no TCP
genes  have  been  identified  in  coriander.  High-quality
genome  sequences  of  celery,  carrot  and  coriander  were
recently  released[3,11,12],  which  can  facilitate  comparative
analyses of specific genes in Apiaceae.

In this study, we identified and characterized TCP genes in
celery, coriander and carrot and performed comparisons with
genes  in Lactuca  sativa (lettuce), Vitis  vinifera (grape),  and
Arabidopsis.  We  mapped  the TCP genes  to  chromosomes,
identified  orthologs  and  paralogs,  detected  collinearity  and
gene  expansion  or  loss,  and  analyzed  their  expression
patterns  in  plant  tissues.  Our  results  provide  a  basis  for
comparative  studies  on  the  function  and  evolution  of TCP
genes in plants. 

MATERIALS AND METHODS
 

Identification of TCP family genes in celery, coriander
and carrot

The  genome  sequences  of  coriander  and  celery  were
downloaded  from  the  coriander  genome  database
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(http://cgdb.bio2db.com)  and  celery  genome  database
(http://celerydb.bio2db.com), respectively[3,10]. The Arabidopsis
genome  sequence  was  retrieved  from  The Arabidopsis
Information  Resource  (TAIR10; http://www.arabidopsis.org).
The  sequences  of  carrot  (version  2),  lettuce  (version  5),  and
grape  (Genoscope.12X)  were  downloaded  from  Phytozome
(https://phytozome.jgi.doe.gov/pz/portal.html)[11,39,40].  The
Pfam  database  (https://pfam.sanger.ac.uk)  was  used  to
identify TCP family genes with the identifier PF03634 (E value
<  1e−4)[41].  The  Simple  Modular  Architecture  Research  Tool
(SMART  v9.0)  database  and  Conserved  Domains  Database
(CDD) were used for domain validation[42,43]. 

Phylogenetic analysis of TCP gene family
To  analyze  the  evolutionary  relationships  of TCP genes  in

Apiaceae, multiple sequence alignment of the TCP amino acid
sequences of Arabidopsis, grape, lettuce, carrot, coriander and
celery  was  performed  with  ClustalW  software  (v2.0)[44] and  a
phylogenetic  tree  was  constructed  with  the  neighborhood-
joining  method  (bootstrap  =  1,000)  using  MEGA  X[45].  The
reconstructed TCP gene  tree  was  compared  to  the  actual
species  tree  using  Notung  v2.9  software  with  default
parameters[46,47]. 

Chromosome location, gene structure and conserved
motif analysis

The  location  of  coriander,  celery  and  carrot TCP genes  on
chromosomes was drawn using Tbtools software and the files
were  saved in  general  feature  format  (gff)[48].  Gene structure
was  determined  using  Gene  Structure  Display  Server  2.0
(https://gsds.cbi.pku.edu.cn)[49].  Conserved  motifs  were
analyzed using Multiple  Expectation maximizations  for  Motif
Elicitation suite 5.2.0 (http://meme-suite.org)[50]. 

Analysis of orthologs and paralogs
Orthologous  and  paralogous TCP gene  pairs  in  celery,

coriander and carrot were analyzed using OrthoMCL software
v2.0  (https://orthomcl.org/orthomcl)[51].  The  relationships  of
the genes among the three species was depicted using Circos
software (v0.69)[52]. 

Identification of collinear blocks and duplication
types

MCScanX  was  used  to  identify  collinear  blocks  and  dupli-
cation  types  of  the TCP genes[53].  Whole-genome  sequences
were  searched  against  themselves  using  BLASTp  (E  value  <
1e−5). We extracted TCP genes located in the collinear blocks
using  Perl  scripts.  The  duplication  type  of TCP genes  was
estimated using the subprogram duplicate_gene_classifier. 

Calculation of Ka/Ks and estimation of divergence time
The nonsynonymous rate (Ka),  synonymous rate (Ks),  their

ratio  (Ka/Ks)  and  divergence  time  among  orthologous  gene
pairs  of  the  three  species  were  calculated  using
KaKs_Calculator  2.0[54].  The  coding  sequence  of  orthologous
gene  pairs  were  aligned  using  ClustalW  (v2.0)[44];
AXTconvertor  software  (v1.0)  was  then  used  to  convert  the
alignment file to axt format. Lastly, the Ka value, Ks value and
their  ratio  were  calculated  based  on  the  Nei–Gojobori
method[54].  Ks  was  used  to  estimate  the  divergence  time
based  on  the  formula  T  =  Ks/2r,  where  r  indicates  neutral
substitutions (5.2 × 10−9 for Apiaceae)[12]. 

Analysis of selective pressures
We  used  the  maximum  likelihood  method  and  codon

substitution  models  to  determine  the  likelihood  ratio  of
positive  selection.  We  analyzed  each  branch  of  the
phylogenetic tree to infer  ω (the ratio of  nonsynonymous to
synonymous  distances)  using  CodeML  implemented  in
PAML4.9[47,55].  We  adopted  a  complete  deletion  method  for
analyzing  alignments  with  gaps  and  eliminated  sequences
with gaps in over 40% of their length. The likelihood ratio test
between M0 and M1 and between M7 and M8 models  were
used to determine variation sites. 

Identification of micro (mi)RNA target genes in the
TCP gene family

Mature miRNA sequences of A.  thaliana were downloaded
from  miRBase  (release  22.1; http://www.mirbase.org)[56]. TCP
genes  that  are  miRNA  targets  were  predicted  using
psRNATarget  Schema  v2  (2017  release)[57] with  maximum
expectation ≤ 3  and other default  parameters.  A miRNA–TCP
gene  network  was  constructed  using  Cytoscape  v3.7.2
software[58]. 

Expression of TCP genes
TCP gene  expression  data  in  celery  and  coriander  were

extracted  from  RNA  sequencing  (RNA-seq)  datasets
previously  published  by  our  group[3,10] using  Perl  script;  the
values  were  normalized  as  reads  per  kilobase  per  million
reads  (RKPM).  An  expression  heatmap  was  created  using
TBtools software (v1.0)[48]. 

RESULTS
 

Identification of TCP genes in three Apiaceae species
We identified 29 TCP genes in the genome of celery,  43 in

coriander,  and  50  in  carrot  (Supplemental  Table  S1 and S2).
Additionally,  24 TCP genes  were  identified  in Arabidopsis
along  with  20  in  grape  and  49  in  lettuce  (Supplemental
Table S2). Thus, a total of 215 TCP genes were identified in the
six species for further analysis. 

Phylogenetic and functional analyses of TCP gene
family

To classify the TCP gene family in plants, we constructed a
phylogenetic  tree  of  all  215  amino  acid  sequences  from  the
six abovementioned species using MEGA X (Fig. 1). Consistent
with  the  phylogenetic  relationships  described  in Arabidopsis
and grape, the phylogenetic tree had three groups according
to  the  type  of  TCP  protein  domain  including  the PCF,
CINCINNATA (CIN), and CYC/TB1 classes.

In class PCF, there were ten AgTCP, 26 CsTCP, and 36 DcTCP
genes; in class CYC/TB1, there were eight AgTCP, seven CsTCP,
and  seven DcTCP genes;  and  in  class  CIN,  there  were  11
AgTCP,  ten CsTCP and  seven DcTCP genes  (Fig.  1 and
Supplemental  Table  S2).  Notably,  in  coriander  and  carrot
there were more TCP genes in class PCF than in the other two
classes.

The  functions  of  most TCP family  genes  have  been  well
studied  in  the  model  plant Arabidopsis.  We  inferred  the
function  of  homologous  genes  within  the  same  taxonomic
group in the phylogenetic tree in order to clarify the function
of TCP genes in Apiaceae. For example, AT1G53230.1 (AtTCP3)
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is  known  to  suppress  the  expression  of CUP-SHAPED
COTYLEDON (CUC),  resulting  in  cotyledon  fusion[24].  We
identified  three TCP genes—namely, DcTCP34, AgTCP2,  and
CsTCP6—that  clustered  together  with AtTCP3 (Fig.  1),
suggesting  that  they  are  also  related  to  cotyledon  fusion.  It
may  also  be  possible  to  deduce  the  function  of  other
Apiaceae TCP genes  based  on  the  function  of  the
homologous genes in Arabidopsis. 

TCP gene family structure and conserved motifs
We  carried  out  a  gene  structure  analysis  of TCP family

genes  to  identify  exons,  introns  and  untranslated  regions
(Supplemental  Fig.  S1).  Of  the  122 TCP genes  in  Apiaceae,
94—including all  50 DcTCP genes—lacked introns.  Most TCP
genes  had  a  single  exon,  although  there  were  some
exceptions.  For  example, CsTCP15 (class CIN)  had  four  exons
and DcTCP11 (class PCF)  had  three.  In  general,  genes  in  the
same class or subclass had similar gene structure and size.

As  gene  structure  varied  among  genes,  we  performed  a

motif  analysis  to  examine  the  structure  in  greater  detail.  We
compared  five  motifs  in  Apiaceae  species  and  found  that
motif  3 was found at  the beginning of  most genes,  followed
by motif 1 and motif 2 (Fig. 2). However, motif 2 was located
at  the  start  of  the CsTCP7, DcTCP15, CsTCP23, CsTCP36,  and
CsTCP2 and motif 5 was present at the beginning of DcTCP11.
Almost all TCP genes had motif 1 except for DcTCP and CsTCP
in class PCF, indicating that this motif is highly conserved and
plays an important role in Apiaceae. Motif 3 was also present
in most TCP genes and is likely conserved in Apiaceae.

Most  genes  in  classes CYC/TB1 and CIN lacked  motif  2
except for DcTCP17 and CsTCP79.  Only five genes in class CIN
had  motif  4,  which  was  present  in  all  class CYC/TB1 genes.
Motif  5  was only found in class PCF and not in other  classes.
Interestingly, DcTCP14 (class  PCF)  did  not  have  any  of  the  5
motifs,  suggesting  that  they  were  lost  during  the  course  of
the  evolution  of  carrot.  Thus,  genes  in  the  same  class  had
similar  motif  composition,  indicating  that  they  are  functio-
nally similar. 
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Fig. 1    Phylogenetic tree of TCP family genes in three Apiaceae species (carrot, celery and coriander) and lettuce, grape and Arabidopsis. The
topology of the phylogenetic tree was determined using IQ-TREE with maximum likelihood (ML) based on the JTT+F+R8 model. The bootstrap
was  set  to 1,000 replicates,  and  values  >  40%  are  shown.  The  three  classes  were  identified  based  on  bootstrap  values  and  phylogenetic
topology.
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Chromosomal distribution of TCP genes in Apiaceae
species

In  celery,  27/29 TCP genes  mapped  to  nine  chromosomes
(Fig.  3a and Supplemental  Table  S1).  Two  celery TCP genes
did  not  map  to  any  chromosomes,  and  no TCP family  gene
was found on chromosomes Agr6 and Agr10. There were five
genes  that  mapped  to  chromosomes  Agr3,  Agr5,  and  Agr11
while only one was located on chromosomes Agr1 and Agr2.

In  coriander,  35/43 TCP genes  mapped  to  nine
chromosomes  (Fig.  3b and Supplemental  Table  S1);  none
were found on chromosome Csa8. Chromosome Csa9 had the
most TCP genes (10), followed by chromosomes Csa7 (6) and
Csa1 (5). Chromosomes Csa2 and Csa3 each had just one TCP
gene.

The 50  carrot TCP genes  were  unevenly  distributed across
nine  chromosomes  (Dca1–9)  (Fig.  3c and Supplemental
Table S1). Interestingly, TCP gene expansion was observed on
chromosome  1,  which  had  16  genes.  Additionally,  15  genes
(DcTCP1–15)  were  clustered  together,  mainly  through
tandem and proximal duplication. 

Identification of orthologous and paralogous TCP
genes in Apiaceae

We  examined  orthologous  and  paralogous  gene  pairs  in
Apiaceae  and  found  that  there  were  22  orthologous  gene
pairs  between any two of  celery,  coriander and carrot  (Fig.  4
and Supplemental  Table  S3),  indicating a  close  phylogenetic
relationship  between  these  species.  There  were  only  three
paralogous gene pairs in celery and coriander (Supplemental
Fig.  S2 and Supplemental  Table  S4)  but  29  were  found  in
carrot.

The  Ks  value  was  calculated  to  estimate  the  divergence
time of  orthologous TCP gene pairs  among celery,  coriander
and carrot (Fig. 5 and Supplemental Table S5). The divergence

time  ranged  from  14.03  to  116.15  million  years  between
celery  and  coriander TCP genes,  24.94  to  81.44  million  years
between  celery  and  carrot,  and  22.59  to  94.72  million  years
between  coriander  and  carrot  orthologous TCP gene  pairs.
Therefore, the divergence time of most TCP genes was earlier
than that of any two species (celery vs coriander, 11–13 Mya;
carrot vs celery or coriander, 20–23 Mya)[4]. 

Detection of duplication type for TCP family genes in
Apiaceae

Various  types  of  gene  duplication  can  lead  to  the
expansion of  a  gene family.  We examined five types of  gene
duplication  in  celery,  coriander  and  carrot  (Fig.  6a, Table  1
and Supplemental  Table  S6)—namely,  singleton,  dispersed,
proximal,  tandem  and  whole-genome  duplication  (WGD).
There  were  no  singleton TCP gene  in  the  three  species  of
Apiaceae (Table 1).  Dispersed and tandem duplications were
the predominant types in celery and coriander.  In celery,  the
percentage  of  genes  showing  dispersed  duplication  and
WGD  was  48.1%  and  40.7%,  respectively;  in  coriander,  the
percentages  were  40.0%  and  45.7%,  respectively.  WGD  was
also  the  predominant  type  in  carrot  (32.0%),  which  had  a
lower  percentage  of  dispersed  duplication  (24.0%)  than
celery  and  coriander.  Moreover,  the  percentage  of  the
tandem  type  was  higher  in  carrot  (30.0%)  than  in  celery
(11.1%) and coriander (11.4%). These results demonstrate that
WGD  played  an  important  role  in TCP gene  expansion  in
celery,  coriander  and  carrot,  which  is  supported  by  the
previous  suggestion  that  they  underwent  two  WGD  events
since their divergence from lettuce[3]. 

TCP gene loss and duplication during the evolution of
Apiaceae

We  compared  species  and  gene  trees  in  celery,  coriander
and carrot to identify gene losses and duplications during the
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Fig. 2    Conversed motifs in TCP family genes of three Apiaceae species.
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evolution  of  the TCP gene  family.  There  were  more  gene
losses  in  celery  (20)  than  in  coriander  (7)  and  carrot  (17)  but
more  gene  duplications  in  carrot  (18)  than  in  coriander  (4)
and  celery  (3).  In  the  common  ancestor  of  coriander,  celery
and  carrot,  there  were  20  gene  duplications  and  14  gene
losses (Fig. 6b). 

Positive selection of TCP family genes in Apiaceae
We analyzed natural selection in the evolution of TCP genes

in Apiaceae (Fig. 7). Strong positive selection was observed at
the  major  nodes  of  the  phylogenetic  tree,  which  may  have
contributed to the functional divergence of Apiaceae species.
We detected 35 positive selection sites  overall;  most  were in
class PCF (29), followed by class CYC/TB1 (5) and class CIN (1),
indicating  that TCP genes  in  class PCF underwent  greater
positive selection in the evolution of Apiaceae. 

miRNA target TCP genes in Apiaceae
We  next  sought  to  identify TCP family  genes  in  Apiaceae

that  are  regulated  by  miRNAs.  We  found  nine  miRNAs  that
regulated 20 TCP family genes including five genes in celery,
nine in coriander and six in carrot (Supplemental Table S7 and
Fig.  8).  Of  the  nine  miRNAs,  miR-319  had  the  most  target
genes  (11),  followed  by  miR-172  (3)  and  miR-181  (3)  (Fig.  8).
Specifically,  miR-319  regulated  four TCP family  genes  in
celery,  four  in  coriander,  and  three  in  carrot.  Our  results  are
supported  by  other  studies  demonstrating  that  miR-319
regulates TCP family  genes[31,59−61].  We  also  found  that  four
genes were regulated by more than one miRNA: DcTCP20 was
regulated by miR-319 and miR-837, CsTCP33 was regulated by
miR-319  and  miR-8181,  and AgTCP26 and AgTCP27 were
regulated by  miR-319 and miR-8181 (Supplemental  Table  S7
and Fig. 8). 
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Fig. 6    Duplication and loss of TCP family genes. (a) Percentage of duplication types for TCP family genes and genes in the whole genome of
three Apiaceae species.  (b)  Duplication  (+)  or  loss  (−)  of TCP family  genes  in  three Apiaceae species  and  three  other  representative  species.
Numbers  after  '+'  and  '−'  are  the  number  of  genes.  Agr, Apium  graveolens (celery);  Ath, Arabidopsis  thaliana (Arabidopsis);  Csa, Coriandrum
sativum (coriander); Dca, Daucus carota (carrot); Lsa, Lactuca sativa (lettuce); Vvi, Vitis vinifera (grape).

Table 1.    The identification of duplicated type for TCP family genes and all genes in A. graveolens, C. sativum and D. carota.

Duplication typea Categoryb A. graveolens C. sativum D. carota

Singleton All genes 3,028 3,577 3,543
TCP 0 0 0
Percentage (%) 0 0 0

Dispersed All genes 15,258 14,963 13,378
TCP 13 14 12
Percentage (%) 48.15 40 24

Proximal All genes 1,167 2,161 1,428
TCP 0 1 7
Percentage (%) 0 2.86 14

Tandem All genes 2,426 3,032 3,501
TCP 3 4 15
Percentage (%) 11.11 11.43 30

WGD/segmental All genes 7,787 10,200 8,974
TCP 11 16 16
Percentage (%) 40.74 45.71 32

Total All genes 29,666 33,933 30,824
TCP 27 35 50

Note: a the classification of duplicate genes was conducted using the MCScanX program. WGD/segmental duplicates were inferred by the anchor genes in
collinear  blocks.  Tandem duplicates  were  defined as  paralogs  that  were  adjacent  to  each other  on  chromosomes.  Proximal  duplicates  were  paralogs  near
each other,  while interrupted by several other genes. Dispersed duplicates were paralogs that were neither near each other on chromosomes, nor do they
showed conserved synteny. b TCP indicated the TCP family genes. Percentage (%) indicated the percentage of TCP family gene number among all genes.
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Expression of TCP family genes in celery and
coriander

We analyzed the expression patterns of TCP genes in root,
petiole  and  leaf  tissues  of  celery  and  coriander.  In  celery,  all
TCP family  genes  in  class CYC/TB1 had  relatively  low
expression  in  the  three  tissues  (Fig.  9a and Supplemental
Table  S8)  whereas AgTCP22 had the highest  expression level
(RPKM  >  60),  suggesting  a  key  role  in  celery  growth  and
development. In coriander and celery, all TCP family genes in
class CYC/TB1 were  expressed  at  a  relatively  low  level  in  the
three tissues (Fig. 9b and Supplemental Table S8); meanwhile,
several genes including CsTCP39, CsTCP14, CsTCP12, CsTCP31,
and CsTCP40 had high expression. CsTCP6 and CsTCP30 were
more highly expressed in leaf than in the other two tissues.
 

DISCUSSION

Celery,  coriander  and  carrot  are  typical  members  of  the
Apiaceae  family.  The  draft  genomes  of  these  three  species
were  recently  released[3,11,12] and  there  have  been  several
studies on TCP family genes in carrot and celery based on the
sequences[37,38,62,63].  The  latest  versions  of  the  celery,
coriander  and  carrot  genomes  are  of  high  quality  with
chromosomal-level  assembly,  allowing  us  to  accurately  and
comprehensively analyze the TCP gene family in Apiaceae. To
date there have been no reports on TCP genes in coriander. In
this study, we identified 43 TCP genes in coriander as well as
29 in celery and 50 in carrot. Our results provide a resource for
future studies  on the TCP gene family  in  Apiaceae or  related
species.
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Fig. 7    Positive selection of TCP family genes in celery, coriander and carrot. Red stars represent branches in which positive selection occurred.
The maximum likelihood (ML) phylogenetic tree was constructed using PhyML software.

 
TCP gene family analysis of Apiaceae

Page 8 of 12   Pei et al. Vegetable Research 2021, 1: 5



TCP transcription factors have a 59-amino acid basic helix-
loop-helix  (bHLH)  motif  that  is  involved  in  DNA  binding  and
protein–protein  interaction[64].  The  bHLH-like  domain  of  TCP
differs from the canonical bHLH in its basic region[34,65].  PCF1
and PCF2 interact with DNA-binding proteins that specifically
bind  to  the PROLIFERATING  CELL  NUCLEAR  ANTIGEN (PCNA)
promoter[15]. Our analyses of gene structure and motifs of TCP
genes in Apiaceae revealed similarities within the same class

or subclass.
Gene  duplication  is  the  main  mechanism  underlying  the

evolution of complex phenotypes[66].  Many duplicated genes
in  plants  were  produced  by  WGD  or  whole-genome
triplication[67−70].  Most  duplicated  genes  were  functionally
redundant  and  had  one  of  four  fates  during  the  course  of
evolution  namely:  conservation,  neofunctionalization,
subfunctionalization  and  specialization[67,71].  In  conservation,
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Fig. 9    Expression of TCP family genes in three replicates of plant tissues including root (R1, R2 and R3), petiole (P1, P2 and P3), and leaf (L1, L2
and L3). Hierarchical gene expression clustering of TCP genes in celery (a) and coriander (b). Expression levels were calculated based on RPKM.
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the  ancestral  function  was  maintained  in  both  copies,  thus
preserving gene dosage[71]. In neofunctionalization, one copy
retained  the  original  function  while  the  other  acquired  a
novel function[71,72]. In subfunctionalization, both copies were
required  to  preserve  the  ancestral  gene  function[71,73,74].  In
specialization,  subfunctionalization  and  neofunctionalization
acted  cooperatively,  producing  two  gene  copies  that  were
functionally  distinct  from  each  other  and  from  the  ancestral
gene[71,75].  Functional  redundancies  of TCP genes  have  been
reported  in Arabidopsis[76].  In  carrot,  15 TCP genes  were
clustered  on  chromosome  1,  and  the  number  of  paralogous
gene  pairs  was  greater  in  carrot  (29)  than  in  celery  (3)  and
coriander  (3).  Although  there  were  more  gene  losses  than
duplications  in  the  evolution  of  celery,  coriander  and  carrot,
we found that  WGD made a  major  contribution to TCP gene
family  expansion  in  Apiaceae,  which  is  similar  to  what  has
been  reported  in  most  other  gene  families  in  higher
plants[47,77−80].

The broad range of functions of TCP family genes in plants
can  be  attributed  to  the  diverse  structures  of  different
members.  Most TCP genes  are  highly  expressed  in
meristematic tissues, suggesting that their main function is to
promote  plant  proliferation  and  growth[81].  However,  some
TCP genes, such as CIN and CYC/TB1, are known to negatively
regulate  plant  proliferation  and  development[82] (lateral
organ  development  for CIN genes  and  flower  and  lateral
shoot  development  for CYC/TB1 genes)[26].  Our  gene
expression  analysis  showed  that TCP gene  expression  in
celery  (AgTCP22)  and  coriander  (CsTCP12)  was  nearly  2x
higher  in  root  and  petiole  than  in  leaf,  suggesting  roles  in
plant growth and development.

In conclusion, we identified and characterized TCP genes in
three  Apiaceae  species.  We  described  their  chromosomal
location,  exon–intron  structure,  motifs,  collinearity,  positive
selection  and  expression  patterns  in  plant  tissues.  These
results  provide  a  basis  for  investigations  on  the  molecular
networks  regulating  growth  and  development  in  Apiaceae
and other plants.
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