Figures (9)  Tables (11)
    • Figure 1. 

      Simplest configuration of hydrocarbons recovery during regasification.

    • Figure 2. 

      Hydrocarbons recovery from LNG, design 1.

    • Figure 3. 

      Hydrocarbons recovery from LNG, design 2.

    • Figure 4. 

      Hydrocarbon recovery from LNG, design 3.

    • Figure 5. 

      Concentrations of methane and ethane in bottom and overhead streams at different operation pressures in demethanizer for designs 1 and 2.

    • Figure 6. 

      Production of ethane at different demethanizer and deethanizer operating pressures.

    • Figure 7. 

      Economic performances under three different LNG mass flow rates.

    • Figure 8. 

      Economic performances for LNG from different origins.

    • Figure 9. 

      Sales prices of natural gas and NGL (graph drawn based on EIA data[28]).

    • Hydrocarbon Composition (mol%)* Usage
      Australia (NWS) Qatar Russia (Sakhalin) USA (Alaska)
      Methane 87.33 90.91 92.53 99.71 Fuel
      Ethane 8.33 6.43 4.47 0.09 Fuel, petrochemical feedstock
      Propane 3.33 1.66 1.97 0.03 Fuel, coolant, solvent, petrochemical feedstock
      Butane 0.97 0.74 0.95 0.01 Fuel, aerosol propellant, petrochemical feedstock
      * The values do not add up to 100% as there are other elements in trace quantities. NWS: North West Shelf.

      Table 1. 

      Concentrations and usages of major hydrocarbons in LNG from different origins

    • Demethanizer Deethanizer Heat source LNG flow (t h–1) Profit (mUSD${\bf\$} $ a–1) Ref.
      P (MPa) T (°C) P (MPa) T (°C)
      3 40 0.11 1 Combustion, seawater 127.2 505.2a [20]
      2.4 30 0.11 1 Combustion, seawater 127.2 506.8a [20]
      4.3 20 to 70 0.11 –20 to –35 Combustion, seawater 122.5 7.67b [22]
      2.4 20 to 70 0.11 –20 to –35 Combustion, seawater 122.5 10.42b [22]
      3.7 N/A N/Ac N/A Steam 435.7 15 [24]
      N/A N/A N/A N/A Steam, seawater 109.6 24.5 [25]
      a Total revenue, also included further separations of propane from C4+. b Converted from CNY to USD by the author. c Ethane and C3+ were not further separated.

      Table 2. 

      Summary of LNG fractionation designs

    • LNG terminal metric China Japan
      Receiving terminals design capacity (onshore) (MTPA) 94.87 213.48
      LNG import in 2021 (MT) 79.3 74.3
      Number of receiving terminals 22 33
      Receiving terminal design capacity (average) (MTPA) 4.31 6.47
      LNG received in 2021 (average per terminal) (MT) 3.6 2.25
      MT, million tons; MTPA, million tons per annum.

      Table 3. 

      Scale of LNG receiving terminals in China and Japan[17]

    • Hydrocarbon product Requirement China US
      Natural gas Higher heating value ≥ 34.0 MJ m–3 a 37.4–45.3 MJ m–3[16]
      Ethane C2 liquid composition ≥ 95 vol%c
      LPG Vapour pressure
      at 37.8 °C
      < 1,380 kPab < 1,434 kpad
      C3 + C4 > 95 vol%b
      a GB 17820-2018, b GB 11174-2011, c GPA Standard 2108-14 (2014a), d GPA Standard 2140-97.

      Table 4. 

      Typical requirements for sales gas in China and the US

    • Parameter Value
      Composition (mol%)
      Methane 87.33
      Ethane 8.33
      Propane 3.33
      n-butane 0.97
      Nitrogen 0.04
      LNG storage pressure (kPa) 101.3
      LNG storage temperature (°C) –162.7
      LNG mass flow rate (kg h–1) 3.6 × 105
      NG pipeline pressure (kPa) 10,000

      Table 5. 

      LNG feed conditions

    • Parameter Value
      Pump/turbine adiabatic efficiency (%) 75
      Number of stages in demethanizer 10
      Number of stages in deethanizer 10
      Tray efficiency (%) 60
      Pressure drop in demethanizer (kPa) 10
      Pressure drop in deethanizer (kPa) 10
      Pressure drop in the heat exchanger (kPa) 20
      Maximum temperature of reboilers (°C) 0

      Table 6. 

      A summary of key design parameters

    • Design 1 Design 2 Design 3
      Optimum operation condition
      Demethanizer feed temperature (°C) –105.22 –106.06 –134
      Demethanizer bottom pressure (kPa) 1,690 1,670 1,600
      Separator boil-off ratio 0.3936
      Deethanizer pressure (kPa) 380 380 380
      Deethanizer reflux ratio 2.34 1.827 1.133
      Energy balance
      LNG pump duty (kW) 457 448 468
      NG pump/compressor duty (kW) 1,023 1,017 8,467
      Reboiler heat flow (demethanizer) (kJ h–1) 8.04 × 107 7.85 × 107 1.56 × 108
      Reboiler heat flow (deethanizer) (kJ h–1) 6.78 × 107 5.68 × 107 4.28 × 107
      NG temperature (°C)a –80 –83.4 –37.49
      Heat for warming NG (kJ h–1)a 1.06 × 108 1.19 × 108 2.89 × 107
      Mass flow (kg h–1)b
      Natural gas 276,037 275,596 273,663
      Ethane 47,218 47,801 50,218
      LPG 36,744 36,601 36,118
      Total 360,000 360,000 360,000
      Ethane recovery (%) 91.5 92.3 96.4
      LPG recovery (%) 93.1 92.8 91.5
      a Natural gas product is warmed to 0 °C before distributing through the pipeline. b All products comply with the typical specifications outlined in Table 3.

      Table 7. 

      Optimised operation conditions and simulation results for the three designs

    • Parameter Value
      Natural gas selling price (USD${\$} $ kg–1) 0.18
      Ethane selling price (USD${\$} $ kg–1) 0.25
      LPG selling price (USD${\$} $ kg–1) 0.45
      Wholesale electricity cost (USD${\$} $ MWh−1) 56.88
      Discount rate (%) 3
      Equipment lifespan (year) 20

      Table 8. 

      Economic analysis parameters

    • Design 1 Design 2 Design 3
      IC2 (mUSD${\$} $ year−1) 103.41 104.69 109.08
      ILPG (mUSD${\$} $ year−1) 144.84 144.28 144.80
      ΔING (mUSD${\$} $ year−1) 132.39 133.09 136.46
      ΔIe (mUSD${\$} $ year−1) 4.02
      ΔICC (mUSD${\$} $) 2.36 2.74 5.42
      CRF (%) 0.07 0.07 0.07
      ΔICC × CRF (mUSD${\$} $ year−1) 0.16 0.18 0.36
      ΔCo&m (mUSD${\$} $ year−1) 19.89 18.61 21.16
      ΔInet (mUSD${\$} $ year−1) 95.83 97.08 91.87

      Table 9. 

      Economic analysis for the proposed designs

    • Design 1 Design 2 Design 3
      Installed capital cost
      Demethanizer column (mUSD${\$} $) 0.68 0.7 1.34
      Deethanizer column (mUSD${\$} $) 0.62 0.56 0.48
      Deethanizer condenser (mUSD${\$} $) 0.92 0.89 0.7
      Heat exchanger (mUSD${\$} $) 0.14 0.14
      NG compressor (mUSD${\$} $) 2.89
      Separator (mUSD${\$} $) 0.45
      Total (mUSD${\$} $) 2.36 2.74 5.42
      Operations and maintenance cost
      Demethanizer (mUSD${\$} $ year−1) 6.1 5.97 12.19
      Deethanizer (mUSD${\$} $ year−1) 5.21 4.37 2.86
      Heat exchanger (mUSD${\$} $ year−1) 8.57 8.27
      NG compressor (mUSD${\$} $ year−1) 6.11
      Total (mUSD${\$} $ year−1) 19.89 18.61 21.16

      Table 10. 

      Breakdown of installed capital and operations and maintenance costs

    • Design 1 Design 2 Design 3
      IC2 (mUSD${\$} $ year−1) 54.19 54.86 57.16
      ILPG (mUSD${\$} $ year−1) 91.41 91.06 91.38
      ΔING (mUSD${\$} $ year−1) 130.92 131.61 134.94
      ΔIe (mUSD${\$} $ year−1) 4.02
      ΔICC (mUSD${\$} $) 2.36 2.74 5.42
      CRF (%) 0.07 0.07 0.07
      ΔICC × CRF (mUSD${\$} $ year−1) 0.16 0.18 0.36
      ΔCo&m (mUSD${\$} $ year−1) 19.89 18.61 21.16
      ΔInet (mUSD${\$} $ year−1) (5.36) (4.49) (11.95)

      Table 11. 

      Economic analysis of the proposed designs at the lowest NGL sales prices