
 

Open Access https://doi.org/10.48130/vegres-0024-0007

Vegetable Research 2024, 4: e007

Versatile roles of trehalose in plant growth and development and
responses to abiotic stress
Yuqing Han1, Adan Liang1, Dongdong Xu1, Yujie Zhang1, Jiali Shi3, Meng Li2, Tao Liu1* and Hongyan Qi1*

1 College  of  Horticulture,  Shenyang  Agricultural  University,  Key  Laboratory  of  Protected  Horticulture,  Ministry  of  Education,  Northern  National  &  Local  Joint
Engineering Research Center of Horticultural Facilities Design and Application Technology (Liaoning) , Shenyang 110866, China

2 College of Horticulture, Henan Agricultural University, Zhengzhou, Henan 450002, China
3 Jiuquan Academy of Agricultural Sciences, Jiuquan, Gansu 735000, China
* Corresponding authors, E-mail: taoliu@syau.edu.cn; qihongyan@syau.edu.cn

Abstract
Trehalose is  a  natural  nonreducing disaccharide that is  found in most organisms,  such as yeasts,  bacteria,  invertebrates and plants.  Trehalose

plays  an  important  role  in  regulating  plant  growth  and  development  and  stress  response.  Thus,  in  this  review,  we  discuss  the  physical  and

chemical properties of trehalose, its function in plant growth and development, and the regulatory mechanism of its response to abiotic stresses

such as drought, salt, and extreme temperature. The purpose of this review is to provide a reference for further analysis on the mechanism of

trehalose in regulating plant growth and development and stress resistance.
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 Introduction

In  nature,  plants  are  faced  with  many  challenges  posed  by
adverse  environments,  such  as  drought,  extreme  temperature
and salinity. To cope with these disadvantages, plants adapt to
abiotic stress by accumulating compatible solutes, such as solu-
ble  sugars  and  some  free  amino  acids,  which  is  often  consid-
ered  to  be  the  basic  strategy  for  their  protection  and  survival
under  stress[1].  Among  these  compatible  substances,  most
sugars not only play roles in osmotic regulation but also play a
signaling role, such as glucose[2−4], sucrose[4−6] and trehalose-6-
phosphate[7−9].  Sugars are the basis of energy storage and ma-
terial  transport  in  plants.  Different  types  of  sugars  are  formed
by metabolism after photosynthesis and play key roles in many
metabolic  processes throughout the whole life cycle of  plants.
In the process of  plant growth and development and environ-
mental response, sugars mostly act as signal molecules to regu-
late  a  variety  of  physiological  and  biochemical  processes[10].
Trehalose  is  a  kind  of  nonreducing  disaccharide  with  special
physical and chemical properties that has strong hydration abil-
ity  under  drying  and  freezing  conditions  and  can  replace  the
bound  water  on  the  surface  of  biomolecules  to  improve  the
stability of proteins and biofilms[11,12]. Trehalose is widely found
in  a  variety  of  organisms,  including  bacteria,  yeasts,  fungi  and
algae,  as  well  as  some  insects,  invertebrates  and  plants[13].
Trehalose  is  easily  induced  by  stress,  stimulates  plant  resis-
tance  mechanisms[14],  and  plays  an  important  role  in  dealing
with  a  variety  of  abiotic  stresses,  such  as  drought  stress[15,16],
salt  stress[15,17] and  extreme  temperature  stress[18,19].  This
review discusses  the advances  of  trehalose in  regulating plant
growth and development and response to abiotic stress.

 Physicochemical properties of trehalose

Trehalose  is  composed  of  two  glucose  subunits  linked  by  a
1,1-glycosidic  bond[20].  Since  both  reducing  subunits  are
involved in the formation of glycosidic bonds (Fig. 1), trehalose
has certain molecular stability and unique properties compared
with other disaccharides[21]. Trehalose can resist acid hydrolysis
and  maintain  its  stability  under  acidic  pH  and  high  tempera-
ture  conditions[22].  Trehalose  cannot  form  hydrogen  bonds
inside  it,  which  creates  its  high  degree  of  hydrophilicity[23].
When  the  organism  is  dehydrated  or  frozen,  trehalose  can
replace  water  molecules  to  form  hydrogen  bonds  with
surrounding  macromolecules  and  membranes,  thus  playing  a
protective  role.  In  the  case  of  extreme  dehydration,  trehalose
can  be  crystallized  into  glass,  avoiding  the  denaturation  of
biomolecules  and  restoring  its  functional  activity  during
rehydration[24].

 Biosynthesis and decomposition of trehalose
in plants

Trehalose in plants was first  found in Selaginella  tamariscina
and then identified in algae, liverworts and other lower plants,
while trehalose in angiosperms was found later[25]. The biosyn-
thesis of trehalose in plants mainly consists of the monosaccha-
rides  uridine-glucose  diphosphate  (UDP-GLc)  and  glucose-6-
phosphate  (GLc-6-P)  as  precursors  (Fig.  2),  catalyzed  by
trehalose-6-phosphate  synthase  (TPS)  to  form  trehalose-6-
phosphate (Trehalose-6-P, T6P). Then, trehalose is formed under
the catalysis  of  trehalose-6-phosphate phosphatase (TPP)[22,25].
Approximately  20  years  ago,  two  enzymes  of  the  trehalose
biosynthesis  pathway,  trehalose-6-phosphate  synthase  (TPS)
and trehalose-6-phosphate phosphatase (TPP),  were  identified
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in Arabidopsis thaliana[26,27]. In Arabidopsis thaliana, there are 11
genes  encoding  TPS  or  TPS-like  protein (AtTPS1-AtTPS11)  and
10 genes encoding TPP protein (AtTPPA-AtTPPJ)[28,29].  A total of
14 TPS and  13 TPP genes  were  identified  in  rice,  of  which
OsTPP1 is regulated by abiotic stress[30]. In cassava, there are 12
TPS and 10 TPP genes that encode proteins that play a key role
in  trehalose  synthesis[31].  Compared  with  the  synthetic  path-
way,  the  decomposition  of  trehalose  is  simpler.  Trehalose  is
directly  hydrolyzed  into  two  molecules  of  glucose  under  the
action  of  trehalase  (TRE),  while  glucose  can  be  formed  into

GLc-6-P  under  the  action  of  hexokinase  (HXK)[10].  Trehalose  in
plants has only one biosynthesis  and decomposition pathway,
which  plays  an  extensive  role  in  plant  growth  and  develop-
ment and stress response[29].

 The function of trehalose in plant growth and
development

Many  studies  have  shown  that  trehalose  and  the  key  inter-
mediate substances in its metabolism play crucial roles in regu-
lating  plant  growth  and  development  (Fig.  3).  In  plants,
trehalose  participates  in  various  life  and  cell  metabolism
processes.  For  example,  trehalose  induced  the  expression  of
NADPH-dependent thioredoxin reductase C (NTRC)  during the
day and inhibited it at night, which affected the activity of ADP-
glucose  pyrophosphorylase  (AGPase)  and  regulated  the  daily
starch accumulation and metabolism of Arabidopsis thaliana[32].
Trehalose  and  its  biosynthetic  gene  can  also  participate  in
abscisic  acid  (ABA)-mediated  root  elongation,  stomatal  move-
ment  and  seed  germination.  In  rice,  appropriate  concentra-
tions  of  trehalose  and  sucrose  inhibited  the  synthesis  of
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Fig. 1    Chemical structure of trehalose.
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Fig. 2    Synthesis and degradation of trehalose.
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Fig.  3    Function  of  trehalose  in  plant  growth  and  development.      Represent  promoting;      Means  inhibiting;      Represent
promoting;     Means inhibiting.  However,  they are uncertain and need to be verified.  NTRC:  NADPH-dependent thioredoxin reductase C;
AGPase: ADP-glucose pyrophosphorylase; ABA: Abscisic acid; SnRK1: SNF1-related protein kinase 1; ROS: Reactive oxygen species; ABF2: ABA
response element binding factor 2; TPPE: Trehalose-6-phosphate phosphatase E; TPPI: Trehalose-6-phosphate phosphatase I; TPS1: Trehalose-
6-phosphate  synthase  1;  KIN10:  A  sugar  signaling  kinase;  PIF4:  Phytochrome  interacting  factor  4;  miR156:  microRNA  156;  SPL:  Squamosa
promoter binding protein-like.

 
Versatile roles of trehalose in plants

Page 2 of 9   Han et al. Vegetable Research 2024, 4: e007



soluble  sugars  and  seed  germination  by  promoting  ABA
synthesis[33].  In  another  study  with Arabidopsis  thaliana,  in  the
presence  of  ABA,  ABF2  enhanced  the  expression  of AtTPPE by
directly  binding  to  its  promoter,  increased  trehalose  content
and  triggered  the  accumulation  of  reactive  oxygen  species
(ROS)  in  roots  and  stomata,  thus  enhancing  the  effect  of  ABA
on  inhibiting  root  growth  and  promoting  stomatal  closure[34].
In addition, in legumes, PvTPS9 can regulate the metabolism of
trehalose in  symbiotic  root  nodules  and the whole  plant,  indi-
cating  the  role  of  trehalose  in  affecting  the  growth  of  root
nodules and plants[35].

In  recent  years,  key  genes  of  trehalose  biosynthesis  have
been  reported  to  play  key  roles  in  plant  flower  development.
Kataya  et  al.  found  that AtTPPI homozygous  T-DNA  insertion
lines  showed  smaller  leaves,  shorter  roots,  delayed  flowering
and salt sensitivity[36]. Meanwhile, deletion of AtTPS1 led to late
flowering, indicating that AtTPS1 is necessary to regulate timely
flowering[37].  Zhao  et  al.  transferred JcTPPJ into Arabidopsis
thaliana and  found  that 35S:JcTPPJ transgenic  plants  had
higher  sucrose  content  in  inflorescences,  showing  late  flower-
ing  and  style  atypia,  indicating  that JcTPPJ may  regulate  floral
organ  development  by  regulating  sucrose  status  in  plants[38].
These  three  studies  suggest  the  potential  role  of  trehalose
synthesis  genes  in  regulating  plant  development.  In  the
process of  plant flowering,  trehalose synthesis  genes may also
regulate  the  development  of  floral  organs  by  affecting  the
content of other soluble sugars (such as sucrose).  Additionally,
in lotus, low light stress blocked photosynthesis, decreased the
content of soluble sugar in the rhizome, decreased the expres-
sion  of NnTPS1,  activated  the  activity  of  NnSnRK1,  induced
programmed  cell  death  and  finally  led  to  flower  bud
abortion[39].  In  Solanaceous  crops,  trehalose  application
affected style length via roots interaction with rhizosphere and
promoted pistil  to stamen ratio[40].  There is  little evidence that
trehalose is  directly  involved in  the regulation of  plant  flower-
ing,  but  some  reports  have  shown  that  trehalose  synthesis
genes  are  involved  in  flower  organ  development,  which  still
needs further study.

Trehalose  was  also  reported  to  play  important  roles  in
improving crop yield and quality. Islam & Mohammad reported
that  foliar  spraying  of  10  mM  Tre  significantly  enhanced  plant
photosynthesis,  mineral  acquisition  and  root  cell  activity,  ulti-
mately  improving  the  biomass,  yield  and  quality  of  Indian
mustard[41]. In apple, potassium treatment significantly reduced
the  activity  of  trehalase  (TRE)  and  increased  trehalose  content
in fruit, which improved fruit firmness and quality[42].

As the synthetic precursor of trehalose, the function of T6P in
plant  growth  and  development  has  been  widely  studied.  T6P,
as a signaling molecule, is related to plant growth and develop-
ment  and  sucrose  metabolism[43].  In Arabidopsis  thaliana,  the
change  in  sucrose  directly  affected  the  levels  of  T6P  in  plants,
regulated the levels  of  PIF4 protein by regulating GRIK1-medi-
ated  KIN10  activation  and  finally  affected  auxin  signaling  to
regulate  hypocotyl  elongation[44].  Meanwhile,  during  the
growth of Arabidopsis thaliana, sucrose activated the T6P path-
way,  which suppressed the level  of  mature miR156,  leading to
the  upregulation  of  the SPL gene  and  regulating  the  plant
development[9].  In  recent  years,  it  has  been  reported  that  T6P
plays  a  key  role  in  the  regulation  of  embryonic  maturation[7],
axillary  bud  growth[45,46] and  leaf  starch  degradation[47].
Whether  the  actions  of  T6P  are  related  to  trehalose,  and

whether  endogenous  trehalose  may  act  as  a  signal  molecule
related to T6P signal  in  regulating plant  growth,  development
and stress response. These need to be further studied.

 Trehalose function in plant abiotic stress

Trehalose  protects  biological  cells  and  bioactive  substances
from destruction under adverse environmental conditions such
as  dehydration,  drought,  high  temperature,  freezing,  high
osmotic  pressure  and  toxic  reagents  and  plays  an  important
role  in  plant  resistance  to  abiotic  stress[48].  Overexpressing
OsTPS1 showed elevated trehalose  and proline  concentrations
and  upregulation  of  stress  response-related  genes,  such  as
WSI18,  RAB16C,  HSP70 and ELIP,  resulting  in  enhanced  resis-
tance  of  rice  seedlings  to  abiotic  stresses[15].  In  sweet  potato,
IbTPS1 is induced by drought, salt, heat and other environmen-
tal  stresses.  The tolerance of  yeast  to dehydration,  salinity and
oxidation  was  improved  by  expressing IbTPS1 in  yeast,  indica-
ting  that IbTPS1 is  a  candidate  gene  for  improving  the  plant
stress  resistance[49],  which  may  be  related  to  the  increase  of
endogenous  trehalose  levels.  Similarly,  application  of  exoge-
nous  trehalose  can  also  improve  plant  stress  resistance[50−53].
However,  whether  exogenous  trehalose  improves  plant  resis-
tance  by  inducing  endogenous  trehalose  or  stimulating  other
signaling  molecules  in  plants,  thereby  mobilizing  the  resis-
tance system and improving resistance, still need further explo-
ration.

 Drought stress
Drought  stress  can  destroy  cellular  ROS  homeostasis,

increase the accumulation of oxygen free radicals, inhibit plant
growth,  and  damage  the  plant  osmotic  regulation  system,
biofilm  system,  respiration  and  photosynthesis  metabolism[54].
Han  et  al.  found  that  cassava,  a  drought-tolerant  crop,  had  a
high  expression  of MeTPS1 in  tissues  before  and  after  stress,
and  the  content  of  trehalose  increased,  which  improved  the
tolerance to drought stress[31], suggesting that trehalose plays a
key role in plant resistance to drought stress.

O−2

Trehalose  application  was  widely  reported  to  improve  the
plants drought stress tolerance via reducing oxidative damage
and  restoring  photosynthetic  capacity  (Table  1).  For  example,
spraying exogenous trehalose increased the contents of antiox-
idants  such  as  ascorbic  acid  (AsA)  and  reduced  glutathione
(GSH)  in  maize  roots  and  leaves,  increased  the  activities  of
antioxidant  enzymes such as  superoxide  dismutase  (SOD)  and
ascorbate  peroxidase  (APX),  decreased  the  production  rate  of
superoxide  anion  ( )  and  malondialdehyde  (MDA),  reduced
the  degree  of  membrane  lipid  peroxidation  and  resisted
drought  stress[55],  which  siminaly  in  wheat[50],  radish[56],  etc.
These  eventually  alleviated  the  oxidative  damage  to  chloro-
plasts and enhance plant photosynthetic capacity[57,58].

In  addition,  exogenous  trehalose  could  increase  plant
drought  stress  by  inducing  leaf  anatomical  changes,  such  as
increasing  leaf  epidermis  thickness,  vascular  bundle  area,
midvein  thickness  and  number  of  vascular  bundles[59].  Also,
trehalose  can  participate  in  seed  germination  under  stress.
Under  drought  conditions,  0.5  mmol·L−1 trehalose  increased
starch  degradation  by  upregulating  the  expression  of  the
calcium-dependent CBL1-OsSnRK3.1/3.23 gene  and  activating
the OsK1a-OsMYBS1/2-OsAmy3/8 pathway,  and  induced
trehalose  synthesis,  thereby  enhancing  sugar  metabolism,
maintaining seed germination, significantly increasing drought
tolerance during germination[60].
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ABA is an important plant hormone that responds to various
abiotic  stresses,  and  its  level  increases  rapidly  under  drought
conditions[61].  In  recent  years,  the  relationship  between
trehalose  and  ABA  in  the  process  of  drought  has  been  gradu-
ally clarified. In Arabidopsis thaliana, drought stress caused ABA
signal  response  factors  ABF1  and  ABF4  to  activate AtTPPI
expression, changed the trehalose metabolism pathway, led to
stomatal  closure,  improved  water  use  efficiency,  and  made
plants  adapt  to  stress[62].  Trehalose  also  can  upregulate  the
expression  of  ABA  signal-related  genes SlPYL1/3/4/5/6/7/9,
SlSnRK2.3/4,  SlAREB1/2 and SlDREB1,  activate  the  ABA  signal

pathway  and  regulate  stomatal  closure  and  cell  water  loss
under  drought  stress[63].  Besides  that,  overexpression  of
trehalose  synthetic  gene OsTPP3 also  increased  the  ABA
content  and  drought  resistance  of  plants  by  increasing  the
expression  of  genes  related  to  ABA  biosynthesis[64].  These
suggest that trehalose could increase plant drought resistance
by inducing ABA production.

 Salt stress
Salt  stress  mainly  includes  osmotic  stress  and  ion  toxicity,

redox  disorder,  which  leads  to  nutrition  deficits  and  disrupts

Table 1.    Roles of trehalose in regulating plant stress resistance.

Stress types Regulatory mechanisms Species Treatments References

Drought stress Enhance antioxidant capacity Zea mays 0 and 30 mM Tre spraying plants [16]
Helianthus annuus 0, 10, 20 and 30 mM Tre spraying plants [101]
Triticum aestivum Medium + 50 mM Tre [50]
Raphanus sativus 0, 25 and 50 mM Tre soaking seeds and

spraying plants
[56]

Ocimum basilicum 30 mM Tre and 1 mM SA alone or in
combination with irrigating

[102]

Chenopodium quinoa 0, 5, 10, 15, 20 mmol·L−1 Tre spraying plants [54]
Zea mays 10 mmol·L−1 Tre spraying plants [55]

Protect photosynthetic mechanism Zea mays 0 and 30 mM Tre spraying plants [57]
Zea mays 1% Tre and different forms of zinc spraying

plants
[58]

Cause anatomical changes of leaves Raphanus sativus 25 mM Tre soaking seeds and spraying
plants

[59]

Regulate endogenous ABA level and
signal transduction

Solanum lycopersicum 1.5, 15 and 45 mM Tre spraying plants [63]

Salt stress Enhance antioxidant capacity Oryza sativa 25 mM Tre soaking seeds [67]
Oryza sativa Nutrient solution + 10 mM Tre hydroponics [68]

Zea mays Nutrient solution + 10 mM Tre hydroponics [52]
Arabidopsis thaliana Nutrient solution + 0.5, 1 and 5 mM Tre

hydroponics
[51]

Cucumis melo 2%, 3%, 4%, 5% Tre spraying plants [69]
Citrullus lanatus Nutrient solution + 0, 5, 10, 20 and 30 mM

Tre hydroponics
[70]

Protect photosynthetic mechanism Fragaria × ananassa Nutrient solution + 10, 30 mM Tre irrigating
plants

[72]

Oryza sativa 0, 10, 20 mM Tre spraying plants [71]
Co-regulation of stress response
with other substances

Oryza sativa Nutrient solution + 10 mmol·L−1 Tre
hydroponics

[17]

Heat stress Protect PSII and regulate plant
photosynthesis

Triticum aestivum Nutrient solution + 1.5 mM Tre hydroponics [18,78,82]

Regulate plant redox dynamic
balance and photosynthesis

Paeonia lactiflora 30 mmol·L−1 Tre spraying plants [81]

Cold stress Enhance antioxidant capacity Capsicum annuum 5%, 10%, 15% Tre soaking fruit [88]
Solanum lycopersicum 10 mM Tre spraying plants [86]

Cucumis melo 10 mM Tre spraying plants [53,87]
Zea mays 3, 6, 9, 12, 15, 18 mmol·L−1 Tre irrigating

plants
[85]

Osmotic adjustment Oryza sativa 0, 0.5, 1 and 2 mM Tre/Spermidine soaking
seeds

[19]

Oryza sativa Nutrient solution + 5 mM Tre irrigating
plants

[90]

Triticum aestivum 0, 5, 10, 20, 40, 50 mmol·L−1 Tre soaking
seeds and hydroponics

[89]

Regulate nitrogen assimilation and
polyamine synthesis

Triticum aestivum 1, 10, 50 mmol·L−1 Tre spraying plants [91]

Heavy metal stress Enhance antioxidant capacity Oryza sativa Nutrient solution + 10 mM Tre hydroponics [94]
Oryza sativa 0, 10, 20, 40, 60 mmol·L−1 Tre hydroponics [95]

Triticum aestivum 0, 25, 50 mM Tre spraying plants [96]
Nitrogen deficiency Activate nitrate and ammonia

assimilation
Nicotiana tabacum 8 mM Tre spraying plants [100]

Acid rain stress Enhance antioxidant capacity,
maintain the stability of plasma
membrane

Hordeum vulgare 0, 5, 10, 15 mM Tre soaking seeds [98]

Alkali stress Enhance antioxidant capacity,
osmotic adjustment

Oryza sativa 0, 5, 10, 15, 20 mmol·L−1 Tre spraying plants [99]
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the energy balance of  plants[65] and also affects  water  absorp-
tion  and  utilization,  the  anatomical  structure  of  leaves  and
photosynthesis,  eventually  limited  plant  growth[65,66].  There-
fore,  how to enhance plants salt  stress tolerance is  particularly
important for plant normal growth and development.

Studies  showed  that  feed  with  trehalose  could  trigger  the
expression of salt tolerance-related transcription factors genes,
such as bHLH, NAC, WRKY, etc, and increase the level of endoge-
nous  trehalose  in  rice,  thus  enhancing  the  activity  of  antioxi-
dant  enzymes  (Table  1)[67−69],  increasing  K+ level  and  the  ratio
of  K+/Na+ in  leaves  and  stems,  maintain  ion  dynamic  balance
and  redox  state[51],  regulating  antioxidants  and  the  glyoxylase
system[52],  which  synergistically  improve  the  salt  tolerance  of
plants[70].  Foliar  spraying  trehalose  can  alleviate  the  adverse
effects of salt stress on rice by improving growth traits, chloro-
phyll content, gas exchange characteristics, chlorophyll fluores-
cence and other  parameters[71].  In  strawberries,  external  appli-
cation of 30 mM trehalose significantly alleviated the inhibition
of salt stress on strawberry growth. It could alleviate the inhibi-
tion  of  PSII  function  by  increasing  carotenoid  content,  thus
reducing the injury caused by salt  stress[72].  Additionally,  over-
expressing of trehalose synthesis genes AtTPPD could improve
plant  salt  stress  resistance via regulating sugar  metabolism[73].
These suggest that trehalose could regulate sugar metabolism,
which  need  further  investigation.  Over  all,  trehalose  may
improve  plant  salt  stress  tolerance  and  promote  plant  growth
and  development  by  regulating  the  balance  of  antioxidant
system,  ion  exchange  and  other  metabolism  (such  as  sugar
metabolism).

Additionally, trehalose can coordinate with other substances
to  regulate  plant  salt  tolerance,  such  as  osmoregulatory
substances  and growth-promoting bacteria.  Nounjan &  Theer-
akulpisut  showed  that  external  application  of  proline  and
trehalose could increase the activity of antioxidant enzymes in
rice  under  salt  stress  or  in  the  recovery  stage,  among  which
exogenous  trehalose  had  the  most  obvious  promoting  effect
on  the  activity  of  antioxidant  enzymes  in  rice[17].  In  another
study  with  tomato,  1-aminocyclopropane-1-carboxylate  (ACC)
deaminase  and  trehalose  had  synergistic  protective  effects  on
tomato  plants  under  salt  stress  during  interaction  with  the
plant growth-promoting strain Pseudomonas sp. UW4[74]. Strigo-
lactones can upregulate the expression of the Tre biosynthetic
genes TPS1,  TPS2,  TPP1 and TPP2,  enhance  the  activity  of  TPS
and TPP, accelerate the conversion of glutamic acid to Tre, and
inhibit  the  degradation  of  Tre  by  weakening  the  activity  of
trehalase,  thereby  improving  tomato  plant  salt  stress  resis-
tance[75].  Under  salt  stress,  the  upregulation  of OsNCED3 leads
to  ABA  accumulation,  thereby  activating  the  expression  of
OsTPP3,  increasing  the  Tre  content  of  rice  seedlings,  and
enhancing their salt tolerance[76].

 Heat stress
In  plants,  high  temperature  often  leads  to  the  outbreak  of

ROS,  which  destroys  proteins,  DNA  and  lipids  and  leads  to
adverse changes in plant growth, development and physiologi-
cal  status[77,78].  Osmotic protective agents,  such as proline[79,80]

and  trehalose  (Table  1)[81,82],  play  a  positive  role  in  alleviating
heat  stress.  Trehalose  can  significantly  promote  the  PSII
complex  to  maintain  a  stable  oxygen  evolution  rate  and  cell
redox  homeostasis,  which  eventually  alleviated  the  damage
caused  by  heat  stress[78,81,83].  Meanwhile,  trehalose  effectively

regulated the level of photosynthesis-related proteins, alleviated
the  chloroplasts  structure  damage  and  increased  the  proton
gradient  (ΔpH)  and  ATP  synthase  activity  by  promoting  cyclic
electron  flow  (CEF)  to  alleviate  PSII  photoinhibition  caused  by
heat  stress  in  wheat[78,82].  Thus,  trehalose  can  alleviate  heat
caused damage mainly by maintaining normal  photosynthesis
in  plants.  However,  most  studies  are  limited  to  physiological
mechanisms,  and  the  related  molecular  regulatory  mecha-
nisms need to be further studied.

 Cold stress
Cold stress is one of the main abiotic stresses in a plants life,

including  chilling/cold  injury  (>  0  °C)  and  freezing  injury  (<  0
°C). Cold stress is the main environmental factor affecting plant
growth  and  development,  limiting  geographical  distribution
and  reducing  crop  yield.  Trehalose  can  be  widely  detected  in
cold-tolerant  crops,  indicating  that  trehalose  may  be  involved
in the regulation of plant tolerance to cold stress (Table 1)[84].

Cold stress can cause an imbalance of the antioxidant system
and serious  damage to  the cell  membrane structure  of  plants.
Liu  et  al.  reported  that  irrigation  trehalose  could  increase  the
activities  of  antioxidant  enzymes  in  maize  roots,  enhance  the
ability  of  cells  to  scavenge  ROS,  and  maintain  the  stability  of
the  cell  membrane  structure  and  function  of  maize  seedling
roots, thus alleviating the damage caused by cold stress[85]. And
exogenous  trehalose  may  play  roles  in  H2O2→NO→antioxida-
tion→cold  tolerance  pathway[86,87] and  maintain  the  integrity
of  cell  structure[53].  In  addition,  trehalose  could  alleviate  the
chilling injury of pepper fruit at low temperature and maintain
quality  by  reducing  the  damage  to  the  cell  membrane  struc-
ture caused by ROS[88].

Cold  stress  also  leads  to  osmotic  stress,  and  trehalose  can
improve plants resistance to stress by regulating some osmotic
regulatory  substances.  For  example,  trehalose  could  increase
the  content  of  osmotic  regulating  substances  (such  as  proline
and  soluble  sugar)  which  may  result  in  increasing  plant  cold
tolerance[19,89].  In  addition,  application  of  trehalose  regulated
the water absorption of arbuscular mycorrhizal fungi (AMF) and
mycorrhizal  symbiotic  rice  under  cold  stress  by  inducing  the
expression of GintAQPF and OsPIPs, thus creating more suitable
growth  conditions  for  rice[90].  These  results  indicate  that
trehalose  plays  a  regulatory  role  in  osmotic  stress  induced  by
low temperatures.

Studies  have  also  shown  that  trehalose  can  regulate  plant
resistance  to  cold  stress  in  other  ways.  For  example,  trehalose
could  promote  floret  fertility  to  alleviate  the  decrease  in  the
number  of  grains  per  spike  caused  by  cold  stress  at  the  boo-
ting stage, mainly because trehalose regulates nitrogen assimi-
lation, the GSH-AsA cycle and spermidine synthesis[91]. Liu et al.
transferred  the TaTPS11 gene  of  cold-tolerant  wheat  varieties
into Arabidopsis  thaliana and  found  that  the  overexpression
line  had  higher  carbohydrates,  such  as  sucrose,  fructose  and
starch,  which  improved  the  cold  tolerance  of Arabidopsis
thaliana[92].  In  rice,  'SAPK10-ABF1-TPS2'  participates  in  plant
cold tolerance by regulating the homeostasis of trehalose[93].

 Other stresses
In addition to drought, salt and extreme temperature, plants

often suffer from other stresses during their growth and deve-
lopment,  such  as  heavy  metals,  acid  rain,  and  nutrient  defi-
ciency. Studies have shown that trehalose can play a role when
plants  are  poisoned by heavy metals  (Table  1).  When exposed
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to  Cu  stress,  trehalose  application  can  increase  the  level  of
endogenous trehalose and regulate antioxidant and glyoxylase
systems,  thus  improving  rice  tolerance  to  Cu  stress[94].  Addi-
tionally,  exogenous  trehalose  could  effectively  alleviate  the
decrease  in  chlorophyll  a  and b  contents  in  rice  caused by  Cd
stress, reduce the excessive accumulation of ROS, and form Cd-
Tre chelates to reduce Cd toxicity[95], improve the growth, phy-
siology, and defense systems, thereby increase the crop quality
and  yield[96].  Elevating  endogenous  trehalose  by  transferring
AtTPS1 gene into tobacco showed the same roles in improving
plant  Cd  and  Cu  stress  tolerance[97].  In  barley,  exogenous
trehalose  increased  the  activity  of  antioxidant  enzymes  and
plasma membrane H+-ATPase and the content of chlorophyll to
maintain  the  stable  pH  of  the  plasma  membrane  in  roots  and
leaves,  thus  resisting  acid  rain  stress[98].  In  rice,  spraying  an
appropriate  concentration  of  trehalose  could  effectively
improve  alkali  tolerance  and  alleviate  the  damage  of  alkali
stress to rice seedlings, which is mainly achieved by improving
the ability of ROS scavenging and osmotic regulation[99].  Foliar
spraying trehalose could partly alleviate the symptoms of nitro-
gen  deficiency  in  tobacco  by  upregulating  nitrate  and  ammo-
nia  assimilation,  increasing  the  activities  of  enzymes  such  as
nitrate  reductase  (NR)  and  glycolate  oxidase  (GO),  and  chan-
ging the contents of  and [100].

In  general,  when  plants  encounter  abiotic  stress,  trehalose
application  can  enhance  the  antioxidative  ability  to  maintain
ROS  homeostasis,  protect  photosynthetic  institutions,  and
regulate  osmotic  regulators  in  plants,  such  as  endogenous

trehalose[67] and  proline[19].  Moreover,  the  overexpression  of
two  key  enzyme  (TPP  and  TPS)-related  genes  in  the  trehalose
biosynthesis pathway can also alleviate the damage caused by
abiotic  stress  by  increasing  the  level  of  endogenous  trehalose
and  regulating  the  changes  in  downstream  stress-related
genes[15], plant hormones[64] and sugar[73].

 Summary and prospects

Sugar plays a key role in many metabolic processes through-
out plant life. Trehalose, as a multifunctional biomolecule, plays
an  important  role  in  seed  germination[33],  plant  development
and  reproduction[37] and  yield  and  quality  formation[42].  Tre-
halose  shows  great  potential  in  regulating  plant  growth  and
development  and  improving  plant  stress  tolerance  (Fig.  4).
Although  the  preliminary  physiological  effects  of  trehalose  on
key  plant  physiological  processes  and  stress  have  been  eluci-
dated,  most  of  them  are  at  the  physiological  level,  and  the
related molecular  mechanisms need to be further  studied.  For
example,  how  trehalose  is  involved  in  the  regulation  of  redox
balance,  photosynthesis  and  glucose  metabolism  and  how  to
regulate  downstream  stress-related  genes  to  improve  plant
resistance  remain  to  be  studied.  Furthermore,  the  current
reports  on  the  interaction  between  trehalose  and  plant  hor-
mones  are  mainly  focused  on  ABA.  Whether  there  is  a  certain
relationship  between  trehalose  and  other  plant  hormones
(such  as  ethylene,  auxin  and  gibberellin)  in  the  regulation  of
plant growth, development and stress resistance. And whether
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Fig.  4    Function of  trehalose  in  the  abiotic  stress  response  of  plants.      Represent  promoting;      Means  inhibiting;      Represent
promoting;     Means inhibiting.  However,  they are uncertain and need to be verified.  AsA:  Ascorbic acid;  GSH:  Reduced glutathione ;  GR:
Glutathione reductase;  SOD: Superoxide dismutase;  POD: Peroxidase;  CAT:  Catalase;  APX:  Ascorbate peroxidase;  MDA: Malondialdehyde; :
Superoxide anion; NR: Nitrate reductase; GO: Glycolate oxidase; GS: Glutamine synthetase; GOCAT: Glutamine oxoglutarate aminotransferase;
PYL: Pyrabactin resistance-like; SAPK: Stress activated protein kinase; RAB: Responsive to ABA; DREB: Dehydrationresponsive element-binding
protein;  MYB:  MYB transcription factors;  bZIP:  bZIP transcription factors;  H2O2:  Hydrogen peroxide;  NO:  Nitric  oxide;  SPS:  Sucrose phosphate
synthase; SuSy: Sucrose synthase; INV: Invertase; AMF: Arbuscular mycorrhizal fungi; PIP: Plasma membrane intrinsic protein.
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endogenous  trehalose  also  acts  as  a  signal  molecule  and  is
related  to  the  mechanism  of  action  of  exogenous  trehalose
needs further exploration.
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