Figures (3)  Tables (2)
    • Figure 1. 

      Framework for graphene-based material platforms in the mitigation of NCs.

    • Figure 2. 

      Water transport pathways and rejection mechanisms of graphene-based membrane[30].

    • Figure 3. 

      Mechanism of the electro-Fenton process for the treatment of emerging contaminants[56].

    • Membrane
      type
      Contaminant Concentration (mg L−1) Rejection (%) Water permeance
      (L m−2 h−1 bar−1)
      GO-βCD membrane[31] PFAS 0.1 90.0 22
      NaOH-rGO membrane[32] MPs 10 99.9 484.2
      LGO membrane[33] MPs 1 99.9 3,396
      GO/ZrT-1-NH2 membrane[34] Antibiotics 100 99.0 10
      G10(1)/P1.5-F100µL
      membrane[35]
      Pendimethalin 10 99.9 20.7
      GO-M-PhA-30
      membrane[36]
      Pendimethalin 50 99.4 19.0
      rGO membrane[37] Co2+ 22.7 99.9 72.4
      CE7@ membrane[38] Cs+ 20 94.4 15.8
      G/D/Z/P membrane[39] Cs+ 0.2 21.8 15,371

      Table 1. 

      Separation performance of various graphene-based membranes

    • Graphene-based catalyst Contaminant Concentration
      (mg L−1)
      Degradation efficiency (%)
      CMCD-TiO2@
      Fe3O4@rGO[59]
      Tetracycline 20 83.3
      MnFe2O4@
      Bi2WO6-GO[60]
      Tetracycline 10 99.3
      rGO-TiO2[61] Diclofenac 10 85.5
      rGO-CNCF[62] Sulfamethazine 10 99.9
      Ti/TiO2-rGO[63] PFOA 50 70
      AgBr/GO/Bi2WO6[64] Tetracycline / 84
      GO/SCN[65] Bisphenol A 20 89.5
      Pt/TiO2@NRGO[66] Tetracycline 27 81
      Fe/g-C hybrid[67] PFOA 1 > 85

      Table 2. 

      Catalytic performance of various graphene-based catalysts