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Abstract

Sustainable agricultural production is an effective way to address global climate change and the rapid growth of population, among which the multi-
maturing crops play a significant role, but its underlying genetic background has rarely been studied. We sequenced the genomes of early, middle, and late-
maturing cabbage, and analyzed them comparatively. Phylogenetic and genetic structure analysis showed that the early- and late-maturing varieties had a
certain genetic distance, and the early- and late-maturing individuals were likely to have been acquired by the mid-maturing individuals through
continuous breeding. Selective-sweep and gene function enrichment analysis revealed candidate genes in early and late-maturing resources were
significantly enriched in metabolic pathways, and candidate genes in early-maturing resources were associated with cell wall modification and
pectinesterase activity. The present study provides initial insights into the mechanism of maturation differentiation in cabbage, and laid an important
scientific basis for the future of higher yield and wider human needs of cabbage.
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Introduction

A rapidly growing population and the impact of global climate
change on crop production are urging the improvement of agricul-
tural yields and quality in a sustainable manner. Multi-maturing of
crops has the characteristics of high efficiency, intensiveness, and
high yield. Reasonable arrangement of maturities is conducive to
creating a harmonious and sustainable agro-ecological environ-
ment. Although the maturity of crop varieties is often affected by
temperature, precipitation, soil, sowing date, cultivation technology
conditions, and other factors, it is mainly determined by the heri-
tability of the varieties!'l. Heredity, variation, and complex genetic
regulation are the important basis of crop evolution and variety
breeding.

Leafy vegetable crops play an important role in the human diet,
and are important sources of vitamins, carotenoids, flavonoids, and
other health-promoting substances. The Brassica genus contains a
diverse range of oilseed and leafy vegetable crops important for
human nutrition, and Brassica oleracea is one of the most represen-
tative leafy vegetable crops, widely cultivated in the world, with an
extreme morphological diversity and crop form!2. Compared to
other Brassica species, B. oleracea vegetables have the characteris-
tics of rapid diversification and domestication of morphological
types. The construction of the B. oleracea pan-genome revealed the
hidden driving force of the rapid domestication of B. oleracea vari-
eties, and obtained several key genes for important traitsi.
However, systematic characterization of gene function is lacking!.

Cabbage (B. oleracea var. capitata L.) is a herbaceous plant native
to the coasts from the Mediterranean to the North Sea, and is a
widely cultivated vegetable worldwide. Rich in nutrients such as
vitamin C, carotenoids, cellulose, folic acid, and amino acids, it has a
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good dietary health care effect!>6], and important economic valuel’l.
The importance of cabbage in tropical and subtropical regions has
increased considerably in recent decades. Maturity is one of the
important horticultural characteristics of cabbage, which is the
fundamental trait system formed gradually in the reform of long-
term tillage system. Cabbage can be divided into three categories of
early-, middle-, and late-maturing, belonging to the green body
vernalization type. Seedlings need to grow to a certain size and be
exposed to a certain low temperature for a certain period before
they can undergo vernalization®-'", The maturation time of
cabbage varieties refers to the period from transplanting to harvest
(early-maturing: t < 60 d, transplanted in April; mid-maturing: 60 d <
t <90 d, transplanted in May; late-maturing: t > 90 d, transplanted in
June). The typical temperate monsoon climate and large latitude
span have led to different breeding needs for cabbage. The matura-
tion time of some extremely early-maturing varieties can be as short
as 45 d, such as Chungan 45 and Zhonggan 12. Following a long
period of direct selection, the adaptability of the three different vari-
eties of cabbage has improved and has been widely cultivated in
different areas at different times. Evaluating cabbage varieties for
maturity will help farmers, breeders, and seed companies select and
develop varieties best suited to the local environment and market.
With the publication of the B. oleracea genome, an increasing
number of questions in the fields of evolution, domestication, crop
quantitative genetics, molecular genetics, and crop breeding are
being addressed!”.2-14, To examine the mechanism of maturation
differentiation of cabbage in more detail, the whole genome of
cabbage varieties with different maturation times were rese-
quenced and investigated the genetic changes during maturation
differentiation by phylogenetic tree construction, genetic structure
analysis, selective-sweep, and gene function enrichment. This study

www.maxapress.com/vegres


http://orcid.org/0000-0003-4130-1654
mailto:liqiang@tstc.edu.cn
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
http://orcid.org/0000-0003-4130-1654
mailto:liqiang@tstc.edu.cn
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
https://doi.org/10.48130/vegres-0025-0043
http://www.maxapress.com/vegres

Vegetable
Research

provided initial insights into the mechanism of maturation differen-
tiation of cabbage, laying an important theoretical basis for the
breeding and identification of dominant species and new varieties,
improvement of agronomic traits, conservation of germplasm
resources, and marker-assisted breeding of cabbage, and also
provided an important scientific basis for the future of higher yield
and wider human needs of cabbage.

Materials and methods

Plant materials and DNA extraction

A total of 91 cabbage samples from 14 countries were collected
for this study. All materials were seeded in a laboratory tray and
grown under suitable conditions. Twenty-two samples were early
maturing resources, 46 samples were mid-maturing resources, and
23 samples were late-maturing resources (Supplementary Table S1).
After phenotypic observation and evaluation, the differences
among cabbage varieties with different maturation times were
mainly reflected in the shape of the leaf ball, including round head
type, flat head type, and pointed head type. Total genomic DNA was
extracted from 3-5 tender leaves at the seedling stage using the
CTAB method['>l. RNase treatment was performed to remove RNA
contaminants. Genomic DNA quality was measured using agarose
gel electrophoresis (1%), and the concentration was quantified
using Qubit 3.0 Fluorometer. More than 1.5 pg of DNA samples were
used to build the library.

Database building and sequencing

The DNA samples processed with a Covaris crusher were
randomly broken into 350 bp fragments. Libraries were constructed
using the TruSeq Library Construction Kit. Initial quantification was
performed using a Qubit 3.0, and libraries were diluted to 1 ng/ul.
The insert size of the libraries was then determined using an Agilent
2100. Quantitative PCR (qPCR) was used to accurately quantify the
effective concentration of the libraries to ensure their quality (effec-
tive concentration > 2 nM). The whole genome resequencing was
performed on Illumina X-TEN platform at Novogene Corporation
(Beijing, China), with a paired-end sequencing length of 150 bp.
Sequencing and base calling were performed according to the
standard lllumina protocols.

Resequencing data processing and SNP calling

The raw data generated by sequencing were rigorously filtered
via SOAPnuke 1.5.6 software to produce high-quality clean datal'6l.
The specific filtering conditions were as follows: (1) filter out reads
containing adapter sequences; (2) filter out reads containing the
number of N greater than 10%; (3) filter out reads with more than
50% low-quality bases (Phred score < 5). The genome sequence of B.
oleracea JZS 2.0 (http://brassicadb.cn/#/Download) was down-
loaded as the reference genome. Burrows Wheeler Alignment (BWA)
software was used to align the high-quality clean data with the
reference genomel'”}, and duplicate reads in the alignment results
were removed using SAMtools!'8l, The results of sample comparison
showed that their similarity with the reference genome met the
requirements of resequencing analysis, and the coverage depth and
genome coverage were excellent. SNPs were detected using
SAMtools, with polymorphic loci identified via a Bayesian model.
SNPs detected were filtered to obtain high-quality SNPs for subse-
quent analysis. The filtering conditions were as follows: (1) the
coverage depth is 2; (2) the missing rate was set at 0.2; (3) the mini-
mum allele frequency was 0.05.
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Population genetics analysis

To analyze the phylogenetic relationships among cabbages with
different maturities and evaluate the evolutionary trends of leaf
ball shape, we constructed a neighbor-joining tree with TreeBeST!',
with bootstrap values set to 1,000. FigTree (http://tree.bio.ed.ac.
uk/software/figtree/) was used to visualize the phylogenetic trees.
The genetic structure was inferred using PLINKI2?., The number of
subgroups (K values) was set to 2-8, and the optimal K values were
determined by the cross-validation (CV) error method.

Genome scan for selection

To identify genomic regions that may have been subject to selec-
tion during maturation differentiation, three comparisons, were
conducted namely, pairwise comparisons of samples with different
maturation times: early-maturing vs mid-maturing, mid-maturing vs
late-maturing, and early-maturing vs late-maturing. The present
scan used a 0.05-cM sliding window with 100-bp steps across the
whole genome. The population differentiation statistic (Fsy) was
calculated using a 50 kb window with a 20 kb step for the three
contrasts, and the sequence diversity statistics (r) for cabbage vari-
eties with different maturation times separately using VCFtools[2'l,
The © log-ratio was calculated as In(mg,qy) - In(myig), IN(Tyig) - IN(T o)
and In(mg,ny) - In(m o), respectively, where mg,y, Tyig and ¢ are the
nucleotide diversity values for the early-maturing, mid-maturing,
and late-maturing cabbage samples, respectively. Plots were gener-
ated using the ggplot2 package (https:/github.com/tidyverse/
ggplot2; accessed on 4 March 2023) in R. Putative selection targets
with the top 5% and bottom 5% of nt-ratios, the top 5% of Fsy values,
were extracted as high-confidence outliers. All candidate genes
were used for subsequent analysis and discussion.

To test whether the candidate selective-sweep regions had an
excess of singleton polymorphisms, Tajima's D values were calcu-
lated for samples with different maturation times, respectively,
using the same sliding window approach. Regions under selective
sweeps had significantly lower values of Tajima's D.

Gene function enrichment analysis

Functional classification into Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) categories was
performed for candidate genes selected from different maturation
gene pools in each set of comparative analyses(?2l, KEGG pathway
enrichment analysis was performed using the KOBAS program(23],
and GO annotation was performed using the GOseq R packagel?4.
The hypergeometric test was used to calculate p-value, and
Benjamini-Hochberg (BH) correction was applied?>. Terms with a
corrected p-value < 0.05 were considered significantly enriched. The
20 most significantly enriched KEGG pathways were displayed in a
scatter plot. In the GO analysis, the 30 GO terms with the most
significant enrichment were shown in the bar chart, which directly
reflected the distribution of candidate genes enriched in these GO
terms. In addition, the Directed Acyclic Graph (DAG) for each ontol-
ogy was drawn, and associated GO terms were clearly displayed
through branch inclusion relationships.

Results

Genetic relationship
A total of 3.43 million high-quality single-nucleotide polymor-
phisms (SNPs) were detected, and the phylogenetic tree
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constructed based on this dataset showed genome-wide
relationships and divergence among cabbage resources with
different maturation times. They did not cluster into an indepen-
dent clade, respectively, but are embedded within each other
(Fig. Ta). Early-maturing resources were clustered in a clade, but
embedded with some mid-maturing individuals. Similarly, late-
maturing resources were clustered in a clade, but there were also
individuals of other maturities embedded within them. Mid-matur-
ing resources were not clustered into a monophyletic clade, but
were distributed evenly throughout the phylogenetic tree. The
genetic differences between early-maturing and late-maturing indi-
viduals are clearly reflected in the tree, revealing that climatic differ-
ences across seasons have shaped distinct genetic backgrounds,
and the diversity of variety resources has been enriched. The close
pedigree relationship between mid-maturing individuals and
early/late-maturing individuals was shown. The results of genetic
structure analysis were consistent with this (Fig. 1b). When K = 2,
early- and late-maturing individuals were obviously divided into two
groups, although each groups contained mid-maturing individuals.
When K = 3, some late-maturing individuals showed significant
genetic differentiation from mid-maturing individuals. The results of
K = 4 showed that some early-maturing individuals had a certain
genetic distance from the mid-maturing individuals.

Selective-sweep for maturation differentiation

Genomic regions that have been subject to selection as inferred
from low/high m log-ratios and significant genetic differentiation
were detected (Fig. 2). More specifically, in the analysis of early-
maturing vs mid-maturing, at a significance level of p > 0.005 (Z test,
with © log-ratio = —0.31 or £1.91 and Fg; 20.17), a total of 433
potential selective-sweep regions overlapping with 818 candidate
genes were identified in early-maturing gene pools, and 182 poten-
tial selective-sweep regions overlapping with 271 candidate genes
were identified in mid-maturing gene pool; similarly, in mid-matur-
ing vs late-maturing (r log-ratio = —0.64 or <1.17 and Fgr 20.19),
312 potential selective-sweep regions, and 557 candidate genes
were identified in mid-maturing gene pools, 491 potential selective-
sweep regions covering 802 candidate genes were identified in late-
maturing gene pool; in early-maturing vs late-maturing (r log-ratio
2 -2.07 or £1.04 and Fs; 20.38), 181 and 316 potential selective-
sweep regions, 456 and 470 candidate genes were identified in
early-maturing and late-maturing gene pools, respectively (Table 1;
Supplementary Tables S2-S7). The role of these regions was con-
firmed by significantly lower values of Tajima's D (Supplementary
Fig. S1).
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Secondary metabolism was reinforced during
maturation differentiation

In the comparative analysis, the candidate genes from resources
with different maturities were functionally enriched, and the
enriched metabolic pathways showed anisotropy (Fig. 3). In early-
maturing resources, candidate genes were significantly enriched in
metabolic pathways, and more genes were included (Fig. 3a, e).
Although these pathways were significant (e.g., phenylalanine
metabolism, pentose, and glucuronate interconversions and
biosynthesis of amino acids), the number of enriched genes was
small. For mid-maturing, candidate genes were significantly
enriched in  ubiquitin-mediated  proteolysis, splicecosome,
glutathione metabolism, cyanoamino acid metabolism, and arachi-
donic acid metabolism (Fig. 3b, c). Relatively more genes were
enriched in the biosynthesis of secondary metabolites and RNA
transport pathways, but these enrichments were not significant. For
late-maturing, candidate genes were mainly enriched in metabolic
pathways, although not highly significant (Fig. 3d, f).

GO term enrichment analysis suggested that candidate genes in
early-maturing resources were associated with cell wall modifica-
tion and pectinesterase activity (p < 0.05, Fig. 4a, Supplementary Fig.
S2). Candidate genes in mid-maturing were overexpressed in multi-
ple terms, e.g. DNA restriction-modification system, clearance of
foreign intracellular DNA, Type |l site-specific deoxyribonuclease
activity, G-protein-coupled acetylcholine receptor signaling path-
way, gamma-glutamyltransferase activity (p < 0.05, Fig. 4b, c,
Supplementary Fig. S3). Candidate genes of late-maturing resources
showed no significant enrichment (Fig. 4d, f).

Discussion

Phylogenetic relationships among different
maturing resources

Phylogenetic analysis and genetic structure analysis showed that
the cabbage varieties with different maturation times did not clus-
ter into a single genetic cluster, but were embedded with each
other and shared some genetic background. The phylogenetic tree
showed that early- and late-maturing individuals were clustered
together in one clade, respectively, but both had intercalations
individuals of mid-mature individuals. Similarly, in genetic structure
analysis, when K = 2, early- and late-maturing individuals were
clearly identified, and when K = 3 and 4, some early and
late-maturing individuals had a certain genetic distance from
mid-maturing individuals. The results revealed that the genetic

WITE &

Fig. 1 Phylogenetic and genetic structure analyses of cabbage varieties with different maturation times. (a) A neighbour-joining phylogenetic tree
constructed using whole-genome SNPs data. The red lines represent early-maturing of cabbages; green lines represent late-maturing of cabbages; blue
lines represent mid-maturing of cabbages. The clades clustered by each maturity resource were identified with corresponding colors. (b) Genetic
structure plots with K = 2-4. The y axis quantifies the proportion of the individual's genome from inferred ancestral populations, and x axis shows the
different individuals. The color of the sample code represents the same meaning as in (a).
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Fig. 2 Genomic regions with selection sweep signals in different mature cabbages. (a) Distribution of In ratio (0, early/middle) and Fsr. Green dots
represent windows fulfilling the selected regions requirement in early-maturing cabbages; blue dots represent selected regions in mid-maturing. (b)
Distribution of In ratio (fr, middle/late) and Fsy. Blue dots represent selected regions in mid-maturing; green dots represent selected regions in late-
maturing. (c) Distribution of In ratio (fr, early/late) and Fsr. Blue dots represent selected regions in early-maturing; green dots represent selected regions
in late-maturing.

Table 1. The numbers of regions and candidate genes with selection sweep signals in the comparative analysis of selective-sweep of cabbage varieties with different

maturation times.

Analysis among cabbages with different maturation times

Maturation With selection sweep signals
Early vs Mid Mid vs Late Early vs Late
Early-maturing Regions 433 - 181
Candidate genes 818 - 456
Mid-maturing Regions 182 312 -
Candidate genes 271 557 -
Late-maturing Regions - 491 316
Candidate genes - 802 470
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Fig. 3 KEGG pathway enrichment of the candidate genes in different mature cabbages. Enrichment result of candidate genes located in the (a) early-
maturing and (b) mid-maturing resources respectively in early-maturing vs mid-maturing analysis; (c) mid-maturing and (d) late-maturing resources
respectively in mid-maturing vs late-maturing analysis; (e) early-maturing and (f) late-maturing resources respectively in early-maturing vs late-maturing

analysis.
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divergence between mid-maturing resources, and the other two
were relatively low, while the divergence was obvious between
early-maturing and late-maturing resources. It is reasonable to

Page 6 of 9

assume that the mid-maturing individuals represent a relatively
primitive group, and the early- and late-maturing individuals are
likely to have been acquired by the mid-maturing individuals
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through continuous breeding. Species from Brassica's 'U's triangle'
model are widely used in studies on polyploidization and genome
hybridization[26, As an important component of this model,
cabbage has its evolutionary process worthy of in-depth explo-
ration—which will provide a more reliable basis for enriching its
genetic background. The initial inferences of this study offer a new
perspective for subsequent research. The initial differentiation of B.
oleracea was influenced by artificial selection on leaves or stems27],
with cabbage originating from the 'leafy head' domestication
lineagel?8; thus, leaf ball shape is the most important phenotypic
trait of cabbage. The leaf ball shape of cabbage with different
maturities was also differentiated to some extent. The leaf balls of
early-maturing cabbage are generally pointed and round heads,
those of late-maturing cabbage are generally flat heads, and those
of mid-maturing cabbage have all three types of balls. These obser-
vations further strengthen the findings of this study and indicate
that, along with the evolution of maturities, the leaf ball shape of
cabbage has also undergone convergent evolution. Early-maturing
cabbages are more inclined to have pointed and round head traits,
while late-maturing varieties tend to have flat heads. Gene flows
between cabbages of different maturities were also detected. These
gene flows are likely the result of human agricultural activities and
ongoing variety improvement processes, which have further shaped
the genetic diversity and structure of cabbage.

The ripening time of cabbage is closely related to temperature,
light intensity and duration, water, and nutrients??l. The results
showed that there were obvious genetic differences between early
and late-maturing varieties, with mid-maturing varieties as the
reference. Mid-maturing varieties are suitable for planting in most
areas, while the planting area of early and late-maturing varieties is
relatively limited, suggesting that environmental factors played an
important role in their phenotypic and molecular changes. The
breeding of new varieties aims to further meet the needs of produc-
tion and daily life. Early breeding is a more purposeful method,
prioritizing ripening while integrating other favorable traits. Early
maturity is an important index in vegetable crop breeding. The
selection of early-maturing cabbage varieties enables two harvests
in one growing season, frees up space for early planting of other
crops. Owing to their shorter growth cycle, early-maturing varieties
can be marketed earlier, filling market gaps and satisfying
consumers' demand for fresh vegetables. As a result, they can
command higher prices and increase the economic benefits of the
growers3031], while the breeding of late-maturing varieties plays an
important role in the annual supply of vegetables. These varieties
have strong cold resistance and excellent storage resistance, allow-
ing them to be harvested well into the deep winter. They thus play a
significant role in the long-term vegetable supply and storage
chain32, More importantly, the combination of early- and late-
maturing varieties can stagger sowing or harvesting periods, facili-
tate the efficient arrangement of agricultural machinery and labor,
and avoid missing farming deadlines. The cultivation of cabbage for
multiple maturities has made it a staple of people's diet, like wheat
and riceB3l, Overall, the relative pedigree and genetic structure anal-
ysis of different maturities sheds light on the domestication of
cabbage, providing valuable insights into the evolutionary history
and genetic variation of this important vegetable species. The
results of this study have implications for future molecular breeding
and genetic improvement of cabbage and contribute to our broader
understanding of crop domestication processes.

Genetic mechanism of maturation differentiation
The continuous development of sequencing technology has
prompted many researchers to study the genetic mechanisms of
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various fruit and vegetable crops based on genomic data. The ripen-
ing of fruits and vegetables is a crucial agronomic trait, but most of
the current studies focus on the changes of physicochemical charac-
teristics during ripeningB4-37], or the differences in gene expression
at different ripening stagesi*3-49, and rarely involve the genetic
differences between resources with different maturities. The matu-
rity of cabbage is one of the important indicators for selecting vari-
eties with a suitable maturity stage in different ecological regions. A
deep understanding of the genetic mechanisms underlying matu-
rity is helpful to accelerate the breeding process, and rapid selec-
tion of more new varieties with different maturity stages is of great
significance to revitalize the cabbage industry.

Whole-genome resequencing was performed to identify the key
genetic differences among cabbage varieties with different maturi-
ties and reveal the important factors influencing these differences.
In KEGG enrichment analysis, candidate genes were mainly enriched
in metabolic pathways in both early and late-maturing resources
(Fig. 3), indicating that related genes promote early or late ripening
of different cabbage varieties by influencing metabolic pathways, a
phenomenon also observed in other crop of the Brassica family,
such as Brassica rapa, critical genes involved in the terpenoid
biosynthesis pathway and terpene synthase (TPS) family genes have
been identified through integrated genomic and transcriptomic
analysest'l. Additionally, for other vegetables like tomatoes*2. GO
term enrichment analysis on the candidate genes in early-maturing
resources suggested that genes associated with cell wall modifica-
tion and pectinesterase activity were involved (Fig. 4). Cell wall
substances (alcohol-insoluble solids, AIS) mainly include cellulose,
hemicellulose, and pectin, among which pectin plays the most
important role in fruit and vegetable ripening. Cell wall modifica-
tion is a core process of cabbage ripening. The firmness of cabbage
heads is determined by the degree of cross-linking of pectin in the
middle layer of the cell wall“3. Early-maturing resources exhibit
rapid head softening, mainly due to rapid cell wall disintegration,
which accelerates pectin degradation and subsequently causes
further head softening. In contrast, late-maturing resources main-
tain a higher degree of pectin esterification for a longer period,
resulting in stronger cell wall stability and thus delaying the soften-
ing processt*4, Previous studies showed that the structure of the
fruit undergoes obvious changes during the ripening process, and
these structural changes were considered to be the main cause of
fruit ripening*54¢1, During the ripening of fruits and vegetables, the
structure and composition of the cell wall undergo significant
changes*’l. Pectin is degraded first into soluble pectin, the intercel-
lular layer disappears, and cells separate from each other“8l. The
present results revealed that changes in cell walls play a key role in
the maturation of cabbage. Vegetable ripening is a highly
programmed and complex biological process. This process involves
the spatiotemporally specific expression of many ripening-related
genes, which leads to a series of physiological and biochemical
changes in color, texture, nutrition, flavor, and aroma, among
others. In a sense, vegetable ripening is a finely regulated transcrip-
tional reprogramming processi*9l. These findings have been well
demonstrated in the model species Arabidopsis thaliana, which
belongs to the same family (Brassicaceae) as cabbage. A number of
functional genes have been identified, including those involved in
glucosinolate biosynthesis, flowering regulation, auxin signaling,
and anthocyanin biosynthesis?¢l, The maturity of cabbage is
reflected in its heading, and the size, texture, and flavor of the head
directly affect its quality. A large number of hormones and enzymes
are specifically upregulated in the heading phase of cabbagel®?l. As
a key enzyme involved in decomposing cell walls, pectinesterase is
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active during cabbage ripening and may be related to the final taste
and texture.

After continuous domestication and improvement, cabbage has
exhibited different types of differentiation through selective breed-
ing to meet production and livelihood needs. Different breeding
selection processes have different effects on the metabolome, and
the maturity differentiation of cabbage is mainly reflected in
metabolic pathways. Although our ancestors knew nothing about
the metabolome, this did not hinder their selection and modifica-
tion of the cabbage metabolome, because, in a sense, what we
consume from cabbage is an important part of its metabolome, and
the heading metabolome comprehensively reflects its nutrients and
flavor substances. Therefore, based on this study, the key genes and
specific metabolites in metabolic pathways that affect the maturity
differentiation process of cabbage can be further explored in combi-
nation with metabolomics analysis. Furthermore, with the integra-
tion and optimization of genomic data platforms, it will be feasible
to construct a cabbage biological network based on multi-omics
datal'l.
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