[1]

Li C, Ozturk-Kerimoglu B, He L, Zhang M, Pan J, et al. 2022. Advanced lipidomics in the modern meat industry: quality traceability, processing requirement, and health concerns. Frontiers in Nutrition 9:925846

doi: 10.3389/fnut.2022.925846
[2]

Yu W, Jensen JD. 2022. Sustainability implications of rising global pork demand. Animal Frontiers 12:56−60

doi: 10.1093/af/vfac070
[3]

Yan E, Guo J, Yin J. 2023. Nutritional regulation of skeletal muscle energy metabolism, lipid accumulation and meat quality in pigs. Animal Nutrition 14:185−92

doi: 10.1016/j.aninu.2023.04.009
[4]

Blachier F, Boutry C, Bos C, Tomé D. 2009. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. American Journal of Clinical Nutrition 90:814s−821s

doi: 10.3945/ajcn.2009.27462S
[5]

Hou Y, Wu G. 2018. L-Glutamate nutrition and metabolism in swine. Amino Acids 50:1497−510

doi: 10.1007/s00726-018-2634-3
[6]

Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, et al. 2013. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911−23

doi: 10.1007/s00726-012-1420-x
[7]

Kang P, Wang X, Wu H, Zhu H, Hou Y, et al. 2017. Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS One 12:e0182246

doi: 10.1371/journal.pone.0182246
[8]

Hu CJ, Jiang QY, Zhang T, Yin YL, Li FN, et al. 2017. Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs. Journal of Animal Science 95:2680−89

doi: 10.2527/jas.2017.1388
[9]

Yang H, Xu XL, Ma HM, Jiang J. 2016. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed. BMC Genetics 17:80

doi: 10.1186/s12863-016-0389-y
[10]

Zheng C, Wan M, Guo Q, Duan Y, Yin Y. 2025. Glutamate increases the lean percentage and intramuscular fat content and alters gut microbiota in Shaziling pigs. Animal Nutrition 20:110−19

doi: 10.1016/j.aninu.2024.07.010
[11]

Alfaia CM, Lopes PA, Madeira MS, Pestana JM, Coelho D, et al. 2019. Current feeding strategies to improve pork intramuscular fat content and its nutritional quality. Advances in Food and Nutrition Research 89:53−94

[12]

Zhang S, Huang Y, Zheng C, Wang L, Zhou Y, et al. 2024. Leucine improves the growth performance, carcass traits, and lipid nutritional quality of pork in Shaziling pigs. Meat Science 210:109435

doi: 10.1016/j.meatsci.2024.109435
[13]

Wang L, Zhang S, Huang Y, You W, Zhou Y, et al. 2022. CLA improves the lipo-nutritional quality of pork and regulates the gut microbiota in Heigai pigs. Food & Function 13:12093−104

doi: 10.1039/D2FO02549C
[14]

Li C, Zhang J, Li Y, Zhao X, Liang H, et al. 2022. Glutamate supplementation improves growth performance, rumen fermentation, and serum metabolites in heat-stressed Hu sheep. Frontiers in Nutrition 9:851386

doi: 10.3389/fnut.2022.851386
[15]

Yin J, Liu M, Ren W, Duan J, Yang G, et al. 2015. Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS One 10:e0122893

doi: 10.1371/journal.pone.0122893
[16]

McGill MR. 2016. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI Journal 15:817−28

doi: 10.17179/excli2016-800
[17]

Ladue JS, Wroblewski F. 1956. Serum glutamic pyruvic transaminase SGP-T in hepatic disease: a preliminary report. Annals of Internal Medicine 45:801−11

doi: 10.7326/0003-4819-45-5-801
[18]

Li P, He W, Wu G. 2021. Composition of Amino Acids in Foodstuffs for Humans and Animals. Advances in Experimental Medicine and Biology 1332:189−210

doi: 10.1007/978-3-030-74180-8_11
[19]

Wang F, Yin Y, Wang Q, Xie J, Fu C, et al. 2023. Effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity in Chinese indigenous Ningxiang pig. Journal of Animal Physiology and Animal Nutrition 107:878−86

doi: 10.1111/jpn.13797
[20]

Hu C, Li F, Duan Y, Kong X, Yan Y, et al. 2019. Leucine alone or in combination with glutamic acid, but not with arginine, increases biceps femoris muscle and alters muscle AA transport and concentrations in fattening pigs. Journal of Animal Physiology and Animal Nutrition 103:791−800

doi: 10.1111/jpn.13053
[21]

Zhou Y, Ling D, Wang L, Xu Z, You W, et al. 2024. Dietary "Beigeing" fat contains more phosphatidylserine and enhances mitochondrial function while counteracting obesity. Research 7:0492

doi: 10.34133/research.0492
[22]

Yi W, Huang Q, Wang Y, Shan T. 2023. Lipo-nutritional quality of porK: the lipid composition, regulation, and molecular mechanisms of fatty acid deposition. Animal Nutrition 13:373−85

doi: 10.1016/j.aninu.2023.03.001
[23]

Song S, Tang Q, Fan L, Xu X, Song Z, et al. 2017. Identification of pork flavour precursors from enzyme-treated lard using Maillard model system assessed by GC-MS and partial least squares regression. Meat Science 124:15−24

doi: 10.1016/j.meatsci.2016.10.009
[24]

Cameron ND, Enser M, Nute GR, Whittington FM, Penman JC, et al. 2000. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science 55:187−95

doi: 10.1016/S0309-1740(99)00142-4
[25]

Zhou Y, Khan H, Xiao J, Cheang WS. 2021. Effects of arachidonic acid metabolites on cardiovascular health and disease. International Journal of Molecular Sciences 22:12029

doi: 10.3390/ijms222112029
[26]

Kotlega D, Zembron-Lacny A, Golab-Janowska M, Nowacki P, Szczuko M. 2020. The Association of Free Fatty Acids and Eicosanoids with the Severity of Depressive Symptoms in Stroke Patients. International Journal of Molecular Sciences 21.15:5220

doi: 10.3390/ijms21155220
[27]

Chilton FH, Lee TC, Willard SL, Ivester P, Sergeant S, et al. 2011. Depression and altered serum lipids in cynomolgus monkeys consuming a Western diet. Physiology & Behavior 104:222−7

doi: 10.1016/j.physbeh.2011.01.013
[28]

Yin S, Xu H, Xia J, Lu Y, Xu D, et al. 2023. Effect of alpha-linolenic acid supplementation on cardiovascular disease risk profile in individuals with obesity or overweight: a systematic review and meta-analysis of randomized controlled trials. Advances in Nutrition 14:1644−55

doi: 10.1016/j.advnut.2023.09.010
[29]

Decandia D, Landolfo E, Sacchetti S, Gelfo F, Petrosini L, et al. 2022. n-3 PUFA improve emotion and cognition during menopause: a systematic review. Nutrients 14:1982

doi: 10.3390/nu14091982
[30]

Tung KTS, Wong RS, Mak RTW. 2023. Maternal n-3 PUFA intake during pregnancy and perinatal mental health problems: a systematic review of recent evidence. Current Nutrition Reports 12:426−38

doi: 10.1007/s13668-023-00484-x
[31]

Morita SY, Ikeda Y. 2022. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochemical Pharmacology 206:115296

doi: 10.1016/j.bcp.2022.115296
[32]

Hou J, Ji X, Chu X, Shi Z, Wang B, et al. 2024. Comprehensive lipidomic analysis revealed the effects of fermented Morus alba L. intake on lipid profile in backfat and muscle tissue of Yuxi black pigs. Journal of Animal Physiology and Animal Nutrition 108:764−77

doi: 10.1111/jpn.13932
[33]

Han X. 2016. Lipidomics for studying metabolism. Nature Reviews Endocrinology 12:668−79

doi: 10.1038/nrendo.2016.98
[34]

Zou B, Shao L, Yu Q, Zhao Y, Li X, et al. 2023. Changes of mitochondrial lipid molecules, structure, cytochrome c and ROS of beef Longissimus lumborum and Psoas major during postmortem storage and their potential associations with beef quality. Meat Science 195:109013

doi: 10.1016/j.meatsci.2022.109013
[35]

Tham YK, Jayawardana KS, Alshehry ZH, Giles C, Huynh K, et al. 2021. Novel lipid species for detecting and predicting atrial fibrillation in patients with type 2 diabetes. Diabetes 70:255−61

doi: 10.2337/db20-0653
[36]

Chen D, Zhang XY, Shi Y. 2006. Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria. Biochemical Journal 398:169−76

doi: 10.1042/BJ20060303
[37]

Nie J, Hao X, Chen D, Han X, Chang Z, et al. 2010. A novel function of the human CLS1 in phosphatidylglycerol synthesis and remodeling. Biochimica et Biophysica Acta 1801:438−45

doi: 10.1016/j.bbalip.2009.12.002
[38]

Herrera-Marcos LV, Martínez-Beamonte R, Arnal C, Barranquero C, Puente-Lanzarote JJ, et al. 2024. Lipidomic signatures discriminate subtle hepatic changes in the progression of porcine nonalcoholic steatohepatitis. American Journal of Physiology Gastrointestinal and Liver Physiology 326:G411−G525

doi: 10.1152/ajpgi.00264.2023
[39]

Skotland T, Sandvig K. 2019. The role of PS 18: 0/18: 1 in membrane function. Nature Communications 10:2752

doi: 10.1038/s41467-019-10711-1
[40]

Maekawa M, Fairn GD. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. Journal of Cell Science 128:1422−33

doi: 10.1242/jcs.164715
[41]

Liu D, Zhang H, Yang Y, Liu T, Guo Z, et al. 2023. Metabolome-based genome-wide association study of duck meat leads to novel genetic and biochemical insights. Advanced Science 10:e2300148

doi: 10.1002/advs.202300148
[42]

Antonny B, Vanni S, Shindou H, Ferreira T. 2015. From zero to six double bonds: phospholipid unsaturation and organelle function. Trends in Cell Biology 25:427−36

doi: 10.1016/j.tcb.2015.03.004
[43]

Vanni S, Riccardi L, Palermo G, De Vivo M. 2019. Structure and dynamics of the acyl chains in the membrane trafficking and enzymatic processing of lipids. Accounts of Chemical Researc 52:3087−96

doi: 10.1021/acs.accounts.9b00134
[44]

Pediconi MF, Politi LE, Bouzat CB, De Los Santos EB, Barrantes FJ. 1992. Myogenic differentiation of the muscle clonal cell line BC3H-1 is accompanied by changes in its lipid composition. Lipids 27:669−75

doi: 10.1007/BF02536022
[45]

Zhang X, Zhang J, Sun H, Liu X, Zheng Y, et al. 2019. Defective phosphatidylglycerol remodeling causes hepatopathy, linking mitochondrial dysfunction to hepatosteatosis. Cellular and Molecular Gastroenterology and Hepatology 7:763−81

doi: 10.1016/j.jcmgh.2019.02.002