[1]

Vie AK, Najafi J, Liu B, Winge P, Butenko MA, et al. 2015. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. Journal of Experimental Botany 66:5351−65

doi: 10.1093/jxb/erv285
[2]

Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, et al. 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235−38

doi: 10.1038/s41586-018-0009-2
[3]

Pearce G, Strydom D, Johnson S, Ryan CA. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895−97

doi: 10.1126/science.253.5022.895
[4]

Clark SE, Running MP, Meyerowitz EM. 1995. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057−67

doi: 10.1242/dev.121.7.2057
[5]

Jun J, Fiume E, Roeder AHK, Meng L, Sharma VK, et al. 2010. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiology 154:1721−36

doi: 10.1104/pp.110.163683
[6]

Lease KA, Walker JC. 2006. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiology 142:831−38

doi: 10.1104/pp.106.086041
[7]

Plett JM, Yin H, Mewalal R, Hu R, Li T, et al. 2017. Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis. Scientific Reports 7:382

doi: 10.1038/s41598-017-00400-8
[8]

Chae K, Lord EM. 2011. Pollen tube growth and guidance: roles of small, secreted proteins. Annals of Botany 108:627−36

doi: 10.1093/aob/mcr015
[9]

Etchells JP, Turner SR. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767−74

doi: 10.1242/dev.044941
[10]

Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S. 2012. Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. The Plant Journal 70:367−76

doi: 10.1111/j.1365-313X.2011.04881.x
[11]

Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, et al. 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635−44

doi: 10.1016/S0092-8674(00)80700-X
[12]

Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, et al. 2006. Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842−45

doi: 10.1126/science.1128436
[13]

Oka-Kira E, Kawaguchi M. 2006. Long-distance signaling to control root nodule number. Current Opinion in Plant Biology 9:496−502

doi: 10.1016/j.pbi.2006.07.012
[14]

Whitewoods CD, Cammarata J, Nemec Venza Z, Sang S, Crook AD, et al. 2018. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Current Biology 28:2365−2376. e5

doi: 10.1016/j.cub.2018.05.068
[15]

Hirakawa Y. 2022. Evolution of meristem zonation by CLE gene duplication in land plants. Nature Plants 8:735−40

doi: 10.1038/s41477-022-01199-7
[16]

Strabala TJ, Phillips L, West M, Stanbra L. 2014. Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta. BMC Plant Biology 14:47

doi: 10.1186/1471-2229-14-47
[17]

Miwa H, Tamaki T, Fukuda H, Sawa S. 2009. Evolution of CLE signaling. Plant Signaling & Behavior 4:477−81

doi: 10.4161/psb.4.6.8391
[18]

Ni J, Guo Y, Jin H, Hartsell J, Clark SE. 2011. Characterization of a CLE processing activity. Plant Molecular Biology 75:67−75

doi: 10.1007/s11103-010-9708-2
[19]

Tamaki T, Betsuyaku S, Fujiwara M, Fukao Y, Fukuda H, et al. 2013. SUPPRESSOR OF LLP1 1-mediated C-terminal processing is critical for CLE19 peptide activity. The Plant Journal 76:970−81

doi: 10.1111/tpj.12349
[20]

Ni J, Clark SE. 2006. Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiology 140:726−33

doi: 10.1104/pp.105.072678
[21]

Djordjevic MA, Oakes M, Wong CE, Singh M, Bhalla P, et al. 2011. Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean. Journal of Experimental Botany 62:4649−59

doi: 10.1093/jxb/err185
[22]

Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y. 2009. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nature Chemical Biology 5:578−80

doi: 10.1038/nchembio.182
[23]

Matsubayashi Y. 2011. Small post-translationally modified peptide signals in Arabidopsis. The Arabidopsis Book 9:e0150

doi: 10.1199/tab.0150
[24]

Xu TT, Song XF, Ren SC, Liu CM. 2013. The sequence flanking the N-terminus of the CLV3 peptide is critical for its cleavage and activity in stem cell regulation in Arabidopsis. BMC Plant Biology 13:225

doi: 10.1186/1471-2229-13-225
[25]

Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu YH, et al. 2015. A cascade of Arabinosyltransferases controls shoot meristem size in tomato. Nature Genetics 47:784−92

doi: 10.1038/ng.3309
[26]

Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. 2013. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nature Communications 4:2191

doi: 10.1038/ncomms3191
[27]

Fletcher JC. 2020. Recent advances in Arabidopsis CLE peptide signaling. Trends in Plant Science 25:1005−16

doi: 10.1016/j.tplants.2020.04.014
[28]

Liu PL, Du L, Huang Y, Gao SM, Yu M. 2017. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evolutionary Biology 17:47

doi: 10.1186/s12862-017-0891-5
[29]

Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911−14

doi: 10.1126/science.283.5409.1911
[30]

Hu C, Zhu Y, Cui Y, Cheng K, Liang W, et al. 2018. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nature Plants 4:205−11

doi: 10.1038/s41477-018-0123-z
[31]

Nimchuk ZL. 2017. CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop. PLoS Genetics 13:e1006681

doi: 10.1371/journal.pgen.1006681
[32]

Willoughby AC, Nimchuk ZL. 2021. WOX going on: CLE peptides in plant development. Current Opinion in Plant Biology 63:102056

doi: 10.1016/j.pbi.2021.102056
[33]

Clark SE, Running MP, Meyerowitz EM. 1993. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397−418

doi: 10.1242/dev.119.2.397
[34]

Kayes JM, Clark SE. 1998. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843−51

doi: 10.1242/dev.125.19.3843
[35]

Müller R, Bleckmann A, Simon R. 2008. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. The Plant Cell 20:934−46

doi: 10.1105/tpc.107.057547
[36]

Song SK, Clark SE. 2005. POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Developmental Biology 285:272−84

doi: 10.1016/j.ydbio.2005.06.020
[37]

Yu LP, Simon EJ, Trotochaud AE, Clark SE. 2000. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127:1661−70

doi: 10.1242/dev.127.8.1661
[38]

Bommert P, Je BI, Goldshmidt A, Jackson D. 2013. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:555−58

doi: 10.1038/nature12583
[39]

Guo H, Zhang W, Tian H, Zheng K, Dai X, et al. 2015. An auxin responsive CLE gene regulates shoot apical meristem development in Arabidopsis. Frontiers in Plant Science 6:295

doi: 10.3389/fpls.2015.00295
[40]

Ma Y, Flückiger I, Nicolet J, Pang J, Dickinson JB, et al. 2024. Comparisons of two receptor-MAPK pathways in a single cell-type reveal mechanisms of signalling specificity. Nature Plants 10:1343−62

doi: 10.1038/s41477-024-01768-y
[41]

Clark SE, Williams RW, Meyerowitz EM. 1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575−85

doi: 10.1016/S0092-8674(00)80239-1
[42]

Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617−19

doi: 10.1126/science.289.5479.617
[43]

Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. 2008. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319:294

doi: 10.1126/science.1150083
[44]

Yadav RK, Reddy GV. 2012. WUSCHEL protein movement and stem cell homeostasis. Plant Signaling & Behavior 7:592−94

doi: 10.4161/psb.19793
[45]

Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, et al. 2010. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911−20

doi: 10.1242/dev.048199
[46]

Casamitjana-Martı́nez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, et al. 2003. Root-specific CLE19 overexpression and the Sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Current Biology 13:1435−41

doi: 10.1016/S0960-9822(03)00533-5
[47]

Zhang H, Wang Q, Blanco-Touriñán N, Hardtke CS. 2024. Antagonistic CLE peptide pathways shape root meristem tissue patterning. Nature Plants 10:1900−8

doi: 10.1038/s41477-024-01838-1
[48]

Dao TQ, Weksler N, Liu HM, Leiboff S, Fletcher JC. 2022. Interactive CLV3, CLE16 and CLE17 signaling mediates stem cell homeostasis in the Arabidopsis shoot apical meristem. Development 149:dev200787

doi: 10.1242/dev.200787
[49]

Hobe M, Müller R, Grünewald M, Brand U, Simon R. 2003. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Development Genes and Evolution 213:371−81

doi: 10.1007/s00427-003-0329-5
[50]

Stahl Y, Wink RH, Ingram GC, Simon R. 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Current Biology 19:909−14

doi: 10.1016/j.cub.2009.03.060
[51]

Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, et al. 2005. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. The Plant Cell 17:2542−53

doi: 10.1105/tpc.105.034009
[52]

Miwa H, Betsuyaku S, Iwamoto K, Kinoshita A, Fukuda H, et al. 2008. The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. Plant & Cell Physiology 49:1752−57

doi: 10.1093/pcp/pcn148
[53]

Whitford R, Fernandez A, Groodt R, Ortega E, Hilson P, et al. 2008. Plant CLE Peptides from Two Distinct Functional Classes Synergistically Induce Division of Vascular Cells. Proceedings of the National Academy of Sciences of the United States of America 105:18625−30

doi: 10.1073/pnas.0809395105
[54]

Racolta A, Nodine MD, Davies K, Lee C, Rowe S, et al. 2018. A common pathway of root growth control and response to CLE peptides through two receptor kinases inArabidopsis. Genetics 208:687−704

doi: 10.1534/genetics.117.300148
[55]

Liu Y, Yang S, Song Y, Men S, Wang J. 2016. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays. Journal of Experimental Botany 67:2309−24

doi: 10.1093/jxb/erw045
[56]

Yang S, Bai J, Wang J. 2020. TDIF peptides regulate root growth by affecting auxin homeostasis and PINs expression in Arabidopsis thaliana. Planta 251:109

doi: 10.1007/s00425-020-03406-1
[57]

DiGennaro P, Grienenberger E, Dao TQ, Jun JH, Fletcher JC. 2018. Peptide signaling molecules CLE5 and CLE6 affect Arabidopsis leaf shape downstream of leaf patterning transcription factors and auxin. Plant Direct 2:e00103

doi: 10.1002/pld3.103
[58]

Fukuda H, Hardtke CS. 2020. Peptide signaling pathways in vascular differentiation. Plant Physiology 182:1636−44

doi: 10.1104/pp.19.01259
[59]

Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, et al. 2008. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proceedings of the National Academy of Sciences of the United States of America 105:15208−13

doi: 10.1073/pnas.0808444105
[60]

Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM. 2016. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytologist 209:474−84

doi: 10.1111/nph.13642
[61]

Hirakawa Y, Kondo Y, Fukuda H. 2010. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. The Plant Cell 22:2618−29

doi: 10.1105/tpc.110.076083
[62]

Qian P, Song W, Yokoo T, Minobe A, Wang G, et al. 2018. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nature Plants 4:1071−81

doi: 10.1038/s41477-018-0317-4
[63]

Hazak O, Brandt B, Cattaneo P, Santiago J, Rodriguez-Villalon A, et al. 2017. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature. EMBO Reports 18:1367−81

doi: 10.15252/embr.201643535
[64]

Ren SC, Song XF, Chen WQ, Lu R, Lucas WJ, et al. 2019. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. Journal of Integrative Plant Biology 61:1043−61

doi: 10.1111/jipb.12846
[65]

Ohmori Y, Yasui Y, Hirano HY. 2014. Overexpression analysis suggests that FON2-LIKE CLE PROTEIN1 is involved in rice leaf development. Genes & Genetic Systems 89:87−91

doi: 10.1266/ggs.89.87
[66]

Zhang Y, Tan S, Gao Y, Kan C, Wang HL, et al. 2022. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis. New Phytologist 235:550−62

doi: 10.1111/nph.18154
[67]

Zhang Z, Liu C, Li K, Li X, Xu M, et al. 2022. CLE14 functions as a "brake signal" to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis. Molecular Plant 15:179−88

doi: 10.1016/j.molp.2021.09.006
[68]

Lau OS, Bergmann DC. 2012. Stomatal development: a plant’s perspective on cell polarity, cell fate transitions and intercellular communication. Development 139:3683−92

doi: 10.1242/dev.080523
[69]

Roman AO, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, et al. 2022. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nature Communications 13:876

doi: 10.1038/s41467-022-28558-4
[70]

Fiume E, Fletcher JC. 2012. Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. The Plant Cell 24:1000−12

doi: 10.1105/tpc.111.094839
[71]

Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, et al. 2006. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant and Cell Physiology 47:1591−602

doi: 10.1093/pcp/pcl025
[72]

Suzaki T, Yoshida A, Hirano HY. 2008. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. The Plant Cell 20:2049−58

doi: 10.1105/tpc.107.057257
[73]

Suzaki T, Ohneda M, Toriba T, Yoshida A, Hirano HY. 2009. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice. PLoS Genetics 5:e1000693

doi: 10.1371/journal.pgen.1000693
[74]

Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, et al. 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131:5649−57

doi: 10.1242/dev.01441
[75]

Ohmori Y, Tanaka W, Kojima M, Sakakibara H, Hirano HY. 2013. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. The Plant Cell 25:229−41

doi: 10.1105/tpc.112.103432
[76]

Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. 2001. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes & Development 15:2755−66

doi: 10.1101/gad.208501
[77]

Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, et al. 2005. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235−45

doi: 10.1242/dev.01671
[78]

Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, et al. 2019. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nature Genetics 51:786−92

doi: 10.1038/s41588-019-0389-8
[79]

Wang S, Lu J, Song XF, Ren SC, You C, et al. 2017. Cytological and transcriptomic analyses reveal important roles of CLE19 in pollen exine formation. Plant Physiology 175:1186−202

doi: 10.1104/pp.17.00439
[80]

Yu Y, Song W, Zhai N, Zhang S, Wang J, et al. 2023. PXL1 and SERKs act as receptor-coreceptor complexes for the CLE19 peptide to regulate pollen development. Nature Communications 14:3307

doi: 10.1038/s41467-023-39074-4
[81]

Hord CLH, Chen C, Deyoung BJ, Clark SE, Ma H. 2006. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. The Plant Cell 18:1667−80

doi: 10.1105/tpc.105.036871
[82]

Renninger KA, Yarvis RM, Youngstrom CE, Cheng CL. 2025. The rise of CLAVATA: evidence for CLAVATA3 and WOX signaling in the fern gametophyte. The Plant Journal 121:e17207

doi: 10.1111/tpj.17207
[83]

Endo S, Shinohara H, Matsubayashi Y, Fukuda H. 2013. A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling. Current Biology 23:1670−76

doi: 10.1016/j.cub.2013.06.060
[84]

Jones DS, John A, VanDerMolen KR, Nimchuk ZL. 2021. CLAVATA signaling ensures reproductive development in plants across thermal environments. Current Biology 31:220−227. e5

doi: 10.1016/j.cub.2020.10.008
[85]

Wang G, Zhang G, Wu M. 2016. CLE peptide signaling and crosstalk with phytohormones and environmental stimuli. Frontiers in Plant Science 6:1211

doi: 10.3389/fpls.2015.01211
[86]

Zhang Z, Liu L, Kucukoglu M, Tian D, Larkin RM, et al. 2020. Correction to: Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Genomics 21:895

doi: 10.1186/s12864-020-07231-4
[87]

Oka-Kira E, Tateno K, Miura KI, Haga T, Hayashi M, et al. 2005. klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. The Plant Journal 44:505−15

doi: 10.1111/j.1365-313X.2005.02543.x
[88]

Li J, Huang Y, Yu X, Wu Q, Man X, et al. 2024. Identification and application of CLE peptides for drought resistance in Solanaceae crops. Journal of Agricultural and Food Chemistry. 72(24):13869−84

doi: 10.1021/acs.jafc.4c03684
[89]

Müller LM, Flokova K, Schnabel E, Sun X, Fei Z, et al. 2019. A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza. Nature Plants 5:933−39

doi: 10.1038/s41477-019-0501-1
[90]

Wulf K, Sun J, Wang C, Ho-Plagaro T, Kwon CT, et al. 2024. The role of CLE peptides in the suppression of mycorrhizal colonization of tomato. Plant & Cell Physiology 65:107−19

doi: 10.1093/pcp/pcad124
[91]

Le Marquer M, Bécard G, Frey NFD. 2019. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. New Phytologist 222:1030−42

doi: 10.1111/nph.15643
[92]

Mueller K, Bittel P, Chinchilla D, Jehle AK, Albert M, et al. 2012. Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. The Plant Cell 24:2213−24

doi: 10.1105/tpc.112.096073
[93]

Segonzac C, Nimchuk ZL, Beck M, Tarr PT, Robatzek S, et al. 2012. The shoot apical meristem regulatory peptide CLV3 does not activate innate immunity. The Plant Cell 24:3186−92

doi: 10.1105/tpc.111.091264
[94]

Hanemian M, Barlet X, Sorin C, Yadeta KA, Keller H, et al. 2016. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway. New Phytologist 211:502−15

doi: 10.1111/nph.13913
[95]

Replogle AJ, Wang J, Bleckmann A, Hussey RS, Baum TJ, et al. 2015. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. The Plant Journal 65:430−40

doi: 10.1111/j.1365-313X.2010.04433.x
[96]

Paries M, Gutjahr C. 2023. The good, the bad, and the phosphate: regulation of beneficial and detrimental plant–microbe interactions by the plant phosphate status. New Phytologist 239:29−46

doi: 10.1111/nph.18933
[97]

Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, et al. 2022. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Molecular Plant 15:104−24

doi: 10.1016/j.molp.2021.12.005
[98]

de Bang TC, Lundquist PK, Dai X, Boschiero C, Zhuang Z, et al. 2017. Genome-wide identification of Medicago peptides involved in macronutrient responses and nodulation. Plant Physiology 175:1669−89

doi: 10.1104/pp.17.01096
[99]

Lim CW, Lee YW, Hwang CH. 2011. Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. Plant & Cell Physiology 52:1613−27

doi: 10.1093/pcp/pcr091
[100]

Reid DE, Ferguson BJ, Gresshoff PM. 2011. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Molecular Plant-Microbe Interactions 24:606−18

doi: 10.1094/MPMI-09-10-0207
[101]

Wulf K, Wang C, Ho-Plágaro T, Kwon CT, Velandia K, et al. 2023. CLE11 and CLE10 suppress mycorrhizal colonisation in tomato. bioRxiv

[102]

Goh CH, Nicotra AB, Mathesius U. 2019. Genes controlling legume nodule numbers affect phenotypic plasticity responses to nitrogen in the presence and absence of rhizobia. Plant, Cell & Environment 42:1747−57

doi: 10.1111/pce.13498
[103]

Yoshida C, Funayama-Noguchi S, Kawaguchi M. 2010. Plenty, a novel hypernodulation mutant in Lotus japonicus. Plant & Cell Physiology 51:1425−35

doi: 10.1093/pcp/pcq115
[104]

Wang C, Reid JB, Foo E. 2020. The role of CLV1, CLV2 and HPAT homologs in nitrogen-regulation of root development. bioRxiv

[105]

Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez-Sandoval P, Alatorre-Cobos F, Oropeza-Aburto A, et al. 2017. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling. Developmental Cell 41:555−570. e3

doi: 10.1016/j.devcel.2017.05.009
[106]

Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, et al. 2005. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant & Cell Physiology 46:174−84

doi: 10.1093/pcp/pci011
[107]

Funayama-Noguchi S, Noguchi K, Yoshida C, Kawaguchi M. 2011. Two CLE genes are induced by phosphate in roots of Lotus japonicus. Journal of Plant Research 124:155−63

doi: 10.1007/s10265-010-0342-5
[108]

Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, et al. 2015. Rna-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant & Cell Physiology 56:1490−511

doi: 10.1093/pcp/pcv071
[109]

Karlo M, Boschiero C, Landerslev KG, Blanco GS, Wen J, et al. 2020. The CLE53-SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. Journal of Experimental Botany 71:4972−84

doi: 10.1093/jxb/eraa193
[110]

Müller LM, Harrison MJ. 2019. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 50:132−39

doi: 10.1016/j.pbi.2019.05.004
[111]

Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, et al. 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiology 155:974−87

doi: 10.1104/pp.110.164640
[112]

Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, et al. 2012. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiology 160:1329−41

doi: 10.1104/pp.112.202358
[113]

Sun H, Tao J, Liu S, Huang S, Chen S, et al. 2014. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. Journal of Experimental Botany 65:6735−46

doi: 10.1093/jxb/eru029
[114]

Chu H, Qian Q, Liang W, Yin C, Tan H, et al. 2006. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiology 142:1039−52

doi: 10.1104/pp.106.086736
[115]

Ren D, Xu Q, Qiu Z, Cui Y, Zhou T, et al. 2019. FON4 prevents the multi-floret spikelet in rice. Plant Biotechnology Journal 17:1007−9

doi: 10.1111/pbi.13083
[116]

Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, et al. 2021. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nature Plants 7:287−94

doi: 10.1038/s41477-021-00858-5
[117]

Wang X, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, et al. 2021. Dissecting Cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nature Plants 7:419−27

doi: 10.1038/s41477-021-00898-x
[118]

Gaillochet C, Develtere W, Jacobs TB. 2021. CRISPR screens in plants: approaches, guidelines, and future prospects. The Plant Cell 33:794−813

doi: 10.1093/plcell/koab099
[119]

Sandoval PJ, Santiago J. 2020. In vitro analytical approaches to study plant ligand-receptor interactions. Plant Physiology 182:1697−712

doi: 10.1104/pp.19.01396
[120]

Thind AS, Monga I, Thakur PK, Kumari P, Dindhoria K, et al. 2021. Demystifying emerging bulk RNA-seq applications: the application and utility of bioinformatic methodology. Briefings in Bioinformatics 22:bbab259

doi: 10.1093/bib/bbab259
[121]

Hill AJ, McFaline-Figueroa JL, Starita LM, Gasperini MJ, Matreyek KA, et al. 2018. On the design of CRISPR-based single-cell molecular screens. Nature Methods 15:271−74

doi: 10.1038/nmeth.4604
[122]

Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:1883−96. e15

doi: 10.1016/j.cell.2016.11.039
[123]

Dixit A, Parnas O, Li B, Chen J, Fulco CP, et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:1853−1866. e17

doi: 10.1016/j.cell.2016.11.038
[124]

Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, et al. 2024. CRISPR technologies for genome, epigenome and transcriptome editing. Nature Reviews Molecular Cell Biology 25:464−87

doi: 10.1038/s41580-023-00697-6
[125]

Kondo Y, Hirakawa Y, Kieber JJ, Fukuda H. 2011. CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. Plant & Cell Physiology 52:37−48

doi: 10.1093/pcp/pcq129
[126]

Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences of the United States of America 109:4002−7

doi: 10.1073/pnas.1200636109
[127]

Bidadi H, Matsuoka K, Sage-Ono K, Fukushima J, Pitaksaringkarn W, et al. 2014. CLE6 expression recovers gibberellin deficiency to promote shoot growth in Arabidopsis. The Plant Journal 78:241−52

doi: 10.1111/tpj.12475
[128]

Pallakies H, Simon R. 2014. The CLE40 and CRN/CLV2 signaling pathways antagonistically control root meristem growth in Arabidopsis. Molecular Plant 7:1619−36

doi: 10.1093/mp/ssu094
[129]

Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470−480. e8

doi: 10.1016/j.cell.2017.08.030