| [1] |
Lin Z, Zhong S, Grierson D. 2009. Recent advances in ethylene research. Journal of Experimental Botany 60:3311−36 doi: 10.1093/jxb/erp204 |
| [2] |
Flores F, El Yahyaoui F, de Billerbeck G, Romojaro F, Latché A, et al. 2002. Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons. Journal of Experimental Botany 53:201−06 doi: 10.1093/jexbot/53.367.201 |
| [3] |
Fatma M, Asgher M, Iqbal N, Rasheed F, Sehar Z, et al. 2022. Ethylene signaling under stressful environments: analyzing collaborative knowledge. Plants 11:29 doi: 10.3390/plants11172211 |
| [4] |
Alba R, Payton P, Fei Z, McQuinn R, Debbie P, et al. 2005. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. The Plant Cell 17:2954−65 doi: 10.1105/tpc.105.036053 |
| [5] |
Giovannoni J. 2001. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology 52:725−49 doi: 10.1146/annurev.arplant.52.1.725 |
| [6] |
Adams DO, Yang SF. 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America 76:170−74 doi: 10.1073/pnas.76.1.170 |
| [7] |
Boller T, Herner RC, Kende H. 1979. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145:293−303 doi: 10.1007/BF00454455 |
| [8] |
Hamilton AJ, Bouzayen M, Grierson D. 1991. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proceedings of the National Academy of Sciences of the United States of America 88:7434−37 doi: 10.1073/pnas.88.16.7434 |
| [9] |
Ververidis P, John P. 1991. Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30:725−27 doi: 10.1016/0031-9422(91)85241-Q |
| [10] |
Alexander FW, Sandmeier E, Mehta PK, Christen P. 1994. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. European Journal of Biochemistry 219:953−60 doi: 10.1111/j.1432-1033.1994.tb18577.x |
| [11] |
Mehta PK, Christen P. 1994. Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2, 2-dialkylglycine decarboxylase, glutamate-1-semialdehyde 2, 1-aminomutase and isopenicillin-N-epimerase with aminotransferases. Biochemical and Biophysical Research Communications 198:138−43 doi: 10.1006/bbrc.1994.1020 |
| [12] |
Privalle LS, Graham JS. 1987. Radiolabeling of a wound-inducible pyridoxal phosphate-utilizing enzyme: evidence for its identification as ACC synthase. Archives of Biochemistry and Biophysics 253:333−40 doi: 10.1016/0003-9861(87)90186-X |
| [13] |
Satoh S, Yang SF. 1988. S-adenosylmethionine-dependent inactivation and radiolabeling of 1-aminocyclopropane-1-carboxylate synthase isolated from tomato fruits. Plant Physiology 88:109−14 doi: 10.1104/pp.88.1.109 |
| [14] |
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, et al. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. Journal of Biological Chemistry 278:49102−12 doi: 10.1074/jbc.M308297200 |
| [15] |
Liu M, Pirrello J, Chervin C, Roustan JP, Bouzayen M. 2015. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiology 169:2380−90 doi: 10.1104/pp.15.01361 |
| [16] |
Wang C, Li W, Chen F, Cheng Y, Huang X, et al. 2022. Genome-wide identification and characterization of members of the ACS gene family in cucurbita maxima and their transcriptional responses to the specific treatments. International Journal of Molecular Sciences 23:8476 doi: 10.3390/ijms23158476 |
| [17] |
Liu S, Lei C, Zhu Z, Li M, Chen Z, et al. 2023. Genome-wide analysis and identification of 1-aminocyclopropane-1-carboxylate synthase (ACS) gene family in wheat (Triticum aestivum L.). International Journal of Molecular Sciences 24:11158 doi: 10.3390/ijms241311158 |
| [18] |
Barry CS, Llop-Tous MI, Grierson D. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology 123:979−86 doi: 10.1104/pp.123.3.979 |
| [19] |
Jakubowicz M, Sadowski J. 2002. 1-aminocyclopropane-1-carboxylate synthase - genes and expression. Acta Physiologiae Plantarum 24:459−78 doi: 10.1007/s11738-002-0043-3 |
| [20] |
Thain SC, Vandenbussche F, Laarhoven LJJ, Dowson-Day MJ, Wang ZY, et al. 2004. Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiology 136:3751−61 doi: 10.1104/pp.104.042523 |
| [21] |
Li Z, Zhang L, Yu Y, Quan R, Zhang Z, et al. 2011. The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant Journal 68:88−99 doi: 10.1111/j.1365-313X.2011.04670.x |
| [22] |
Chu LL, Yan Z, Sheng XX, Liu HQ, Wang QY, et al. 2023. Citrus ACC synthase CiACS4 regulates plant height by inhibiting gibberellin biosynthesis. Plant Physiology 192:1947−68 doi: 10.1093/plphys/kiad159 |
| [23] |
Theologis A. 1992. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70:181−84 doi: 10.1016/0092-8674(92)90093-R |
| [24] |
Jakubowicz M. 2002. Structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, the key enzyme of ethylene synthesis in higher plants. Acta Biochimica Polonica 49:757−74 doi: 10.18388/abp.2002_3784 |
| [25] |
Huai Q, Xia Y, Chen Y, Callahan B, Li N, et al. 2001. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5′-phosphate provide new insight into catalytic mechanisms. Journal of Biological Chemistry 276:38210−16 doi: 10.1074/jbc.M103840200 |
| [26] |
Xu C, Hao B, Sun G, Mei Y, Sun L, et al. 2021. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. Science Advances 7:14 |
| [27] |
Alessio VM, Cavaçana N, Dantas LLB, Lee N, Hotta CT, et al. 2018. The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane. Journal of Experimental Botany 69:2511−25 doi: 10.1093/jxb/ery083 |
| [28] |
Wang Z, Wei X, Wang Y, Sun M, Zhao P, et al. 2023. WRKY29 transcription factor regulates ethylene biosynthesis and response in arabidopsis. Plant Physiology and Biochemistry 194:134−45 doi: 10.1016/j.plaphy.2022.11.012 |
| [29] |
Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, et al. 2008. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. The Plant Journal 55:212−23 doi: 10.1111/j.1365-313X.2008.03491.x |
| [30] |
Li S, Xu HJL, Ju Z, Cao DY, Zhu HL, et al. 2018. The RIN-MC fusion of MADS-Box transcription factors has transcriptional activity and modulates expression of many ripening genes. Plant Physiology 176:891−909 doi: 10.1104/pp.17.01449 |
| [31] |
Lü PT, Yu S, Zhu N, Chen YR, Zhou BY, et al. 2018. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants 4:784−91 doi: 10.1038/s41477-018-0249-z |
| [32] |
Li G, Meng X, Wang R, Mao G, Han L, et al. 2012. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genetics 8:e1002767 doi: 10.1371/journal.pgen.1002767 |
| [33] |
Zhang Y, Xie Y, Shi H, Zhuang Y, Zheng Y, et al. 2023. MYB30 regulates submergence tolerance by repressing ethylene biosynthesis via ACS7 in Arabidopsis. Plant & Cell Physiology 64:814−25 doi: 10.1093/pcp/pcad041 |
| [34] |
Lang Z, Wang Y, Tang K, Tang D, Datsenka T, et al. 2017. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America 114:E4511−E4519 doi: 10.1073/pnas.1705233114 |
| [35] |
Gao Y, Lin Y, Xu M, Bian H, Zhang C, et al. 2022. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles. New Phytologist 235:1913−26 doi: 10.1111/nph.18301 |
| [36] |
Brusslan JA, Bonora G, Rus-Canterbury AM, Tariq F, Jaroszewicz A, et al. 2015. A genome-wide chronological study of gene expression and two histone modifications, H3K4me3 and H3K9ac, during developmental leaf senescence. Plant Physiology 168:1246−61 doi: 10.1104/pp.114.252999 |
| [37] |
Ding X, Liu X, Jiang G, Li Z, Song Y, et al. 2022. SlJMJ7 orchestrates tomato fruit ripening via crosstalk between H3K4me3 and DML2-mediated DNA demethylation. New Phytologist 233:1202−19 doi: 10.1111/nph.17838 |
| [38] |
Schwartz YB, Pirrotta V. 2007. Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews: Genetics 8:9−22 |
| [39] |
Feng J, Lu J. 2017. LHP1 Could act as an activator and a repressor of transcription in plants. Frontiers in Plant Science 8:2041 doi: 10.3389/fpls.2017.02041 |
| [40] |
Liang Q, Deng H, Li Y, Liu Z, Shu P, et al. 2020. Like heterochromatin protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening-related genes in tomato. New Phytologist 227:485−97 doi: 10.1111/nph.16550 |
| [41] |
Li Z, Jiang G, Liu X, Ding X, Zhang D, et al. 2020. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytologist 227:1138−56 doi: 10.1111/nph.16590 |
| [42] |
Yue PT, Lu Q, Liu Z, Lv TX, Li XY, et al. 2020. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. New Phytologist 226:1781−95 doi: 10.1111/nph.16500 |
| [43] |
Li T, Xu Y, Zhang L, Ji Y, Tan D, et al. 2017. The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. The Plant Cell 29:1316−34 doi: 10.1105/tpc.17.00349 |
| [44] |
Zhu T, Tan W, Deng X, Zheng T, Zhang D, et al. 2015. Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology 100:196−204 doi: 10.1016/j.postharvbio.2014.09.016 |
| [45] |
Wang Y, Zou W, Xiao Y, Cheng L, Liu Y, et al. 2018. MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato. Journal of Experimental Botany 69:1011−25 doi: 10.1093/jxb/erx469 |
| [46] |
Liu H, Yu H, Tang G, Huang T. 2018. Small but powerful: function of microRNAs in plant development. Plant Cell Reports 37:515−28 doi: 10.1007/s00299-017-2246-5 |
| [47] |
Kende H, Boller T. 1981. Wound ethylene and 1-aminocyclopropane-1-carboxylate synthase in ripening tomato fruit. Planta 151:476−81 doi: 10.1007/BF00386542 |
| [48] |
Chappell J, Hahlbrock K, Boller T. 1984. Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase. Planta 161:475−80 doi: 10.1007/BF00394581 |
| [49] |
Felix G, Grosskopf DG, Regenass M, Basse CW, Boller T. 1991. Elicitor-induced ethylene biosynthesis in tomato cells: characterization and use as a bioassay for elicitor action. Plant Physiology 97:19−25 doi: 10.1104/pp.97.1.19 |
| [50] |
Li N, Mattoo AK. 1994. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme. Journal of Biological Chemistry 269:6908−17 doi: 10.1016/S0021-9258(17)37461-6 |
| [51] |
Liu Y, Zhang S. 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell 16:3386−99 doi: 10.1105/tpc.104.026609 |
| [52] |
Sebastià CH, Hardin SC, Clouse SD, Kieber JJ, Huber SC. 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Archives of Biochemistry and Biophysics 428:81−91 doi: 10.1016/j.abb.2004.04.025 |
| [53] |
Yoshida H, Wang KLC, Chang CM, Mori K, Uchida E, Ecker JR. 2006. The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Molecular Biology 62:427−37 doi: 10.1007/s11103-006-9029-7 |
| [54] |
Han L, Li G, Yang KJ, Mao GY, Wang R, et al. 2010. Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. The Plant Journal 64:114−27 doi: 10.1111/j.1365-313X.2010.04318.x |
| [55] |
Meng YL, Ma N, Zhang Q, You Q, Li N, et al. 2014. Precise spatio-temporal modulation of ACC synthase by MPK6 cascade mediates the response of rose flowers to rehydration. Plant Journal 79:941−50 doi: 10.1111/tpj.12594 |
| [56] |
Skottke KR, Yoon GM, Kieber JJ, DeLong A. 2011. Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genetics 7:13 doi: 10.1371/journal.pgen.1001370 |
| [57] |
Yoon GM. 2015. New insights into the protein turnover regulation in ethylene biosynthesis. Molecules and Cells 38:597−603 doi: 10.14348/molcells.2015.0152 |
| [58] |
Wang KLC, Yoshida H, Lurin C, Ecker JR. 2004. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945−50 doi: 10.1038/nature02516 |
| [59] |
Pintard L, Willems A, Peter M. 2004. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO Journal 23:1681−87 doi: 10.1038/sj.emboj.7600186 |
| [60] |
Chae HS, Faure F, Kieber JJ. 2003. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. The Plant Cell 15:545−59 doi: 10.1105/tpc.006882 |
| [61] |
Tan ST, Xue HW. 2014. Casein Kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. The Cell Reports 9:1692−702 doi: 10.1016/j.celrep.2014.10.047 |
| [62] |
Yoon GM, Kieber JJ. 2013. 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. The Plant Cell 25:1016−28 doi: 10.1105/tpc.113.110106 |
| [63] |
Lyzenga WJ, Booth JK, Stone SL. 2012. The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. The Plant Journal 71:23−34 doi: 10.1111/j.1365-313X.2012.04965.x |
| [64] |
Tang X, Liu R, Mei Y, Wang D, He K, et al. 2024. Identification of key ubiquitination sites involved in the proteasomal degradation of AtACS7 in Arabidopsis. International Journal of Molecular Sciences 25:2931 doi: 10.3390/ijms25052931 |
| [65] |
Marczak M, Cieśla A, Janicki M, Kasprowicz-Maluśki A, Kubiak P, et al. 2020. Protein phosphatases type 2C group A interact with and regulate the stability of ACC synthase 7 in Arabidopsis. Cells 9:20 doi: 10.3390/cells9040978 |
| [66] |
Hansen M, Chae HS, Kieber JJ. 2009. Regulation of ACS protein stability by cytokinin and brassinosteroid. The Plant Journal 57:606−14 doi: 10.1111/j.1365-313X.2008.03711.x |
| [67] |
Lee HY, Chen YC, Kieber JJ, Yoon GM. 2017. Regulation of the turnover of ACC synthases by phytohormones and heterodimerization in Arabidopsis. The Plant Journal 91:491−504 doi: 10.1111/tpj.13585 |
| [68] |
Tarun AS, Theologis A. 1998. Complementation analysis of mutants of 1-aminocyclopropane-1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. Journal of Biological Chemistry 273:12509−14 doi: 10.1074/jbc.273.20.12509 |
| [69] |
Tsuchisaka A, Theologis A. 2004. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proceedings of the National Academy of Sciences of the United States of America 101:2275−80 doi: 10.1073/pnas.0308515101 |
| [70] |
Capitani G, Tschopp M, Eliot AC, Kirsch JF, Grütter MG. 2005. Structure of ACC synthase inactivated by the mechanism-based inhibitor L-vinylglycine. FEBS Letters 579:2458−62 doi: 10.1016/j.febslet.2005.03.048 |
| [71] |
Amrhein N, Wenker D. 1979. Novel inhibitors of ethylene production in higher plants. Plant and Cell Physiology 20:1635−42 doi: 10.1093/oxfordjournals.pcp.a075966 |
| [72] |
Yuan RC, Carbaugh DH. 2007. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of 'Golden supreme' and 'Golden delicious' apples. Hortscience 42:101−05 doi: 10.21273/HORTSCI.42.1.101 |
| [73] |
Byers RE, Carbaugh DH, Combs LD. 2005. Ethylene inhibitors delay fruit drop, maturity, and increase fruit size of 'Arlet' apples. Hortscience 40:2061−65 doi: 10.21273/HORTSCI.40.7.2061 |
| [74] |
Le Deunff E, Lecourt J. 2016. Non-specificity of ethylene inhibitors: "double-edged' tools to find out new targets involved in the root morphogenetic programme. Plant Biology 18:353−61 doi: 10.1111/plb.12405 |
| [75] |
Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, et al. 2009. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979−1003 doi: 10.1534/genetics.109.107102 |
| [76] |
Hu Z, Wang R, Zheng M, Liu X, Meng F, et al. 2018. TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aestivum L.). Plant Journal 96:372−88 doi: 10.1111/tpj.14038 |
| [77] |
Seo DH, Yoon GM. 2019. Light-induced stabilization of ACS contributes to hypocotyl elongation during the dark-to-light transition in Arabidopsis seedlings. The Plant Journal 98:898−911 doi: 10.1111/tpj.14289 |
| [78] |
Yang S, Wang SN, Li SJ, Du Q, Qi LY, et al. 2020. Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. Journal of Experimental Botany 71:7160−70 doi: 10.1093/jxb/eraa423 |
| [79] |
Li H, Wang L, Liu M, Dong Z, Li Q, et al. 2020. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiology 183:1184−99 doi: 10.1104/pp.19.01421 |
| [80] |
Lv SF, Jia MZ, Zhang SS, Han S, Jiang J. 2019. The dependence of leaf senescence on the balance between 1-aminocyclopropane-1-carboxylate acid synthase 1 (ACS1)-catalysed ACC generation and nitric oxide-associated 1 (NOS1)-dependent NO accumulation in Arabidopsis. Plant Biology 21:595−603 doi: 10.1111/plb.12970 |
| [81] |
Young TE, Meeley RB, Gallie DR. 2004. ACC synthase expression regulates leaf performance and drought tolerance in maize. The Plant Journal 40:813−25 doi: 10.1111/j.1365-313X.2004.02255.x |
| [82] |
Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, et al. 2008. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836−38 doi: 10.1126/science.1159023 |
| [83] |
Boualem A, Lemhemdi A, Sari MA, Pignoly S, Troadec C, et al. 2016. The andromonoecious sex determination gene predates the separation of Cucumis and Citrullus genera. PLoS One 11:13 doi: 10.1371/journal.pone.0155444 |
| [84] |
Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, et al. 2015. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:688−91 doi: 10.1126/science.aac8370 |
| [85] |
Ji G, Zhang J, Zhang H, Sun H, Gong G, et al. 2016. Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4) led to andromonoecy in watermelon. Journal of Integrative Plant Biology 58:762−65 doi: 10.1111/jipb.12466 |
| [86] |
Trusov Y, Botella JR. 2006. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple Ananas comosus (L.) Merr. Journal of Experimental Botany 57:3953−60 doi: 10.1093/jxb/erl167 |
| [87] |
Huang TH, Hsu WH, Mao WT, Yang CH. 2022. The Oncidium ethylene synthesis gene Oncidium 1-aminocyclopropane-1 carboxylic acid synthase 12 and ethylene receptor gene Oncidium ETR1 affect GA-DELLA and jasmonic acid signaling in regulating flowering time, anther dehiscence, and Flower senescence in Arabidopsis. Frontiers in Plant Science 13:785441 doi: 10.3389/fpls.2022.785441 |
| [88] |
Llop-Tous I, Barry CS, Grierson D. 2000. Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiology 123:971−78 doi: 10.1104/pp.123.3.971 |
| [89] |
Tan D, Li T, Wang A. 2013. Apple 1-aminocyclopropane-1-carboxylic acid synthase genes, MdACS1 and MdACS3a, are expressed in different systems of ethylene biosynthesis. Plant Molecular Biology Reporter 31:204−09 doi: 10.1007/s11105-012-0490-y |
| [90] |
Terol J, José Nueda M, Ventimilla D, Tadeo F, Talon M. 2019. Transcriptomic analysis of Citrus clementina mandarin fruits maturation reveals a MADS-box transcription factor that might be involved in the regulation of earliness. BMC Plant Biology 19:20 doi: 10.1186/s12870-019-1629-x |
| [91] |
Busatto N, Farneti B, Tadiello A, Oberkofler V, Cellini A, et al. 2019. Wide transcriptional investigation unravel novel insights of the on-tree maturation and postharvest ripening of 'Abate Fetel' pear fruit. Horticulture Research 6:32 doi: 10.1038/s41438-018-0115-1 |
| [92] |
Wang H, Li L, Ma L, Fernie AR, Fu A, et al. 2024. Revealing the specific regulations of nitric oxide on the postharvest ripening and senescence of bitter melon fruit. aBIOTECH 5:29−45 doi: 10.1007/s42994-023-00110-y |
| [93] |
Chen H, Bai S, Kusano M, Ezura H, Wang N. 2022. Increased ACS enzyme dosage causes initiation of climacteric ethylene production in tomato. International Journal of Molecular Sciences 23:15 |
| [94] |
Sharma K, Gupta S, Sarma S, Rai M, Sreelakshmi Y, et al. 2021. Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. The Plant Journal 106:95−112 doi: 10.1111/tpj.15148 |
| [95] |
Yokotani N, Nakano R, Imanishi S, Nagata M, Inaba A, et al. 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. Journal of Experimental Botany 60:3433−42 doi: 10.1093/jxb/erp185 |
| [96] |
Bürger M, Chory J. 2019. Stressed out about hormones: how plants orchestrate immunity. Cell Host & Microbe 26:163−72 doi: 10.1016/j.chom.2019.07.006 |
| [97] |
Duque AS, de Almeida AM, da Silva AB, da Silva JM, Farinha AP, et al. 2013. Abiotic sress responses in plants: unraveling the complexity of genes and networks to survive. In Abiotic Stress - Plant Responses and Applications in Agriculture, eds. Vahdati K, Leslie C. Rijeka: IntechOpen. pp. 49−101. doi: 10.5772/52779 |
| [98] |
Yu Y, Yang D, Zhou S, Gu J, Wang F, et al. 2017. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254:401−08 doi: 10.1007/s00709-016-0960-4 |
| [99] |
Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, et al. 2014. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiologia Plantarum 150:205−24 doi: 10.1111/ppl.12088 |
| [100] |
Li J, Zou X, Chen G, Meng Y, Ma Q, et al. 2022. Potential roles of 1-aminocyclopropane-1-carboxylic acid synthase genes in the response of gossypium species to abiotic stress by genome-wide identification and expression analysis. Plants 11:15 doi: 10.3390/plants11111524 |
| [101] |
Yin J, Zhang X, Zhang G, Wen Y, Liang G, et al. 2019. Aminocyclopropane-1-carboxylic acid is a key regulator of guard mother cell terminal division in Arabidopsis thaliana. Journal of Experimental Botany 70:897−908 doi: 10.1093/jxb/ery413 |
| [102] |
Jia MZ, Liu LY, Geng C, Jiang J. 2021. Activation of 1-Aminocyclopropane-1-carboxylic acid synthases sets stomatal density and clustered ratio on leaf epidermis of Arabidopsis in response to drought. Frontiers in Plant Science 12:758785 doi: 10.3389/fpls.2021.758785 |
| [103] |
Van Der Straeten D, Zhou Z, Prinsen E, Van Onckelen HA, Van Montagu MC. 2001. A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiology 125:955−68 doi: 10.1104/pp.125.2.955 |
| [104] |
Herrera-Rodríguez MB, Camacho-Cristóbal JJ, Barrero-Rodríguez R, Rexach J, Navarro-Gochicoa MT, et al. 2022. Crosstalk of cytokinin with ethylene and auxin for cell elongation inhibition and boron transport in Arabidopsis primary root under boron deficiency. Plants 11:18 doi: 10.3390/plants11182344 |
| [105] |
Lee HY, Chen Z, Zhang C, Yoon GM. 2019. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. Journal of Experimental Botany 70:1927−40 doi: 10.1093/jxb/erz074 |
| [106] |
Guan R, Su J, Meng X, Li S, Liu Y, et al. 2015. Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae. Plant Physiology 169:299−312 doi: 10.1104/pp.15.00659 |
| [107] |
Iwai T, Miyasaka A, Seo S, Ohashi Y. 2006. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiology 142:1202−15 doi: 10.1104/pp.106.085258 |
| [108] |
Helliwell EE, Wang Q, Yang Y. 2013. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnology Journal 101:33−42 doi: 10.1111/pbi.12004 |
| [109] |
Lu J, Li J, Ju H, Liu X, Erb M, et al. 2014. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. Molecular Plant 7:1670−82 doi: 10.1093/mp/ssu085 |