

SmMYB113 integrates ABA signaling with ICE-CBF transcriptional synergy to enhance low-temperature adaptation in eggplant

Guobin Yang^{1,2#}, Wenhao Hu^{2#}, Lujun Li², Wenhao Liu², Yaqi Gao², Jing Li^{2,3,4}, Tuo Ji^{2,3*} and Fengjuan Yang^{2,3,4*}

¹ Taishan University, College of Mechanical Engineering, Tai'an, Shandong 271000, China

² College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China

³ Key Laboratory of Biology and Genetic Improvement of Horticultural Crop (Huang-Huai Region), Ministry of Agriculture and Rural Affairs, Tai'an, Shandong 271018, China

⁴ Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, Shandong 271018, China

Authors contributed equally: Guobin Yang, Wenhao Hu

* Correspondence: jiluo1@163.com (Ji T); fjyang@sdau.edu.cn (Yang F)

Abstract

The MYB transcription factor family represents the largest class of transcription factors in plants, playing crucial roles in regulating plant growth, development, and stress defense responses. This study demonstrates that overexpression of *SmMYB113* in eggplant cultivar '108' significantly enhances cold tolerance. The results showed that *SmMYB113* enhances cold tolerance through a dual regulatory mode: it binds to the promoter of the ABA biosynthetic gene *SmAAO4-1*, upregulating its expression and significantly increasing ABA content; meanwhile, it physically interacts with *SmICE2*, enhancing *SmICE2*'s transcriptional activation capability on *SmCBF2*, thereby elevating the expression of downstream cold-responsive genes to combat low-temperature stress. These results indicate that *SmMYB113* regulates eggplant cold tolerance through a multi-layered cold resistance mechanism integrating hormone signaling and transcriptional cascades.

Citation: Yang G, Hu W, Li L, Liu W, Gao Y, et al. 2026. SmMYB113 integrates ABA signaling with ICE-CBF transcriptional synergy to enhance low-temperature adaptation in eggplant. *Vegetable Research* 6: e003 <https://doi.org/10.48130/vegres-0025-0046>

Introduction

Low-temperature stress is a key environmental factor limiting the yield of solanaceous crops. Plants respond to low temperatures via intricate regulatory networks^[1], in which hormone signaling pathways, including ABA^[2], and transcription factor pathways, such as CBF and MYB^[3–5], play pivotal roles. ABA, as a key stress-response hormone, not only regulates stomatal closure and osmotic balance but also enhances cold resistance by activating cold-responsive genes^[6]. Concurrently, the ICE-CBF pathway serves as a conserved cold adaptation route, driving the expression of downstream cold-responsive proteins (e.g., Cold-Regulated genes, COR)^[7]. However, the cross-talk between these two major systems, particularly how transcription factors integrate hormone signaling with transcriptional cascades, remains relatively understudied. Elucidating this regulatory network holds significant theoretical value for designing cold-tolerant crops with synergistic multi-pathway regulation.

MYB transcription factors exhibit remarkable functional polymorphism in diverse plant processes, including secondary metabolism, cell differentiation, and abiotic stress responses^[8–10]. Studies indicate that Subgroup 2 R2R3-MYB proteins participate in low-temperature responses through various modes, enhancing plant cold tolerance by mediating the ABA signaling pathway. For instance, oil palm *EgMYB111* enhances cold tolerance by controlling the transcription of key ABA regulatory genes *EgSnRK2.1*, *EgSnRK2.3*, and *EgSnRK2.5*^[11]. Tomato *SiMYB15* binds to upstream regulatory elements of ABA biosynthesis and signaling transduction genes *SINCED1* and *SIABF4*, leading to their upregulation and increased tomato cold tolerance^[12]. Additionally, MYB transcription factors form heterodimers with bHLH transcription factors to activate the anthocyanin biosynthesis pathway, alleviating photo-inhibition damage. For example, the citrus R2R3 MYB transcription factor

CsRuby1 is activated by two ethylene response factors, subsequently increasing citrus cold tolerance by upregulating anthocyanin synthesis^[13]. Apple *MdMYB308L* interacts with *MdbHLH33*, acting as a positive regulator in apple cold tolerance and anthocyanin accumulation^[14].

SmMYB113 is a key transcription factor responsible for compositional variation of anthocyanin and color diversity among eggplant peels^[15]. Current evidence establishes that *SmMYB113* participates in the anthocyanin biosynthetic pathway in eggplant^[15]. Under low-temperature conditions, SmCBFs proteins interact with *SmMYB113*, thereby indirectly activating key anthocyanin biosynthesis genes including chalcone synthase (*CHS*), and dihydroflavonol 4-reductase (*DFR*), which consequently enhances anthocyanin production^[16]. Based on our previous findings, *SmMYB113-OE* lines exhibited enhanced cold tolerance under low-temperature conditions, coupled with a marked upregulation of *SmMYB113* expression and a significant increase in anthocyanin accumulation. These collective observations led to the selection of *SmMYB113* as the primary focus of this study.

As a key signaling molecule in plant stress responses, ABA dynamically regulates stomatal movement, osmolyte synthesis, and stress memory formation by activating the SnRK2 (SNF1-related protein kinase 2) kinase cascade^[17–20]. Low-temperature stress significantly induces endogenous ABA accumulation^[21], while exogenous ABA application enhances cold tolerance^[22], suggesting a profound interaction between ABA signaling and cold adaptation mechanisms. Studies show that *ABI1* enhances ICE1 protein stability by regulating *OST1* (Open Stomata 1) kinase-mediated phosphorylation, promoting CBF expression^[23]. On the other hand, the ICE-CBF pathway, as a conserved axis for cold response, has been extensively validated in model plants such as *Arabidopsis* and tomato^[24,25]. Upon cold exposure, ICE acts upstream in the cold

response cascade as one of the earliest signals^[26], driving the expression of CBF transcription factors by binding to the canonical MYC cis-element (CANNTG) in the CBF3/DREB1A promoter, thereby activating downstream cold-responsive genes like COR and RD (responsive to dehydration)^[27,28].

Eggplant is an important protected vegetable crop. Its year-round production mode ensures a stable food supply but poses the challenge of maintaining normal growth under low-temperature conditions. In this study, it was found that *SmMYB113* likely enhances eggplant cold resistance through a dual regulatory mode: directly activating ABA biosynthesis and interacting with core components of the ICE-CBF pathway, forming a synergistic hormone-transcription network. Therefore, *SmMYB113* plays a crucial role during cold stress in eggplant, providing novel insights for improving low-temperature-tolerant eggplant varieties through molecular breeding.

Materials and methods

Plant materials and growth conditions

The eggplant (*Solanum melongena* L.) materials used were the inbred line '108' (wild-type, WT) and T2 generation seeds of *SmMYB113* overexpression lines, maintained by self-pollination in our laboratory. Eggplant seeds were surface-sterilized, soaked in warm water for 6–8 h at room temperature, and germinated in darkness at 28 °C until radicle emergence. Germinated seeds were sown in plug trays filled with a peat moss : vermiculite (3:1, v/v) substrate mix and cultivated in a glass greenhouse at Shandong Agricultural University (Shandong, China) under natural light. Seedlings at the two-true-leaf stage were transplanted into pots containing the same substrate mix. Plants were irrigated with Yamazaki eggplant nutrient solution for water and nutrient management; other cultivation practices followed standard protocols.

When seedlings reached the 5–6 true-leaf stage, uniform and robust plants were selected and subjected to low-temperature treatment in a growth chamber. Low-temperature conditions were set at a constant 5 °C with a 16 h light/8 h dark photoperiod. Samples were collected at 0, 1, and 9 d after the initiation of low-temperature treatment. For exogenous ABA treatment, eggplant seedlings were sprayed with 200 µM ABA solution, one day before low-temperature exposure and then transferred to the growth chamber for cold treatment. Samples were collected at 0, 1, and 9 d after cold treatment initiation. All samples were flash-frozen in liquid nitrogen and stored at –80 °C until use.

Determination of physiological and biochemical indices

The physiological and biochemical indices were determined as follows. Electrolyte leakage (EL) was measured by sampling leaves from the same position. Uniform leaf discs were punched, weighed to 0.2 g, and completely immersed in 50 mL centrifuge tubes containing 20 mL of deionized water. The samples were shaken at 200 rpm and 28 °C for 1–2 h. The initial electrical conductivity (EC0) of the deionized water and the conductivity after shaking (EC1) were recorded using a digital conductivity meter. Subsequently, the samples were boiled at 95 °C for 15–20 min, cooled to room temperature, and the final conductivity (EC2) was measured. Relative electrolyte leakage (REL, %) was calculated as $[(EC1 - EC0) / (EC2 - EC0)] \times 100\%$, with three biological replicates performed and

the mean value reported. Malondialdehyde (MDA) content was determined using the thiobarbituric acid (TBA) method. Hydrogen peroxide (H₂O₂) content was quantified with a Hydrogen Peroxide Assay Kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Superoxide anion (O₂[–]) content was assessed using the hydroxylamine oxidation method. Histochemical staining for H₂O₂ was carried out using 3,3'-diaminobenzidine (DAB), and for O₂[–] using nitro blue tetrazolium (NBT); representative images of DAB and NBT staining in wild-type leaves under low-temperature conditions are provided for reference in *Supplementary Fig. S1*. ABA content was measured with an enzyme-linked immunosorbent assay (ELISA) kit. Antioxidant enzyme activities were evaluated as follows: superoxide dismutase (SOD) activity was determined by the NBT reduction method, peroxidase (POD) activity by the guaiacol method, catalase (CAT) activity by the ammonium molybdate colorimetric assay^[29], and ascorbate peroxidase (APX) activity according to the method described by Nakano & Asada^[30].

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted using TaKaRa MiniBEST Universal RNA Extraction Kit (Takara, Tokyo, Japan). cDNA synthesis was performed using the TransScript® One-Step gDNA Removal and cDNA Synthesis Super Mix kit (TRANSGEN, Beijing, China) according to the manufacturer's instructions. qRT-PCR was performed using Vazyme® AceQ qPCR SYBR Green Master Mix (Without ROX) on a 7500 Real-Time PCR System (Applied Biosystems, Foster City, USA). The *SmACT7* (*Actin 7*) gene was used as the internal reference gene for normalization. Relative gene expression levels were calculated using the 2^{–ΔΔCT} method^[31].

Transcriptome sequencing and analysis

Total RNA was extracted using an RNA extraction kit (Takara, Tokyo, Japan). RNA quality was assessed using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA), 1.2% agarose gel electrophoresis, and an Agilent 2100 Bioanalyzer. mRNA library construction, sequencing, and bioinformatic analysis were performed following the methods described by Li et al.^[32].

Yeast one-hybrid (Y1H) and yeast two-hybrid (Y2H) assays

Y1H

The *SmMYB113* coding sequence was fused into the pGADT7 vector. The *SmAAO4-1* promoter sequence was fused into the pABAi vector. Both constructs were sequentially co-transformed into the yeast strain Y1H Gold. Similarly, the *SmICE2* coding sequence was fused into pGADT7, and the *SmCBF1* and *SmCBF2* promoter was fused into pABAi, then co-transformed into Y1H Gold. Positive clones were selected on SD/-Leu medium with or without Aureobasidin A (AbA, 100 ng·mL^{–1}).

Y2H

SmMYB113 and *SmICE2* coding sequences were cloned into pGADT7 and pGBKT7 vectors, respectively. Empty vectors served as controls. Recombinant plasmids were co-transformed into the yeast strain Y2H Gold. Transformants were plated on SD/-Trp/-Leu (-T/-L) medium and incubated at 28 °C for 2 d. Single colonies were then streaked onto SD/-Ade/-His/-Leu/-Trp (-T/-L/-H/-A) medium (Clontech, Palo Alto, USA) and incubated at 28 °C for 2 d to identify positive interacting clones.

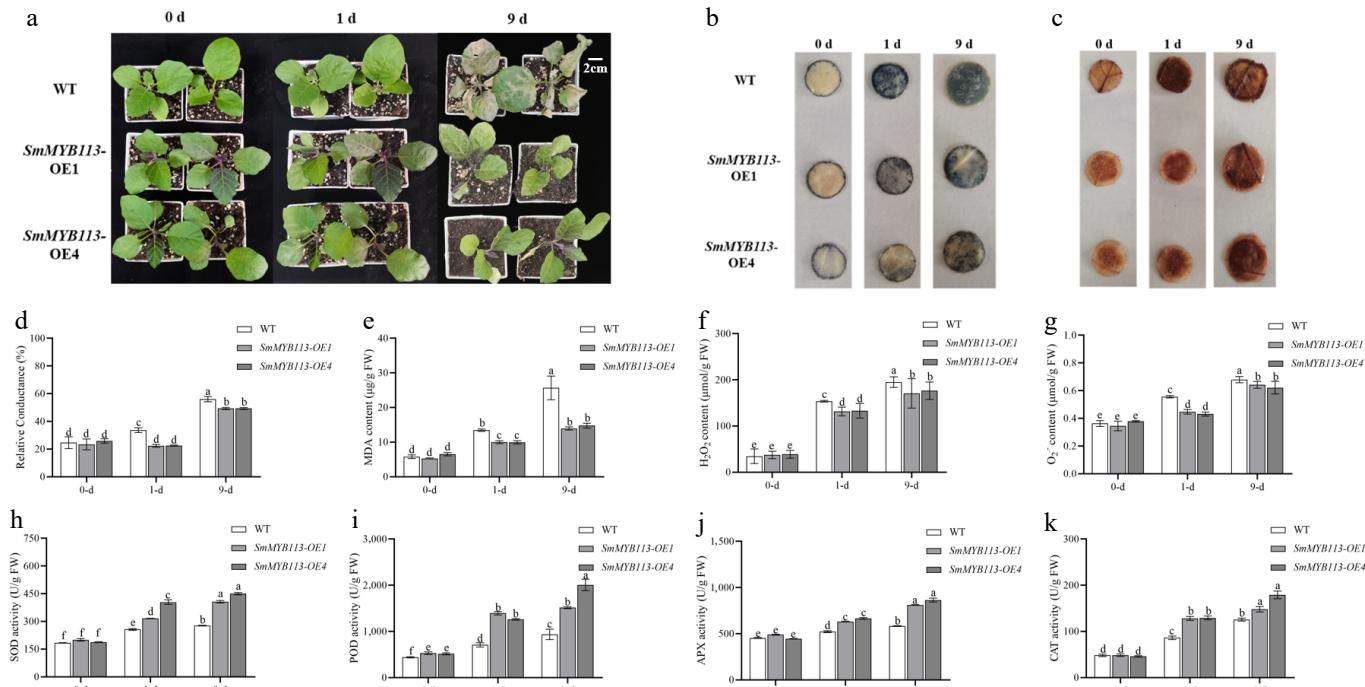
Bimolecular fluorescence complementation (BiFC) assay

The BiFC assay was performed in *Nicotiana benthamiana* leaves. *Agrobacterium tumefaciens* strains harboring the relevant constructs were grown to an optical density of 600 (OD 600) \approx 1.5, centrifuged at 5,000 rpm for 5 min, and the pellets were resuspended in infiltration buffer (MS salts + 1.5% sucrose + 10 mM MES pH 5.6 + 10 mM MgCl₂ + 150 μ M acetosyringone). Suspensions were infiltrated into the abaxial side of tobacco leaves using a 1.5 mL syringe. Infiltrated plants were grown under normal conditions for 2 d. Lower epidermal peels were then examined for fluorescence signals using confocal microscopy.

Firefly luciferase complementation imaging (LCI) assay

Healthy *N. benthamiana* plants were prepared. *Agrobacterium* cultures were grown, pelleted, and resuspended in infiltration buffer as described for BiFC. Suspensions were infiltrated into the abaxial side of tobacco leaves using a 1.5 mL syringe. Plants were grown under normal light conditions for 2 d. Luminescence signals at the infiltration sites were detected and imaged using a low-light cooled CCD imaging apparatus (NightOWL II LB983, Berthold).

Results


Overexpression of SmMYB113 enhances cold tolerance

To investigate the relationship between SmMYB113 and eggplant cold tolerance, SmMYB113 overexpression (OE) lines were

generated via *Agrobacterium*-mediated leaf disc transformation. Positive transgenic seedlings (Supplementary Fig. S2) were identified, and T2 seeds were harvested. Two OE lines (OE1, OE4) and WT seedlings were subjected to low-temperature (5 °C) treatment. Results (Fig. 1a) showed that after 1 d of cold treatment, no significant differences were observed between lines. However, after 9 d, WT seedling growth points died, while OE line seedlings maintained intact upper leaves and growth points without wilting. Metabolic characteristics are key indicators of stress resistance. Measurements of electrolyte leakage (REL) (Fig. 1d), and malondialdehyde (MDA) content (Fig. 1e) revealed that both were significantly lower in OE lines compared to WT after cold treatment. Furthermore, hydrogen peroxide (H₂O₂) (Fig. 1f), and superoxide anion (O₂[−]) (Fig. 1g) contents were significantly lower in OE lines than in WT after cold treatment. Consistent results were obtained from NBT and DAB staining (Fig. 1b, c). Additionally, antioxidant enzyme activities (SOD, POD, CAT, APX) were significantly higher in OE lines than in WT after cold treatment (Fig. 1h–k). These findings indicate that SmMYB113 overexpression confers stronger cold tolerance compared to WT.

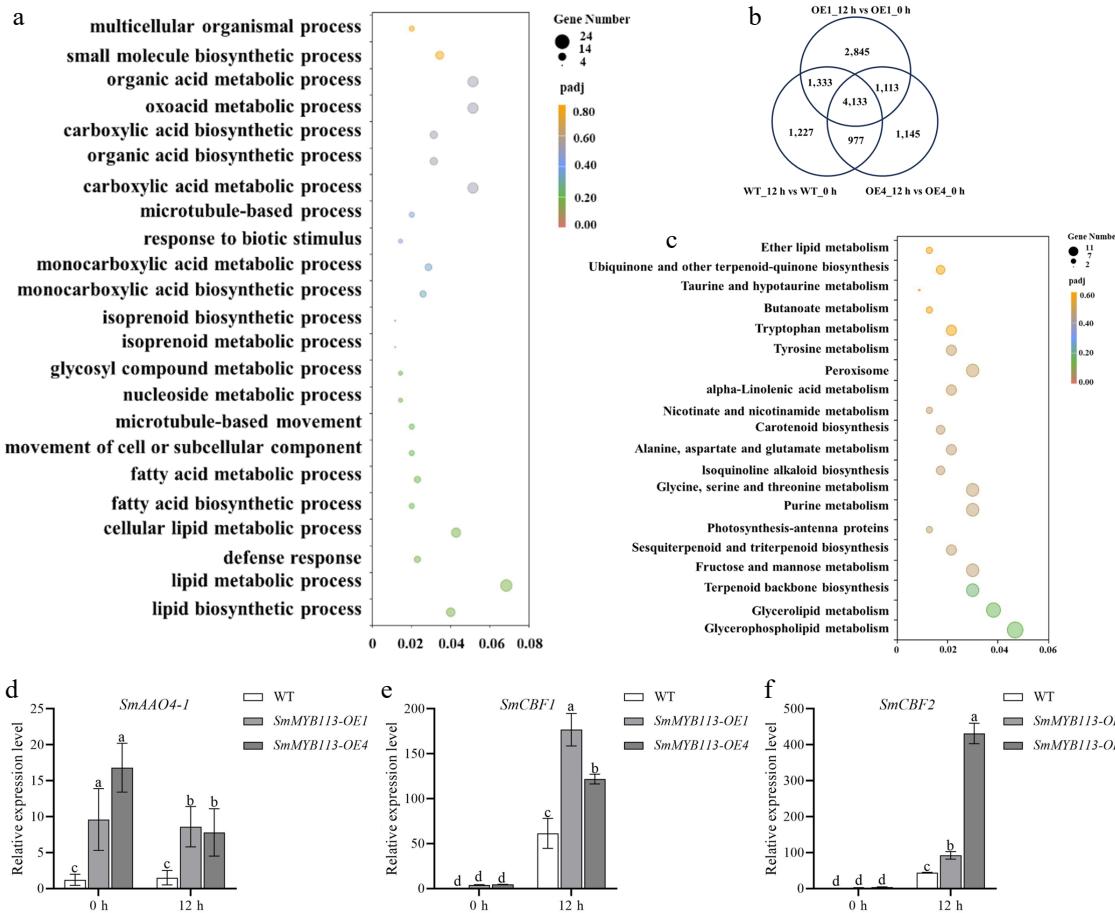
Transcriptomics reveals a synergistic pathway network

Through PCA and correlation analysis, it was detected that the three biological replicates within the same group exhibited tight clustering, confirming the reliability of the data for downstream analysis (Supplementary Fig. S3). Differentially expressed genes (DEGs) were identified in leaves of OE1, OE4, and WT plants at 0 h and 12 h after cold treatment initiation, using thresholds of FDR \leq 0.001 and $|\log_2\text{FC}| \geq 2$. The selection of 0 h and 12 h was based on the observation that the expression of SmMYB113 in WT plants peaked at 12 h under low-temperature treatment (Supplementary

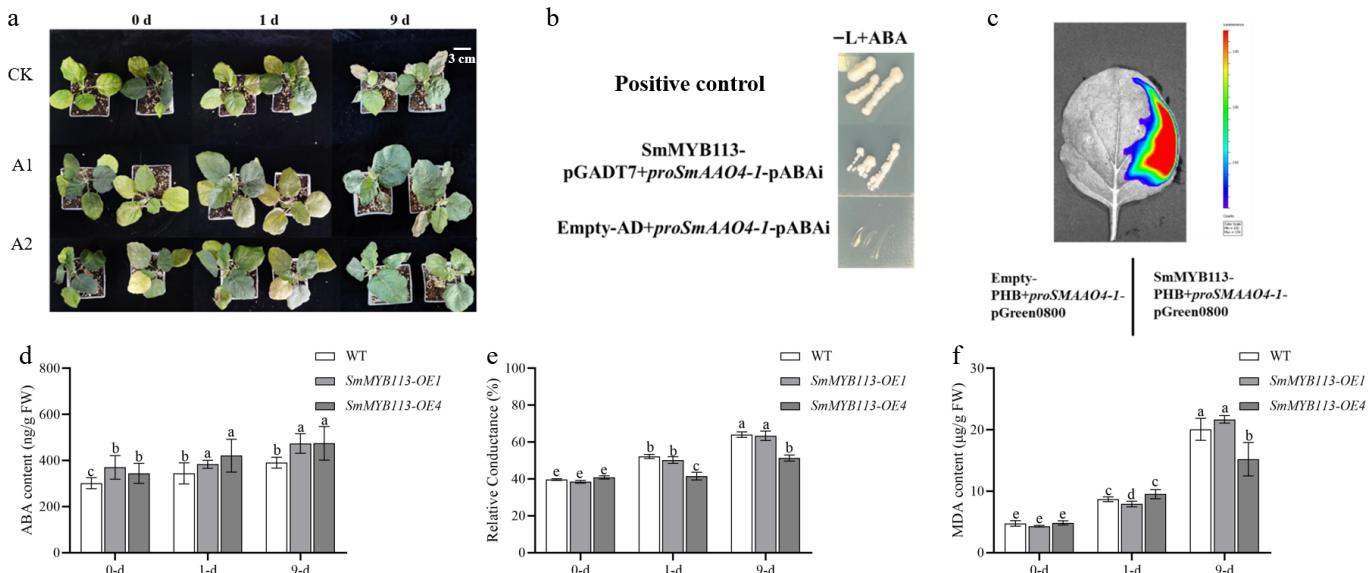
Fig. 1 Phenotypic and physiological differences between WT and SmMYB113-OE plants under low-temperature stress. (a) Phenotypic differences under 5 °C (16 h light/8 h dark) at 0, 1, and 9 d. (b) DAB staining for H₂O₂ localization. (c) NBT staining for O₂[−] localization. (d) Relative electrolyte leakage (REL). (e) MDA content. (f) Colorimetric quantification of H₂O₂ content. (g) Hydroxylamine oxidation assay for O₂[−] content. (h)–(k) Activities of antioxidant enzymes SOD, POD, APX, and CAT. Values represent means \pm SD of three independent biological replicates (n = 3). Significant differences were determined by one-way ANOVA followed by Tukey's test (p < 0.05). Different lowercase letters indicate significant differences (p < 0.05).

Fig. S4). As shown in **Fig. 2b**, 7,670, 9,424, and 7,368 DEGs were identified in the WT, OE1, and OE4 groups, respectively. A total of 4,133 DEGs were common to all three groups. For focused analysis, DEGs present in both OE1 and OE4 groups but absent in the WT group were selected, yielding 1,113 DEGs potentially involved in eggplant low-temperature stress response.

GO enrichment analysis of the 1,113 DEGs (**Fig. 2a**) revealed significant enrichment in processes including 'lipid metabolic process', 'organic acid metabolic process', 'carboxylic acid metabolic process', 'oxoacid metabolic process', and 'lipid biosynthetic process'. KEGG pathway analysis (**Fig. 2c**) showed enrichment in 20 pathways, primarily 'glycerophospholipid metabolism', 'glycerolipid metabolism', 'terpenoid backbone biosynthesis', 'fructose and mannose metabolism', 'sesquiterpenoid and triterpenoid biosynthesis', 'photosynthesis-antenna proteins', 'glycine, serine, and threonine metabolism', 'isoquinoline alkaloid biosynthesis', 'alanine, aspartate, and glutamate metabolism', and 'carotenoid biosynthesis'.


Key DEGs of interest (**Supplementary Table S1**) included genes involved in ABA synthesis (*SmAAO4-1*, SMEL4.1_12g014560.1), cold response factors (*SmICE2*, SMEL4.1_03g029410.1), and CBF transcription factors (*SmCBF1*, SMEL4.1_12g001770.1; *SmCBF2*, SMEL4.1_03g007630.1; *SmCBF3*, SMEL4.1_10g023430.1). qRT-PCR confirmed that *SmAAO4-1* and *SmCBFs* were upregulated in OE

lines, consistent with transcriptomic trends (**Fig. 2d–f**). Further analyses investigated the interaction between *SmMYB113* and these genes.


SmMYB113 enhances cold adaptation via ABA biosynthesis

To study the regulatory relationship between *SmMYB113* and ABA, ABA content was measured in OE1, OE4, and WT leaves at 1 and 9 d post-cold treatment. As shown in **Fig. 3d**, ABA content was significantly higher in OE1 and OE4 than in WT at 0 d. ABA levels increased in all lines at 1 and 9 d, but the increase was greater in OE lines. Compared to WT, ABA content in OE1 increased by 22.59%, 11.51%, and 21.26% at 0, 1, and 9 d, respectively. In OE4, it increased by 14.0%, 22.36%, and 21.56%. This indicates that *SmMYB113* overexpression enhances ABA synthesis in transgenic lines.

To confirm ABA's role in enhancing cold tolerance, WT plants were sprayed with water or exogenous ABA (200 μ M). Results (**Fig. 3a**) showed that after 9 d of cold treatment, untreated (CK) and water-sprayed (A1) plants exhibited yellowing of lower leaves and wilting of growth points. In contrast, ABA-sprayed (A2) plants maintained intact leaves and healthy growth points. Measurements of REL and MDA content (**Fig. 3e, f**) showed no significant differences among treatments before cold stress. At 1 d post-stress, MDA

Fig. 2 Transcriptomic analysis reveals synergistic cold response pathways. (a) Gene Ontology (GO) enrichment analysis of the 1,113 DEGs common to OE lines but absent in WT. (b) Venn diagram of DEGs identified in WT, OE1, and OE4 plants under cold stress. (c) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 1,113 DEGs. (d–f) Expression levels of key genes in OE and WT plants under 5 °C (16 h light/8 h dark) at 0 and 12 h: (d) ABA biosynthetic gene *SmAAO4-1*, and cold response factors (e) *SmCBF1*, and (f) *SmCBF2*. Values represent means \pm SD of three independent biological replicates ($n = 3$). Significant differences were determined by one-way ANOVA followed by Tukey's test ($p < 0.05$). Different lowercase letters indicate significant differences ($p < 0.05$).

Fig. 3 Role of ABA in cold tolerance and regulation of *SmAAO4-1* by *SmMYB113*. (a) Phenotype of WT plants under 5 °C (16 h light/8 h dark) at 0, 1, and 9 d after pretreatment: CK (no pretreatment), A1 (water spray), A2 (ABA spray). (b) Y1H assay showing interaction of *SmMYB113* with the *SmAAO4-1* promoter. Yeast growth on SD/-Leu medium with AbA (100 ng·mL⁻¹). (c) LCI assay in tobacco leaves confirming *SmMYB113* binding to the *SmAAO4-1* promoter and activating luciferase expression. Physiological indices in WT, OE1, and OE4 leaves under 5 °C (16 h light/8 h dark) at 0, 1, and 9 d: (d) ABA content, (e) Relative electrolyte leakage (REL), (f) MDA content. Values represent means ± SD of three independent biological replicates (n = 3). Significant differences were determined by one-way ANOVA followed by Tukey's test (p < 0.05). Different lowercase letters indicate significant differences (p < 0.05).

content differences were non-significant, but REL was significantly lower in ABA-treated plants. By 9 d, both REL and MDA were significantly lower in ABA-treated plants compared to controls. This demonstrates that exogenous ABA application alleviates cold damage and enhances cold tolerance in eggplant. Furthermore, the phenotype of ABA-treated WT plants closely resembled that of *SmMYB113*-OE plants, indirectly supporting that *SmMYB113* enhances cold adaptation by upregulating ABA synthesis.

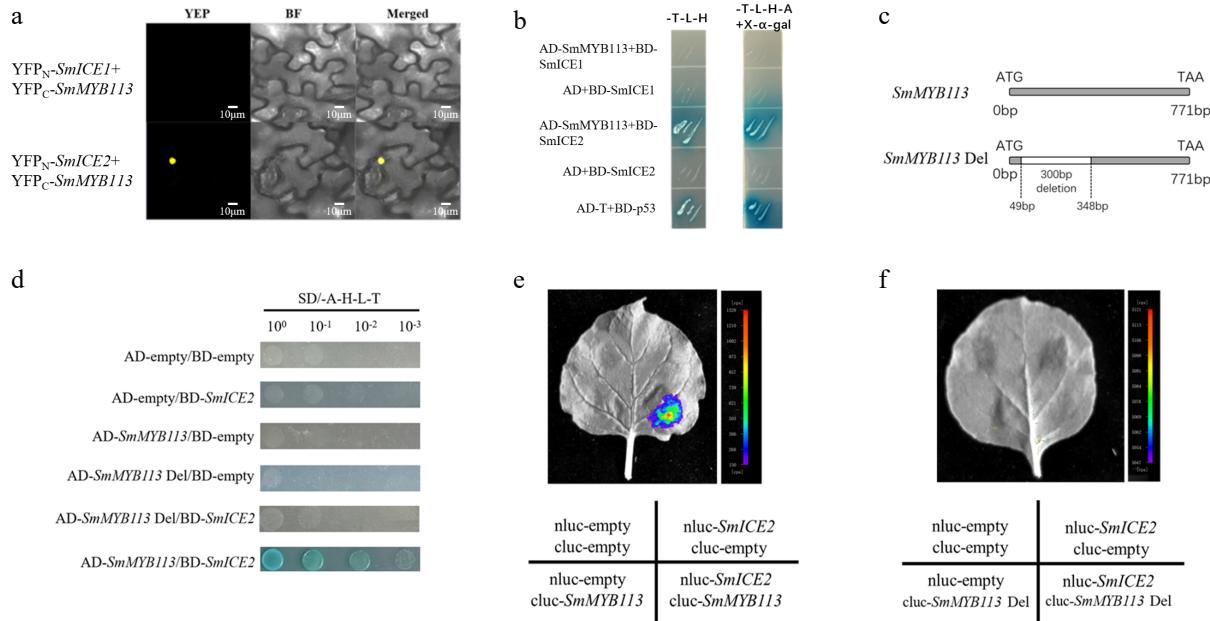
SmAAO4 is a key gene for ABA biosynthesis in eggplant. To verify if *SmMYB113* enhances ABA biosynthesis, Y1H assay showed that yeast co-transformed with *SmMYB113*-pGADT7 and *proSmAAO4-1-pABAi* grew on SD/-Leu medium containing AbA (100 ng·mL⁻¹) (Fig. 3b). Furthermore, LCI assay confirmed that *SmMYB113* binds to the *SmAAO4-1* promoter and activates luciferase expression in tobacco leaves (Fig. 3c). Meanwhile, evidence was obtained that *SmMYB113* forms homomultimers (Supplementary Fig. S5). These results demonstrate that *SmMYB113* binds to the *SmAAO4-1* promoter and activates its expression. In summary, *SmMYB113* increases ABA content and enhances cold tolerance by activating *SmAAO4-1* expression.

Physical interaction between *SmMYB113* and *SmlCE2*

The interaction between *SmMYB113* and *SmlCE2* proteins was investigated. BiFC assay, with *SmMYB113* fused to YFPC and *SmlCE2* fused to YFPN, showed fluorescence signal in the nucleus of tobacco leaf cells (Fig. 4a), indicating interaction. Y2H assay (Fig. 4b) demonstrated that only yeast co-transformed with *SmMYB113* and *SmlCE2* grew on stringent SD/-Trp/-Leu/-His/-Ade (-T/-L/-H/-A) medium, while controls did not, confirming interaction in yeast. These results collectively demonstrate that *SmMYB113* directly interacts with *SmlCE2*.

To identify the key interaction domain in *SmMYB113*, online prediction indicated that residues 49–348 are crucial. Deletion of this

300 bp region (*SmMYB113Del*, Fig. 4c) abolished the interaction in Y2H assay (Fig. 4d). Consistently, LCI assay showed no fluorescence signal when *SmMYB113Del* and *SmlCE2* were co-expressed in tobacco leaves (Fig. 4f), unlike the strong signal observed with full-length *SmMYB113* and *SmlCE2* (Fig. 4e). This confirms that the 49–348 bp region is essential for *SmMYB113*-*SmlCE2* interaction.


SmMYB113-SmlCE2 interaction enhances *SmlCE2*-mediated transcriptional activation of *SmCBF2*

To validate *SmlCE2*'s ability to activate *SmCBF* transcription, *SmlCE2* was fused to the effector vector (pGreenII 62-SK), and the *SmCBF2* promoter was fused to the reporter vector (pGreenII 0800-LUC). LCI assay (Fig. 5a) showed that *SmlCE2* binds the *SmCBF2* promoter and activates luciferase expression. Y1H assay (Fig. 5b), with *SmlCE2*-pGADT7 and *proSmCBF2*-pABAi, confirmed that *SmlCE2* activates *SmCBF2* expression.

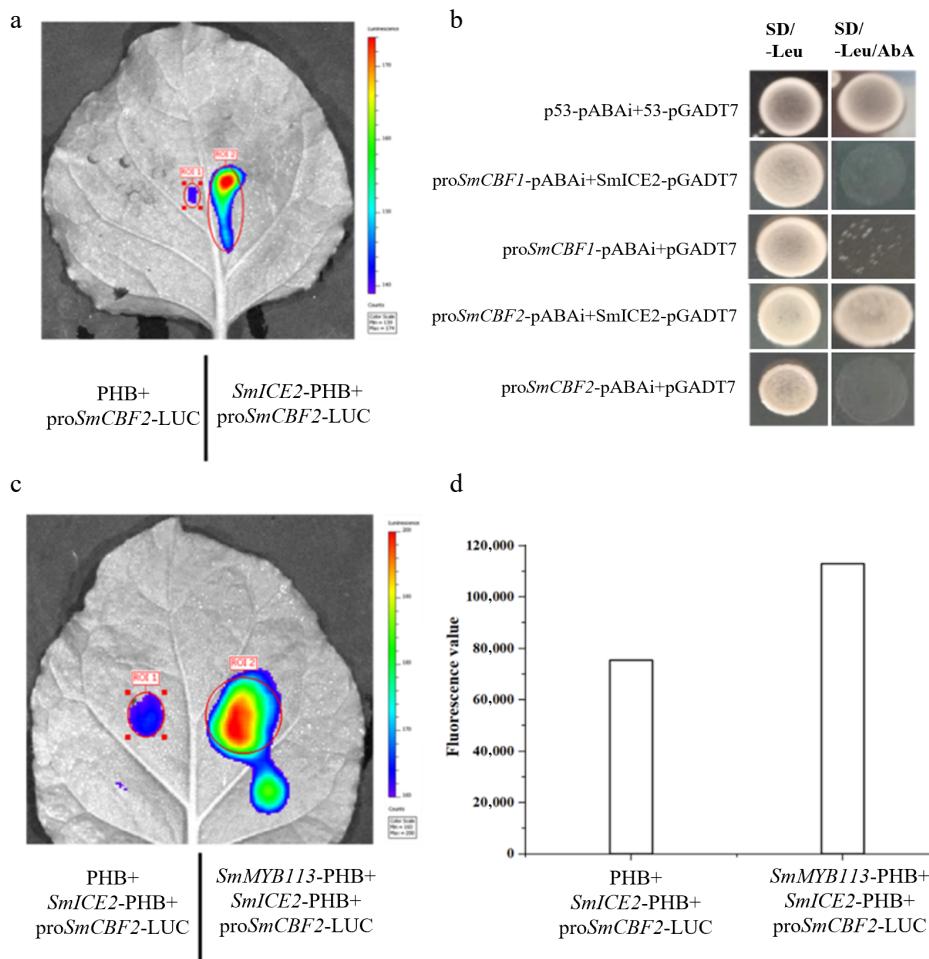
Crucially, co-expression of *SmMYB113* and *SmlCE2* significantly enhanced the luciferase activity driven by the *SmCBF2* promoter compared to expression of *SmlCE2* alone (Fig. 5c, d). Quantitative analysis of luminescence intensity confirmed this synergistic enhancement (Fig. 5d). These results indicate that the *SmMYB113*-*SmlCE2* interaction enhances *SmlCE2*'s binding capability and transcriptional activation potential on the *SmCBF2* promoter.

Discussion

This study demonstrates that overexpression of *SmMYB113* in the eggplant cultivar '108' significantly enhances cold tolerance. Y1H and LCI assays revealed that *SmMYB113* transcriptionally activates *SmAAO4-1* expression, promoting ABA biosynthesis and thereby enhancing cold tolerance. Furthermore, Y2H and BiFC assays showed that *SmMYB113* physically interacts with *SmlCE2*, enhancing *SmlCE2*'s transcriptional activation of *SmCBF2*, thus

Fig. 4 Validation of SmMYB113-SmICE2 interaction and identification of the interaction domain. (a) BiFC assay showing SmICE2-SmMYB113 interaction in tobacco leaf nuclei. SmICE1/YFPN and SmICE2/YFPN were paired with SmMYB113/YFPC. (b) Y2H assay confirming SmICE2-SmMYB113 interaction on SD/-T/-L/-H/-A medium. (c) Schematic diagram of SmMYB113 deletion mutant (SmMYB113Del, lacking residues 49–348). (d) Y2H assay showing loss of interaction between SmMYB113Del and SmICE2. (e) LCI assay showing strong fluorescence signal upon co-expression of full-length SmMYB113 and SmICE2. (f) LCI assay showing loss of fluorescence signal upon co-expression of SmMYB113Del and SmICE2.

participating in the ICE-CBF pathway to boost cold tolerance. This synergistic regulatory mode ensures enhanced cold tolerance under low-temperature stress while amplifying cold stress signaling efficiency through the integration of hormone and transcriptional regulatory mechanisms.


Anthocyanins, as important secondary metabolites, function as effective antioxidants that mitigate oxidative damage by utilizing their hydroxyl groups to neutralize free radicals and scavenge reactive oxygen species (ROS), thereby maintaining osmotic balance and cellular redox homeostasis. Consequently, plants often synthesize anthocyanins to reduce oxidative injury induced by low-temperature stress^[33]. Overexpression of the MYB transcription factor *Rosea1* in tobacco has been demonstrated to enhance anthocyanin accumulation and significantly improve cold stress tolerance^[34]. Interestingly, *SmMYB113* has been previously reported to regulate anthocyanin accumulation^[15]. Following low-temperature treatment, it was observed that the ROS content in eggplant leaves of the *SmMYB113*-OE lines was significantly lower than in WT lines. This indicates that anthocyanins accumulated in *SmMYB113*-OE eggplant leaves effectively scavenge cold-induced ROS, thereby conferring enhanced tolerance to low-temperature stress.

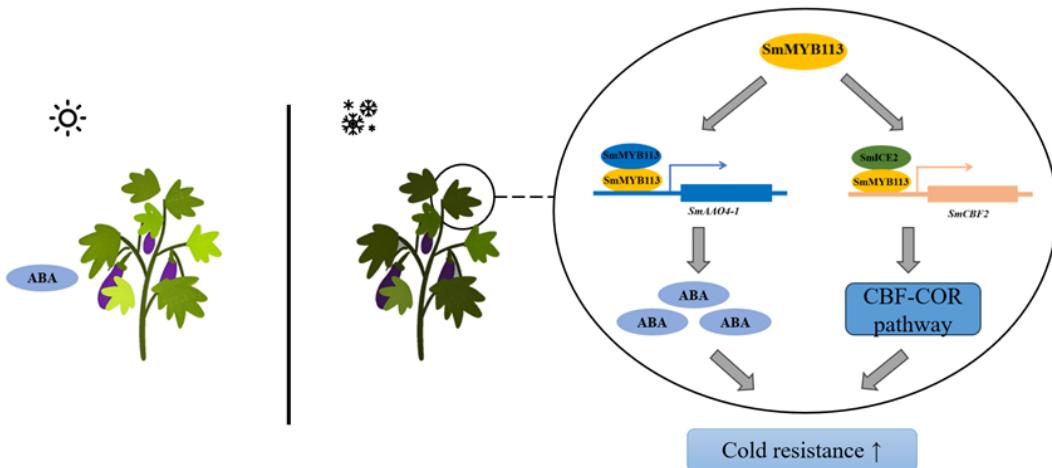
Plant hormones play vital roles in abiotic stress responses. Transcriptomic analysis of *SmMYB113*-OE and WT plants after cold stress revealed that DEGs were primarily enriched in secondary metabolite pathways and hormone synthesis/signaling pathways, with significant changes in ABA synthesis and signaling genes. ABA is one of the most important stress hormones, crucial in various physiological processes including seed dormancy, germination, stomatal movement, fruit development, and responses to biotic/abiotic stresses. Cellular ABA levels fluctuate dynamically in response to physiological and environmental cues, and these concentration changes determine ABA's role in plant physiology and development^[35–37]. As a primary hormone in stress response, ABA is

induced by multiple abiotic stresses like drought, salinity, and cold. Cold treatment induces ABA accumulation in plants like *Arabidopsis* and tomato^[38]. The present measurements showed significantly higher ABA levels in OE lines compared to WT at the same time points under cold stress. Y1H and LCI assays proved that *SmMYB113* binds to the *SmAAO4-1* promoter, activating its expression. To cope with stress, plants accumulate more ABA in leaves, promoting stomatal closure, enhancing water balance, and inducing antioxidant defense systems to mitigate oxidative damage. Moreover, ABA can activate numerous cellular responses through signaling pathways and induction of HSPs and CBFs, promoting stress tolerance^[39,40]. The present results collectively indicate that *SmMYB113* overexpression increases ABA biosynthesis and accumulation in eggplant, positively regulating cold tolerance.

Exogenous ABA application enhances cold adaptation in various plants^[41]. To further verify ABA's positive role in eggplant cold tolerance, exogenous ABA was applied. Cold stress duration increased membrane damage, reflected in rising REL and MDA. However, exogenous ABA application slowed this increase in REL compared to controls. ABA-treated plants also exhibited significantly lower O₂[–] and H₂O₂ levels than WT, indicating ABA reduces membrane damage and improves low-temperature stress tolerance.

Numerous studies have identified MYB transcription factors regulating plant cold tolerance via interaction with ICE to modulate downstream CBF expression. For example, *AtMYB15* in *Arabidopsis* negatively regulates cold tolerance by repressing CBF expression; *AtMYB15* mutants show elevated CBF expression and enhanced cold tolerance. *AtMYB15* also interacts with ICE1 to regulate CBF expression^[42]. The ICE-CBF-COR transcriptional cascade is the primary pathway for cold response in plants. Upon cold induction, upstream ICE transcription factors activate CBF expression, which in turn regulates downstream COR genes, enabling the plant to respond to cold stress. In *Arabidopsis*, *AtICE2* overexpression induces

Fig. 5 SmMYB113-SmICE2 interaction enhances SmICE2-mediated transcriptional activation of SmCBF2. (a) LCI assay showing SmICE2 binding to and activating the SmCBF2 promoter. (b) Y1H assay confirming SmICE2 activation of SmCBF2 expression. (c) LCI assay demonstrating that co-expression of SmMYB113 and SmICE2 synergistically enhances luciferase activity driven by the SmCBF2 promoter compared to SmICE2 alone. (d) Quantification of luminescence intensity from (c).


downstream cold-responsive genes AtCBF1/2, enhancing cold tolerance by increasing proline content, SOD, and CAT activity^[43]. The present results are consistent: transcriptomic analysis showed significant changes in ICE and CBF expression in OE lines. Investigation of how SmMYB113 participates in the ICE-CBF cascade revealed its interaction with SmICE2 and confirmed that SmICE2 activates SmCBF2 expression. Further study demonstrated that the SmMYB113-SmICE2 interaction enhances SmICE2's transcriptional activation of SmCBF2.

In summary, this study reveals a novel mechanism by which SmMYB113 enhances low-temperature adaptation in eggplant through the synergistic regulation of ABA biosynthesis and the ICE-CBF transcriptional cascade, forming a multi-layered network (Fig. 6). SmMYB113 enhances cold tolerance by upregulating endogenous ABA, an effect effectively mimicked by exogenous ABA application. This provides a theoretical basis and application prospects for developing low-temperature tolerance stimulants based on ABA analogs or ABA signaling activators (e.g., for protected seedling production or early spring transplanting). For instance, Cao et al.^[44] reported an ABA analog named AMF that significantly improved plant drought resistance. Future research could focus on screening highly efficient, low-cost active substances, and their optimal application protocols. Furthermore,

plant stress responses often involve multiple signaling pathways. Future studies could explore whether the SmMYB113-mediated cold tolerance pathway interacts with other hormone signals (e.g., jasmonic acid, ethylene) or second messengers (e.g., Ca^{2+} , ROS), which would contribute to a more comprehensive understanding of the regulatory network underlying eggplant adaptation to low-temperature stress.

Conclusions

This study demonstrates that SmMYB113 significantly enhances low-temperature tolerance in eggplant through a dual regulatory mechanism. First, SmMYB113 transcriptionally activates the ABA biosynthetic gene SmAAO4-1, increasing endogenous ABA accumulation. Second, SmMYB113 physically interacts with the transcription factor SmICE2, enhancing its ability to bind and activate the promoter of SmCBF2. Our findings reveal a multilayered regulatory role for SmMYB113 in coordinating phytohormone signaling and transcriptional reprogramming to enhance cold adaptation. This mechanism provides valuable targets for molecular breeding of cold-tolerant eggplant varieties.

Fig. 6 Proposed model of *SmMYB113*-mediated cold tolerance in eggplant. Upon exposure to low temperature, *SmMYB113* enhances cold tolerance through two mechanisms: (1) Transcriptional activation of *SmAAO4-1*, promoting ABA biosynthesis; (2) Physical interaction with *SmICE2*, enhancing *SmICE2*'s transcriptional activation of *SmCBF2*, thereby participating in the ICE-CBF pathway.

Author contributions

The authors confirm contribution to the paper as follows: study conception and design: Yang F, Ji T, Li J; data collection: Yang G, Hu W, Li L, Liu W, Gao Y; analysis and interpretation of results: Yang G, Hu W, Ji T; draft manuscript preparation: Hu W, Yang G; draft review and editing: Yang F, Ji T. All authors reviewed the results and approved the final version of the manuscript.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The raw data of the sequence during the current study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the National Key Research and Development Program (2023YFD2300702), the Taishan Scholar Program of Shandong Province, China (Grant No. tsqnz20240804), the Taishan University Introduced Talent Scientific Research Startup Fund Project (101025KZ4019), the Special Fund of Vegetable Industrial Technology System of Shandong Province (SDAIT-05-11) and the National Natural Sciences Foundations of China (Grant No. 31672169).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information accompanies this paper online at: <https://doi.org/10.48130/vegres-0025-0046>.

Dates

Received 24 June 2025; Revised 24 October 2025; Accepted 6 November 2025; Published online 30 January 2026

References

- [1] Ding Y, Shi Y, Yang S. 2024. Regulatory networks underlying plant responses and adaptation to cold stress. *Annual Review of Genetics* 58:43–65
- [2] Eremina M, Rozhon W, Poppenberger B. 2016. Hormonal control of cold stress responses in plants. *Cellular and Molecular Life Sciences* 73:797–810
- [3] Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. 2022. Transcriptional regulatory network of plant cold-stress responses. *Trends in Plant Science* 27:922–935
- [4] Zhang X, Cao X, Xia Y, Ban Q, Cao L, et al. 2022. *CsCBF5* depletion impairs cold tolerance in tea plants. *Plant Science* 325:111463
- [5] Xia H, Chen M, Ren P, Sun T, Zhao D, et al. 2024. Heterologous expression of the *TaCBF2* gene improves cold resistance in *Begonia semperflorens*. *Plant Cell, Tissue and Organ Culture (PCTOC)* 159:71
- [6] Guo J, Beemster GTS, Liu F, Wang Z, Li X. 2023. Abscisic acid regulates carbohydrate metabolism, redox homeostasis and hormonal regulation to enhance cold tolerance in spring barley. *International Journal of Molecular Sciences* 24:11348
- [7] Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, et al. 2022. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. *International Journal of Molecular Sciences* 23:1549
- [8] He C, Teixeira da Silva JA, Wang H, Si C, Zhang M, et al. 2019. Mining MYB transcription factors from the genomes of orchids (*Phalaenopsis* and *Dendrobium*) and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis. *Scientific Reports* 9:13818
- [9] Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. *International Journal of Molecular Sciences* 22:6125
- [10] Li X, Lu J, Zhu X, Dong Y, Liu Y, et al. 2023. AtMYB51 negatively regulates heat tolerance by directly repressing the expression of *MAX1* required for strigolactone biosynthesis in *Arabidopsis*. *Plant Communications* 4:100675
- [11] Zhou L, Li R, Yang X, Peng Y, Wang Y, et al. 2025. Interaction of R2R3-MYB transcription factor *EgMYB111* with ABA receptors enhances cold tolerance in oil palm. *International Journal of Biological Macromolecules* 305:141223
- [12] Zhang L, Song J, Lin R, Tang M, Shao S, et al. 2022. Tomato SIMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA-mediated cold tolerance. *Journal of Experimental Botany* 73:7538–7551
- [13] Wang Y, Li S, Shi Y, Lv S, Zhu C, et al. 2024. The R2R3 MYB *Ruby1* is activated by two cold responsive ethylene response factors, via the retrotransposon in its promoter, to positively regulate anthocyanin biosynthesis in citrus. *The Plant Journal* 119:1433–1448
- [14] An JP, Wang XF, Zhang XW, Xu HF, Bi SQ, et al. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. *Plant Biotechnology Journal* 18:337–353

[15] Yang G, Li L, Wei M, Li J, Yang F. 2022. SmMYB113 is a key transcription factor responsible for compositional variation of anthocyanin and color diversity among eggplant peels. *Frontiers in Plant Science* 13:843996

[16] Zhou L, He Y, Li J, Liu Y, Chen H. 2020. CBFs function in anthocyanin biosynthesis by interacting with MYB113 in eggplant (*Solanum melongena* L.). *Plant and Cell Physiology* 61:416–426

[17] Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS. 2018. Mechanism of stomatal closure in plants exposed to drought and cold stress. In *Survival Strategies in Extreme Cold and Desiccation: Advances in Experimental Medicine and Biology*, eds. Iwaya-Inoue M, Sakurai M, Uemura M. Singapore: Springer. pp. 215–232 doi: 10.1007/978-981-13-1244-1_12

[18] Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. *The Plant Journal* 105:307–321

[19] Huang S, Wang C, Ding Z, Zhao Y, Dai J, et al. 2024. A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity. *Nature Communications* 15:3205

[20] Shrestha A, Cudjoe DK, Kamruzzaman M, Siddique S, Fiorani F, et al. 2021. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in *Arabidopsis*. *Journal of Plant Physiology* 261:153414

[21] Ding F, Wang X, Li Z, Wang M. 2023. Jasmonate positively regulates cold tolerance by promoting ABA biosynthesis in tomato. *Plants* 12:60

[22] Hu C, Wang M, Zhu C, Wu S, Li J, et al. 2024. A transcriptional regulation of ERF15 contributes to ABA-mediated cold tolerance in tomato. *Plant, Cell & Environment* 47:1334–1347

[23] Ding Y, Li H, Zhang X, Xie Q, Gong Z, et al. 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in *Arabidopsis*. *Developmental Cell* 32:278–289

[24] Liu Y, Dang P, Liu L, He C. 2019. Cold acclimation by the CBF–COR pathway in a changing climate: lessons from *Arabidopsis thaliana*. *Plant Cell Reports* 38:511–519

[25] Zarka DG, Vogel JT, Cook D, Thomashow MF. 2003. Cold induction of *Arabidopsis CBF* genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. *Plant Physiology* 133:910–918

[26] Chinnumamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in *Arabidopsis*. *Genes & Development* 17:1043–1054

[27] Tang K, Zhao L, Ren Y, Yang S, Zhu JK, et al. 2020. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. *Journal of Integrative Plant Biology* 62:258–263

[28] Chen L, Chen Y, Zhang H, Shen Y, Cui Y, et al. 2024. ERF54 regulates cold tolerance in *Rosa multiflora* through DREB/COR signalling pathways. *Plant, Cell & Environment* 47:1185–1206

[29] Góth L. 1991. A simple method for determination of serum catalase activity and revision of reference range. *Clinica Chimica Acta* 196:143–151

[30] Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. *Plant and Cell Physiology* 22:867–880

[31] Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods* 25:402–408

[32] Li J, Jiang S, Yang G, Xu Y, Li L, et al. 2023. RNA-sequencing analysis reveals novel genes involved in the different peel color formation in eggplant. *Horticulture Research* 10:uhad181

[33] Zhang Q, Zhai J, Shao L, Lin W, Peng C. 2019. Accumulation of anthocyanins: an adaptation strategy of *Mikania micrantha* to low temperature in winter. *Frontiers in Plant Science* 10:1049

[34] Naing AH, Park KI, Ai TN, Chung MY, Han JS, et al. 2017. Overexpression of snapdragon *Delila* (*Del*) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. *BMC Plant Biology* 17:65

[35] Hong JH, Seah SW, Xu J. 2013. The root of ABA action in environmental stress response. *Plant Cell Reports* 32:971–983

[36] Ye N, Jia L, Zhang J. 2012. ABA signal in rice under stress conditions. *Rice* 5:1

[37] Sharma KD, Nayyar H. 2016. Regulatory networks in pollen development under cold stress. *Frontiers in Plant Science* 7:402

[38] Habibpourmehraban F, Masoomi-Aladizgeh F, Haynes PA. 2023. Effect of ABA pre-treatment on rice plant transcriptome response to multiple abiotic stress. *Biomolecules* 13:1554

[39] Wei Y, Liu W, Hu W, Yan Y, Shi H. 2020. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. *New Phytologist* 226:476–491

[40] Suzuki M, Ketterling MG, McCarty DR. 2005. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of *Arabidopsis*. *Plant Physiology* 139:437–447

[41] Barrero JM, Piqueras P, González-Guzmán M, Serrano R, Rodríguez PL, et al. 2005. A mutational analysis of the *ABA1* gene of *Arabidopsis thaliana* highlights the involvement of ABA in vegetative development. *Journal of Experimental Botany* 56:2071–2083

[42] Agarwal PK, Agarwal P, Reddy MK, Sopory SK. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. *Plant Cell Reports* 25:1263–1274

[43] Fursova OV, Pogorelko GV, Tarasov VA. 2009. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in *Arabidopsis thaliana*. *Gene* 429:98–103

[44] Cao MJ, Zhang YL, Liu X, Huang H, Zhou XE, et al. 2017. Combining chemical and genetic approaches to increase drought resistance in plants. *Nature Communications* 8:1183

Copyright: © 2026 by the author(s). Published by Maximum Academic Press, Fayetteville, GA. This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit <https://creativecommons.org/licenses/by/4.0/>.