[1]

Zhu Q, Xu Y, Yang Y, Guan C, Zhang Q, et al. 2019. The persimmon (Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. Horticulture Research 6:138

doi: 10.1038/s41438-019-0227-2
[2]

Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. 2021. From Diospyros kaki L. (persimmon) phytochemical profile and health impact to new product perspectives and waste valorization. Nutrients 13:3283

doi: 10.3390/nu13093283
[3]

Kawase M, Motohashi N, Satoh K, Sakagami H, Nakashima H, et al. 2003. Biological activity of persimmon (Diospyros kaki) peel extracts. Phytotherapy Research 17:495−500

doi: 10.1002/ptr.1183
[4]

Liu F, Zhou Z, Li G. 2021. Persimmon tannin functionalized polyacrylonitrile fiber for highly efficient and selective recovery of Au(III) from aqueous solution. Chemosphere 264:128469

doi: 10.1016/j.chemosphere.2020.128469
[5]

Gorinstein S, Bartnikowska E, Kulasek G, Zemser M, Trakhtenberg S. 1998. Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. Journal of Nutrition 128:2023−27

doi: 10.1093/jn/128.11.2023
[6]

Furukawa R, Kitabatake M, Ouji-Sageshima N, Suzuki Y, Nakano A, et al. 2021. Persimmon-derived tannin has antiviral effects and reduces the severity of infection and transmission of SARS-CoV-2 in a Syrian hamster model. Scientific Reports 11:23695

doi: 10.1038/s41598-021-03149-3
[7]

Itamura H, Sun N, Nimura M, Shimosaki S, Nakatsuka A, et al. 2011. Effect of ingestion of the Japanese persimmon ‘Saijo’ fruit on ethanol levels in the blood of humans and rats. Food Preservation Science 37:155−65

doi: 10.5891/jafps.37.155
[8]

Wang Z, Li X, Liang H, Ning J, Zhou Z, et al. 2017. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin. Materials Science and Engineering 79:227−36

doi: 10.1016/j.msec.2017.05.038
[9]

Chen W, Zheng Q, Li J, Liu Y, Xu L, et al. 2021. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. The Plant Journal 106:1708−27

doi: 10.1111/tpj.15266
[10]

Sato A, Yamada M. 2016. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection. Breeding Science 66:60−68

doi: 10.1270/jsbbs.66.60
[11]

Yin X, Shi Y, Min T, Luo Z, Yao Y, et al. 2012. Ferguson I, Chen KS. Expression of ethylene response genes during persimmon fruit astringency removal. Planta 235:895−906

doi: 10.1007/s00425-011-1553-2
[12]

Chen Y, Zhang X, Luo Z, Sun J, Li L, et al. 2021. Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chemistry 349:129161

doi: 10.1016/j.foodchem.2021.129161
[13]

Dong Y, Wang P, Jiang M, Qu S. 2019. Antioxidant and the dwarfing candidate gene of “Nantongxiaofangshi” (Diospyros kaki Thunb. ). Oxidative Medicine and Cellular Longevity 2019:1629845

doi: 10.1155/2019/1629845
[14]

Guan C, Chen L, Chen W, Mo R, Zhang Q, et al. 2015. SSAP analysis reveals candidate genes associated with deastringency in persimmon (Diospyros kaki Thunb.) treated with 40 °C water. Tree Genetics & Genomes 11:20

doi: 10.1007/s11295-015-0841-6
[15]

Li X, Jiang Z, Shen Y, Li F, Yu X, et al. 2018. In vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of D. lotus (Diospyros lotus L. ). Scientia Horticulturae 236:229−37

doi: 10.1016/j.scienta.2018.03.054
[16]

Luo Z, Wang R. 2008. Persimmon in China: domestication and traditional utilizations of genetic resources. Advances in Horticultural Science 22:239−243

doi: 10.1400/100648
[17]

Akagi T, Katayama-Ikegami A, Yonemori K. 2011. Proanthocyanidin biosynthesis of persimmon (Diospyros kaki Thunb. ) fruit. Scientia Horticulturae 130:373−80

doi: 10.1016/j.scienta.2011.07.021
[18]

Luo Z, Zhang Q, Guo D, Gu Q. 2005. General situation on science and industry of persimmon in China mainland. Acta Horticulturae 685:29−36

doi: 10.17660/actahortic.2005.685.2
[19]

Yuan L, Zhang Q, Guo D, Luo Z. 2011. Characteristics of Chinese PCNA types and their roles in science and industry of oriental persimmon. Acta Horticulturae Sinica 38:361−70

doi: 10.16420/j.issn.0513-353x.2011.02.022
[20]

Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A. 2000. Analysis of the genetic relationships among pollination-constant and non-astringent (PCNA) cultivars of persimmon (Diospyros kaki Thunb. ) from Japan and China using amplified fragment length polymorphism (AFLP). Journal of the Japanese Society for Horticultural Science 69:665−70

doi: 10.2503/jjshs.69.665
[21]

Hu M, Chen L, Zhang Q, Luo Z. 2017. Potential of Xiaoguo Tianshi and Niuyanshi (Diospyros kaki Thunb. ) as novel rootstocks for PCNA persimmon. Journal of Fruit Science 34:50−58

doi: 10.13925/j.cnki.gsxb.20160181
[22]

Li H, Zhang H, Yu C, Ma L, Wang Y, et al. 2012. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiologiae Plantarum 34:235−44

doi: 10.1007/s11738-011-0822-9
[23]

Webster AD. 2004. Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Horticulturae 658:29−41

doi: 10.17660/actahortic.2004.658.1
[24]

Tang D, Jiang X, Gong B, Liu T, Xu Y, et al. 2017. Early selection of interstocks for improving grafting compatibility in Diospyros kaki ‘Fuyu’. Scientia Silvae Sinicae 53:54−62

doi: 10.11707/j.1001-7488.20170507
[25]

Wu C. 2018. Screening and utilization of suitable stocks for the ‘Taishuu’ persimmon. Thesis. Yangzhou University, China. pp. 19−24

[26]

Wang M, Zhu Q, Deng C, Luo Z, Sun N, et al. 2017. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit. Plant Biotechnology Journal 15:1409−19

doi: 10.1111/pbi.12725
[27]

Wu W, Wang M, Gong H, Liu X, Guo D, et al. 2020. 2020. High CO2/hypoxia-induced softening of persimmon fruit is modulated by DkERF8/16 and DkNAC9 complexes. Journal of Experimental Botany 71:2690−700

doi: 10.1093/jxb/eraa009
[28]

Guan C, Wang M, Zhang Y, Ruan X, Zhang Q, et al. 2020. DkWRKY interacts with pyruvate kinase gene DkPK1 and promotes natural deastringency in C-PCNA persimmon. Plant Science 290−110285

doi: 10.1016/j.plantsci.2019.110285
[29]

Liang B, Zheng Y, Wang J, Zhang W, Fu Y, et al. 2020. Overexpression of the persimmon abscisic acid β-glucosidase gene (DkBG1) alters fruit ripening in transgenic tomato. The Plant Journal 102:1220−33

doi: 10.1111/tpj.14695
[30]

Dong Y, Ye X, Xiong A, Zhu N, Jiang L, et al. 2021. The regulatory role of gibberellin related genes DKGA2ox1 and MIR171f_3 in persimmon dwarfism. Plant Science 310:110958

doi: 10.1016/j.plantsci.2021.110958
[31]

Shen Y, Zhuang W, Tu X, Gao Z, Xiong A, et al. 2019. Transcriptomic analysis of interstock-induced dwarfism in sweet persimmon (Diospyros kaki Thunb. ). Horticulture Research 6:51

doi: 10.1038/s41438-019-0133-7
[32]

Persic M, Jakopic J, Hudina M. 2018. The effect of post-harvest technologies on selected metabolites in persimmon (Diospyros kaki Thunb. ) fruit. Journal of the Science of Food and Agriculture 99:854−60

doi: 10.1002/jsfa.9255
[33]

Min T, Wang M, Wang H, Liu X, Fang F, et al. 2015. Grierson D, Yin XR, Chen KS. Isolation and expression of NAC genes during persimmon fruit postharvest astringency removal. International Journal of Molecular Sciences 16:1894−906

doi: 10.3390/ijms16011894
[34]

Jamil W, Wu W, Gong H, Huang J, Ahmad M, et al. 2019. C2H2-Type zinc finger proteins (DkZF1/2) synergistically control persimmon fruit deastringency. International Journal of Molecular Sciences 20:5611

doi: 10.3390/ijms20225611
[35]

Luo Y, Zhang X, Luo Z, Zhang Q, Liu J. 2015. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biology 15:11

doi: 10.1186/s12870-014-0400-6
[36]

Yang S, Zhang M, Xu L, Luo Z, Zhang Q. 2020. MiR858b inhibits proanthocyanidin accumulation by the repression of DkMYB19 and DkMYB20 in persimmon. Frontiers in Plant Science 11:576378

doi: 10.3389/fpls.2020.576378
[37]

Yonemori K, Honsho C, Kanzaki S, Ino H, Ikegami A, et al. 2008. Sequence analyses of the ITS regions and the matK gene for determining phylogenetic relationships of Diospyros kaki (persimmon) with other wild Diospyros (Ebenaceae) species. Tree Genetics & Genomes 4:149−58

doi: 10.1007/s11295-007-0096-y
[38]

Guan C, Liu S, Wang M, Ji H, Ruan X, et al. 2019. Comparative transcriptomic analysis reveals genetic divergence and domestication genes in Diospyros. BMC Plant Biology 19:227

doi: 10.1186/s12870-019-1839-2
[39]

Guan C, Chachar S, Zhang P, Hu C, Wang R, et al. 2020. Inter- and intra-specific genetic diversity in Diospyros using SCoT and IRAP markers. Horticultural Plant Journal 6:71−80

doi: 10.1016/j.hpj.2019.12.005
[40]

Guo D, Luo Z. 2006. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb. ) from China and Japan revealed by SRAP analysis. Genetic Resources and Crop Evolution 53:1597

doi: 10.1007/s10722-005-8717-5
[41]

Du X, Zhang Q, Luo Z. 2009. Identification of a chinese PVNA type of Japanese persimmon discovered from dabieshan region in central China. Acta Horticulturae 833:97−102

doi: 10.17660/actahortic.2009.833.14
[42]

Thompson JD, Lumaret R. 1992. The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends in Ecology & Evolution 7:302−7

doi: 10.1016/0169-5347(92)90228-4
[43]

Sugiura A, Ohkuma T, Choi YA, Tao R, Tamura M. 2000. Production of nonaploid (2n = 9x) Japanese persimmons (Diospyros kaki) by pollination with unreduced (2n = 6x) pollen and embryo rescue culture. Journal of the American Society for Horticultural Science 125:609−14

doi: 10.21273/jashs.125.5.609
[44]

Zhuang D, Kitajima A, Ishida M. 1990. Chromosome number of the original tree and open-pollinated progenies of Japanese persimmon. Journal of the Japanese Society for Horticultural Science 59:479−85

doi: 10.2503/jjshs.59.479
[45]

Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, et al. 2020. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics 16:e1008566

doi: 10.1371/journal.pgen.1008566
[46]

Zhang P, Yang S, Liu Y, Zhang Q, Xu L, et al. 2016. Validation of a male-linked gene locus (OGI) for sex identification in persimmon (Diospyros kaki Thunb. ) and its application in F1 progeny. Plant Breeding 135:721−27

doi: 10.1111/pbr.12427
[47]

Akagi T, Henry IM, Tao R, Comai L. 2014. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346:646−50

doi: 10.1126/science.1257225
[48]

Akagi T, Henry IM, Kawai T, Comai L, Tao R. 2016. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. The Plant Cell 28:2905−15

doi: 10.1105/tpc.16.00532
[49]

Masuda K, Yamamoto E, Shirasawa K, Onoue N, Kono A, et al. 2020. Genome-wide study on the polysomic genetic factors conferring plasticity of flower sexuality in hexaploid persimmon. DNA Research 27:dsaa012

doi: 10.1093/dnares/dsaa012
[50]

Chijiwa H, Asakuma H, Ishizaka A. 2013. Development of seedless PCNA persimmon (Diospyros kaki Thunb. ) cv. 'Fukuoka K1 Gou' and the effect of gibberellin spray and/or disbudding on fruit set. Horticultural Research (Japan) 12:263−67

doi: 10.2503/hrj.12.263
[51]

Zhang N, Xu J, Mo R, Zhang Q, Luo Z. 2016. Androecious genotype ‘Male 8’ carries the CPCNA gene locus controlling natural deastringency of Chinese PCNA persimmons. Horticultural Plant Journal 6:309−14

doi: 10.1016/j.hpj.2016.11.006
[52]

Wang R, Yang Y, Ruan X, Li G. 2005. Native non-astringent persimmons in China. Acta Horticulturae 685:99−102

doi: 10.17660/actahortic.2005.685.10
[53]

Sun P, Li J, Du G, Han W, Fu J, et al. 2017. Endogenous phytohormone profiles in male and female floral buds of the persimmons (Diospyros kaki Thunb. ) during development. Scientia Horticulturae 218:213−21

doi: 10.1016/j.scienta.2017.02.022
[54]

Wang L, Han W, Diao S, Suo Y, Li H, et al. 2021. Study of sexual-linked genes (OGI and MeGI) on the performance of androecious persimmons (Diospyros kaki Thunb. ). Plants (Basel) 10:390

doi: 10.3390/plants10020390
[55]

Wang L, Li H, Sun P, Fu J, Suo Y, et al. 2018. Genetic diversity among wild androecious germplasms of Diospyros kaki in China based on SSR markers. Scientia Horticulturae 242:1−9

doi: 10.1016/j.scienta.2018.07.020
[56]

Guan C, Zhang P, Wu M, Zeng M, Chachar S, et al. 2020. Discovery of a millennial androecious germplasm and its potential in persimmon (Diospyros kaki Thunb. ) breeding. Scientia Horticulturae 269:109392

doi: 10.1016/j.scienta.2020.109392
[57]

Xia L, Chen Y, Feng Y, Zhang F, Qiao S, et al. 2017. Breeding report of a new persimmon cultivar 'Heishi No. 1'. Agricultural Science & Technology 18:632−34

doi: 10.16175/j.cnki.1009-4229.2017.04.016
[58]

Diao S, Han W, Li F, Sun P, Suo Y, et al. 2018. A new cultivar of persimmon ‘Zhongshi 2’. Acta Horticulturae Sinica 45:1009−10

doi: 10.16420/j.issn.0513-353x.2017-0641
[59]

Wu K, Gong B, Xu Y, Zhang P. 2021. Effects of different plant growth regulators on hardwood cuttage of persimmon rootstock Yalin 6. Acta Agriculturae Zhejiangensis 33:1256−63

doi: 10.3969/j.issn.1004-1524.2021.07.11
[60]

Zhang Y, Yang Y, Guo J, Hu C, Zhu R. 2016. Taxonomic status of Deyangshi based on chromosome number and SRAP markers. Scientia Horticulturae 207:57−64

doi: 10.1016/j.scienta.2016.05.006
[61]

Xu J, Gan J, Xiang J, Zhang Q, Xu L, et al. 2017. Advance of genetic improvement technology for Chinese PCNA persimmon. Acta Horticulturae Sinica 44:987−98

doi: 10.16420/j.issn.0513-353x.2016-0805
[62]

Giordani E, Naval M, Benelli C. 2013. In vitro propagation of persimmon (Diospyros kaki Thunb. ). In Protocols for Micropropagation of Selected Economically-important Horticultural Plants, eds. Lambardi M , Ozudogru E, Jain S. 994:XVI, 490. Totowa, NJ: Humana Press. pp. 89−93 https://doi.org/10.1007/978-1-62703-074-8_7